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Preface

Students of literature may have an advantage in understanding what
this book is about. Noticing the many references to games and gam-
bling, these students will immediately ask the right question: For
what are the games and gambling a metaphor? The answer is the
many events in the real world, some of them of great importance, in
which chance plays a role. In almost all areas of human endeavor,
a knowledge of the laws of probability is essential to success. It is
not possible to work with actual uses of probability theory here. In
the first place, applications in one area will be of limited interest
to students of other areas. Second, in order to consider an applica-
tion of probability in some field of study, one must know something
about that field. For example, to understand how random walks are
used by chemists, one must know the necessary chemistry. Since
we do want to explain probability theory primarily by presenting
examples, we choose to discuss simple things, like throwing a pair
of dice. The examples stand in place of the many practical situations
that are too complicated to discuss in this book.

Certainly the book is not intended as a guide to gambling, or
even as a warning against gambling. However, before dropping the
subject of gambling, a certain comment may be in order. We may as
well quote the words used by DeMoivre, in his book, The Doctrine of

vil



Vlll Preface

Chances, in similar circumstances. (Information about the persons
quoted in this preface may be found in the body of the book.) Note
that the doctrine of chances refers to what we now call probability
theory. DeMoivre wrote, “There are many People in the World who
are prepossessed with an Opinion, that the Doctrine of Chances has
a Tendency to promote Play, but they soon will be undeceived, if
they think fit to look into the general Design of this Book”

While applications abound, the present work can be read as a
study in pure mathematics. The style is very formal, but we do have
definitions, axioms and theorems; proofs of the theorems are given
for those who care, or are obliged by an instructor, to read them. To
quote DeMoivre again, “Another use to be made of this Doctrine of
Chances is, that it may serve in Conjunction with the other parts
of Mathematicks, as a fit Introduction to the Art of Reasoning; it
being known by experience that nothing can contribute more to
the attaining of that Art, than the consideration of long Train of
Consequences, rightly deduced from undoubted Principles, of which
this Book affords many Examples. To this may be added, that some of
the Problems about Chance having a great Appearance of Simplicity,
the Mind is easily drawn into a belief, that their Solution may be
attained by meer Strength of natural good Sense; which generally
proving otherwise, and the Mistakes occasioned thereby being not
unfrequent, ‘tis presumed that a Book of this Kind, which teaches to
distinguish Truth from what seems so nearly to resemble it, will be
look’d upon as a help to good Reasoning.”

As we just noted, this book is about a part of mathematics—
applicable mathematics to be sure, but the applications are not
discussed here. Putting applications to one side, we look at the other
side. There we find philosophy, which we also cannot discuss here:
Is there such a thing as chance in the real world, or is everything
predestined? Let us take a moment to at least indicate which topics
we are not going to discuss.

One point of view was expressed by Montmort, writing in French
in the eighteenth century. In translation what he says is, “Strictly
speaking, nothing depends on chance; when we study nature, we
are completely convinced that its Author works is in a general and
uniform way, displaying infinite wisdom and foreknowledge. Thus
to attach a philosophically valid meaning to the word “chance”, we
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must believe that everything follows definite rules, which for the
most part are not known to us; thus to say something depends on
chance is to say its actual cause is hidden. According to this definition
we may say that the life of a human being is a game where chance
rules”

On the other hand, at the present time, there are those who
claim that in quantum mechanics we find situations in which there
is nothing but blind chance, with no causality behind it; all that
actually exists before we make an observation is certain probabilities.
We need not go into this point of view here, beyond noting the
following: If we see from experiments that the rules of probability
theory are followed in certain situations, for many purposes it is not
necessary to know why they are followed. Be that as it may, the
examples which appear in this book are all of the kind Montmort
had in mind. We speak of whether a coin falls heads as a random
event, because we do not have the detailed information necessary
to compute from the laws of physics how the coin will fall.

* * *

How much of the book should be covered in a one semester
course, or a two quarter course, is obviously up to the instructor. Like-
wise the instructor must decide how much to emphasize theorems
and proofs.

Certain exercises are marked with two asterisks to indicate un-
usual difficulty. But who can say just how hard a problem is? What
is certain is that the exercises as a whole were deliberately selected
to cover a range of difficulties.

The book developed gradually over a long period of time. During
that time the author was greatly aided by discussion of the work with
his colleagues, many of whom suffered the misfortune of teaching
using inadequate preliminary versions of the book; many flaws can
to light this way. The author is most grateful for the help of these
colleagues in the Department of Mathematics & Statistics of the State
University of New York at Albany, especially George Martin, and for
the help of the staff of that department.

Hugh Gordon
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Introduction

CHAPTER

Everyone knows that, when a coin is tossed, the probability of heads
is one-half. The hard question is, “What does that statement mean?”
A good part of the discussion of that point would fall under the
heading of philosophy and would be out of place here. To cover
the strictly mathematical aspects of the answer, we need merely
state our axioms and then draw conclusions from them. We want
to know, however, why we are using the word “probability” in our
abstract reasoning. And, more important, we should know why it
is reasonable to expect our conclusions to have applications in the
real world. Thus we do not want to just do mathematics. When a
choice is necessary, we shall prefer concrete examples over mathe-
matical formality. Before we get to mathematics, we present some
background discussion of the question we raised a moment ago.
Suppose a coin is tossed once. We say the probability of heads is
one-half. The idea is, of course, that, in tossing a coin, heads occurs
half the time. Before objecting to that statement, it is important to
emphasize that it does seem to have some intuitive meaning. It is
worth something; it will provide us with a starting point. To repeat, in
tossing a coin, heads occurs half the time. Obviously, we don’t mean
that we necessarily get one head and one tail whenever we toss a
coin twice. We mean we get half heads in a large number of tosses.

1



2 1. Introduction

But how large is “large”? Well, one million is surely large. However,
as common sense suggests, the chance of getting exactly five hun-
dred thousand heads in a million tosses is small; in Chapter Six we
shall learn just how small. (Meanwhile, which of the following do
you guess is closest: 1/13, 1/130, 1/1300, 1/130000, 1/13000000007?)
Of course, when we say “half heads” we mean approximately half.
Furthermore, no matter how many times we toss the coin, there is a
chance—perhaps very small—of getting heads every time. Thus all
we can say is the following: In a “large” number of tosses, we would
“probably” get “approximately” half heads. That statement is rather
vague. Before doing anything mathematical with it, we must figure
out exactly what we are trying to say. (We shall do that in Chapter
Five.)

Now there are still additional difficulties with the concept of
repetition. In 1693, in one of the earliest recorded discussions of
probability, Samuel Pepys (1633-1703), who of course was a diarist,
but not a mathematician, proposed a probability problem to Isaac
Newton (1642-1727). When Newton began talking about many rep-
etitions, Pepys reacted by rewording his question to make repetition
impossible. (See Exercise 21 of Chapter Three for the reworded ques-
tion.) Pepys was concerned with what would happen if something
were done just once. (Curiously, Newton's letters to Pepys appear to
be the earliest documented use of the idea of repetition in discussing
probabilities. However, the idea must have been in the background
for some time when Newton wrote about it. In fact, despite his great
contributions in other areas, Newton does not seem to have done
anything original in probability theory.) Another case where repeti-
tion is impossible occurs in weather forecasting. What does it mean
to say the probability of rain here tomorrow is 60%? Even though
there is considerable doubt in our minds as to exactly what we are
saying, we do seem to be saying something.

Often the word “odds” is used in describing how likely something
is to happen. For example, one might say, “The odds are 2 to 1 that it
will rain tomorrow.” Sometimes the odds given refer to the amount
of money each party to a bet will stake. However, frequently it is
not intended that any gambling take place. When that is so, making
a statement associating an event with odds of 2:1 is simply a way
of saying that of the two probabilities, namely, that that the event
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will happen and that that the event won't happen, one is twice the
other. But which is twice which? Since “odds” basically refers to
an advantage, and one side's advantage is the other’s disadvantage,
the matter is somewhat complicated. In addition, the use of neg-
ative words, for example, by saying “odds against” causes further
difficulty. The meaning is usually clear from the exact wording and
context, but no simple rule can be given. Under the circumstances,
we shall never use the word “odds” again; the term “probability” is
much clearer and more convenient.

Still before starting our formal theory, we begin to indicate the
setting in which we shall work. We suppose that we are going to
observe something that can turn out in more than one way. We
may be going to take some action, or we may just watch. In ei-
ther case, we speak, for convenience, of doing an experiment. We
assume that which of the various possible outcomes actually takes
place is “due to chance” In other words, we have no knowledge of
the mechanism, if there is one, that produces one outcome rather
than another. From our point of view, the way the experiment turns
out is arbitrary, although some possibilities may be more likely than
others, whatever that means. We restrict our attention to one experi-
ment at a time. This one experiment often involves doing something
more than once. While, over the course of time, we consider many
different examples of experiments, all our theory assumes we are
studying a single experiment. The basic idea of probability theory is
that we assign numbers to hypothetical events, the numbers indicat-
ing how likely the events are to occur. Clearly we must discuss what
an event is before we can consider assigning the numbers. From now
on, when we call something an event, we do not mean that it has
already taken or necessarily will take place. An event is, informally,
something that possibly could occur and for which we want to know
the chances that it will occur. A more formal, and more abstract,
definition of an event occurs in the next paragraph.

From the point of view of abstract mathematical theory, a sam-
ple space is just a set, any set. Since we are going to study only
a certain portion of probability theory, which we shall call discrete
probability, we shall very soon put a restriction on which sets may
be used. However before doing anything else, we want to describe
the intuitive ideas behind our mathematical abstractions. We make a
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negative comment first: The word “sample,” which we use for histor-
ical reasons, does not give any indication of what we have in mind.
The sample space, which we shall always denote by , is simply the
set of all possible ways our experiment can turn out. In other words,
doing the experiment determines just one element of Q. Thus, when
the experiment is done, one and only one element of Q “happens”
The choice of a sample space then amounts to specifying all possi-
ble outcomes, without omission or repetition. A subset of the sample
space is called an event; we shall assign probabilities to events. We
illustrate the concepts of sample space and event in the following
examples:

1. A die is to be thrown. We are interested in which number the die
“shows”; by the number shown, we mean, of course, the number
on the top of the die after it comes to rest. A possible choice of
sample space Q2 would be {1, 2, 3, 4, 5, 6}. Other choices of Q are
also possible. For example, we could classify the way the die falls
considering also which face most nearly points north. However,
since we are interested only in which face of the die is up, the
simplest choice for 2 would be {1, 2, 3, 4, 5, 6}, and we would be
most unlikely to make any other choice. We consider some exam-
ples of events: Let A be “The die shows an even number” Then A
is an event, and A = {2, 4, 6}. Let B be “The die shows a number
no greater than 3” Then B is an event, and B = {1, 2, 3}. Let C be
“The die shows a number no less than 10” Then C is an event,
and C = ¢, the empty set. Let D be “The die shows a number
no greater than 6” Then D is an event, and D = Q. (We note
in passing that @ and Q are events for any experiment and any
sample space.)

2. Suppose two dice, one red and one blue, are thrown. Suppose
also that we are concerned only with the total of the numbers
shown on the dice. One choice of a sample space would be Q =
{2,3,4,...,11,12}. Another choice for Q would be the set

{1,1),1,2),01,3),d,4,3d,5),1,6),
(2,1),(2,2),(2,3),(2,9,(2,5),(2,6),
(3,1),3,2),3,3),3,4),3,5),(3,06),
(4,1),(4,2),(4,3),(4,4), (4,5), (4,6),
(5,1),(5,2),(53),(54),(5,5), (5,6),
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)},
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with 36 elements; here the notation (a, b) means the red die shows
the number a and the blue die shows the number b. The first
choice has the advantage of being smaller; we have only 11 points
in Q instead of 36. The second choice has the advantage that the
points of @ are equally likely. More precisely, it is reasonable
to assume, on the basis of common sense and perhaps practical
experience, that the 36 points are equally likely. At this time, we
make no decision as to which € to use.

3. Three coins are tossed; we note which fall heads. The first ques-
tion is whether we can tell the coins apart. We shall always
assume that we can distinguish between any two objects. How-
ever, whether we do make the distinction depends on where we
are going. In the case of the three coins, we decide to designate
them as the first coin, the second coin, and the third coin in some
arbitrary manner. Now we have an obvious notation for the way
the coins fall: hht will mean the first and second coins fall heads
and the third tails; tht will mean the first and third coins fall tails
and the second heads; etc. A good choice of a sample space is

Q = {hhh, hht, hth, htt, thh, tht, tth, ttt}.

By way of example, let A be the event, “Just two coins fall heads.”
Then A = {hht, hth, thh}. The event, “The number of tails is
even” is {hhh, htt, tht, tth}. It is worth noting that it would not
have mattered if we tossed one coin three times instead of three
coins once each.

4. A coin is tossed repeatedly until it falls the same way twice in a
row. A possible sample space, with obvious notation, is

Q = {hh, tt, htt, thh, hthh, thtt, hthtt, ththh, .. .}.

Examples of events are “The coin is tossed exactly five times” and
“The coin is tossed at least five times”

In studying probability, it makes a great deal of sense to begin
with the simplest case, especially since this case is tremendously im-
portant in applications. In certain situations that arise later, we shall
use addition where more complicated examples require integration.
The difference between addition and integration is precisely the dif-
ference between discreteness and continuity. We are going to stick
to the discrete case. We want the points of our sample space to come
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along one at a time, separately from each other. We do not want to
deal with the continuous flow of one point into another that one
finds, for example, for the points on a line. In more precise terms,
we restrict ourselves to the following two possibilities. One case we
do consider is the one where the sample space contains only finitely
many points. In fact, the majority of our examples involve such
sample spaces. Sometimes we consider sample spaces in which the
points can be put into one-to-one correspondence with the positive
integers. In other words, we always assume that, if we so choose,
we can designate the points of our sample space as the first point,
the second point, and so on, either forever or finally reaching some
last point. Note that we said the points can be arranged in order, not
that they are arranged in order. In other words, no particular order
is presupposed. From now on, sample space will mean any set with
the property just announced.

The main reason for using sets in probability theory is that the set
operations of union and intersection correspond to the operations
“and” and “or” of logic. Before describing that correspondence, let us
clarify our language by considering a single event A. When we do
our experiment, the result is just one point u of the sample space; in
other words, u occurs. To say that the event A happens is to say that
that u € A. Now we turn to the event A UB. u € A U B means that
either u € A or u € B. Thus A U B happens exactly when either A
or B happens. (Note that, in conformity with standard mathematical
usage, “either A or B happens” does not exclude the possibility that
both happen.) Likewise, the event A N B is the event, “A and B both
happen

If A is an event, A denotes the event “A does not happen. In
set theoretic terms, A is the set of those u € Q such that u ¢ A. Of
course, we may use the bar over any symbol that denotes an event;
for example, A U B means the event, “A U B does not happen.

Finally, the notation A \ B denotes the event, “A happens, but B
does not” In other words, A\ B = AN B. In terms of sets, u € A\ B
if and only if both u € A and u ¢ B.

Let us explore, for practice, the way the notation just introduced
works out in slightly more complicated cases. For example, consider
C = AN B. To say that C happens is to say that A and B do not both
happen; in other words, that at least one of A and B fails to happen.
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Thus, C = AUB. The logic here is, of course, the logic behind the set
theoretic identity A N B = AUB. Likewise one can interpret, in terms
of events, the identity AU B = A N B. [These last two equations are
called DeMorgan'’s Laws, after Augustus DeMorgan (1806-1871).]

Often we have two ways to say the same thing, one in the lan-
guage of sets and one in the language of events. Suppose A and B are
events. We can put the equation ANB = @ in words by saying that the
sets A and B are disjoint. Or we can say equivalently that A and B are
mutually exclusive; two events are called mutually exclusive when it
is impossible for them to happen together. Consider the set theoretic
identity, which we shall need soon, AUB = A U (B\ A). A logician
might seek a formal proof of that identity, but such a proof need not
concern us here. We convince ourselves informally that the equation
is correct, whether we regard it as a statement about sets or about
events, just by thinking about what it means. Additional equations
that will be needed soon are AN (B\A) =0, (ANBY)U(A\B)=A
and (AN B)N(A\ B) = @. In each case, the reader should think over
what is being said and realize that it is obvious.

Now the key idea of probability theory is that real numbers are
assigned to events to measure how likely the events are. We have
already discussed this idea informally; now we are ready to consider
it as a mathematical abstraction. We begin by preparing the ground-
work as to notation. The probability of an event A will be denoted by
P(A); in conformity with general mathematical notation, P(A) is the
value the function P assigns to A. In other words, P is a function that
assigns numbers to events; P(A) is the number assigned by P to A.

Certain events contain just one point of the sample space. We
shall call such an event an elementary event. Consider Example 3
above, where three coins are tossed. The event, “Three coins fall
heads” is an elementary event, since it consists of just one of the
eight points of the sample space. This event is {hhh}, and its prob-
ability will be denoted by P({hhh}), according to the last paragraph.
To simplify notation, we shall write P(hhh) as an abbreviation for
P({hhh}). In general, if u € Q, P(w) means P({u}).

We shall need to refer to the sum of the numbers P(u) for all
u € A, where A is an event. We denote this sum by

> P(w).

UucA



8 1. Introduction

If A contains finitely many points, but at least two points, then
there is no problem in knowing what we mean; we simply add up
all the numbers P(u) corresponding to the various points u € A.
If A contains a single point u, we understand the sum to be the
one number P(u). If A = @, we follow the standard convention of
regarding the sum as zero. If A contains infinitely many points,
there is an easily solved problem. The assumption made when we
discussed discreteness above guarantees that we can arrange the
numbers we want to add into an infinite series. Since all the terms
are nonnegative, it makes no difference in which order we put the
terms. The advantage of the notation

> P
UucA

is that it covers all these cases conveniently.
We have already said that P is a function that assigns a real
number to each event. We now suppose

1. P(A) > 0 for all events A.
2. P(2) =1.
3. For every event A,
P(A) =) P(w);
UEA
in particular, P(@) = 0.
Some consequences of these assumptions are too immediate to be

made into formal theorems. We simply list these statements with
brief parenthetical explanations; throughout, A and B denote events.

a. If A C B, then P(A) < P(B). (P(A) is the sum of the numbers P(u)
for all u € A; P(B) adds in additional nonnegative terms.)

b. P(A) < 1. (This is the special case B = Q of the last statement.)

¢. If A and B are mutually exclusive, then P(A U B) = P(A) + P(B).
(P(A) is the sum of all P(u) for certain points u of Q; P(B) is the
sum of all P(u) for certain other points of Q. P(A UB) is the overall
sum of all of these P(u).)

d. P(A) = 1 — P(A). (This amounts to the case B = A of the last
statement, since P(A U A) = P(Q) = 1.)



1. Introduction 9

Statement ¢ can obviously be generalized to more than two events.
We call events A, Ay, ..., A, Or events A, A,, ... mutually exclusive
if A; and A; are mutually exclusive whenever i #j. If A,,..., A, are
mutually exclusive, then

P(AlU"'UAn):P(A1)+"'+P(An)-
If Ay, Ay, ... are mutually exclusive, then
P(AyUAU--) = P(A1) + P(A2) + -+

note that the sum on the right is an infinite series. The verification of
this last statement about a series requires a deeper understanding of
the real number system than the other statements, but nevertheless
we shall occasionally, although not frequently, make use of this
conclusion.

By way of variety, let us make the next statement a formal theo-
rem. This theorem gives us a formula for P(A U B) that works even
when A and B are not mutually exclusive.

Theorem Let A and B be events. Then
P(A UB) = P(A) + P(B) — P(AN B).
Proof Since A and B\ A are mutually exclusive and AUB = AU(B\A),
P(AUB) = P(A) + P(B\ A).
Since AN B and B\ A are mutually exclusive and B = (ANB)U(B\ A),
P(B) = P(ANB) + P(B\ A).
Combining the last two equations by subtraction we have
P(AUB) — P(B) = P(A) — P(AN B).
Adding P(B) to each side, we have the desired conclusion. O

Most, but not all, of the sample spaces we shall be using in this
book are of a special kind. They are sample spaces that consist of
finitely many “equally likely” points. A little more formally, assume
that all elementary events have the same probability. In other words,
there is a number a such that P(u) = a for all u € Q. Denote the
number of points in Q by N. Now we have

1=P(Q) =) Pw=a+ -+ +a=Na.

N terms
ue2 te
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Thus a mustbe 1/N. Next consider an arbitrary event A, and suppose
there are M points in A. Then we have

P(A):ZP(u):a+M---mS+a:Ma.

T
UEA te

Thus P(A) = Ma = M(1/N) = M/N. Thus, the probability of A can
be determined by counting the number of points in each of A and €.

The formula just given has often been used as a definition of
probability. When one does that, one says the probability of an event
is the number of “favorable cases,” that is, cases in which the event
occurs, divided by the total number of possible cases. It must be
stated explicitly or merely understood that the cases are equally
likely. We prefer the abstract definition we used above partly because
of its greater generality.

In the situation just discussed, finding probabilities is a matter of
counting in how many ways certain things can happen. Of course,
if the sample space is at all large, we cannot do the counting by
writing out all the possibilities. In the next chapter, we shall learn
some basic techniques for finding the number of elements in a set.

How do we know when the points of the sample space are equally
likely? The fact is that we don't know unless someone tells us. From
the point of view of mathematics, we must begin by clearly defin-
ing the problem we are working. To save time in stating problems,
we agree once and for all to use symmetry as a guide; in other
words, we assume events that are “essentially identical” to be equally
likely. We use common sense in deciding what “essentially identical”
means. A few examples will clarify matters. When we say a die is
thrown, we mean the obvious thing; a die with six faces is thrown
in such a manner that each face has an equal chance to come out
on top. If the die were loaded, we would say so. If the die had, for
example, eight faces, we would say so. When we speak of choosing
a ball at random from an urn, we mean that each ball in the urn has
the same chance to be chosen. On the other hand, suppose we put
in an urn two red balls and three blue balls. Then a ball is drawn
at random. We do not assume that each color has an equal chance
to be drawn. We made a difference between the colors in describing
the setup. The statement, “A ball is drawn at random.” tells us that
each ball has an equal chance to be drawn. When a problem is posed
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to us, we must judge from the precise wording of the question what
is intended to be equally likely.

Another question of language is best indicated by an example.
Four coins are going to be tossed. To be specific, suppose they are a
penny, a nickel, a dime, and a quarter. We bet that three coins will
fall heads. If all four coins fall heads, do we win? We can argue, for
example, that three coins, namely the penny, the nickel, and the
dime, have fallen heads. Our opponent would argue that four coins
fell heads and four is not three. Who is right? There is no answer
because the bet was too vague. To simplify matters in the future,
we adopt a convention on this point. Mathematics books differ as to
what convention they choose; different areas of mathematics make
different terminology convenient. In our context, the easiest way to
proceed is to say that three means just three and no more. From now
on, when we say something happens n times, we mean the number
of times it happens is n; in other words, it happens only n times. We
can still, for emphasis, make statements like, “just five of the dice
fall ‘six”” But the meaning would be the same if the word “just” were
omitted.

Throughout the book, we shall insert various brief comments on
the history of the study of probability. In particular, we shall include
very short biographies of some of the people who devised probability
theory. At this point, we are ready to conclude the chapter with a
discussion of how it all started.

The earliest records of the study of probability theory are some
letters exchanged by Blaise Pascal and Pierre Fermat in the summer
of 1654. While neither man published anything about probabil-
ity, and only a few particular problems were discussed in the
correspondence, informal communication spread the word in the
mathematical community. (A particular case of this is somewhat
amusing. Fermat, in writing to Pascal, says at one point that Pas-
cal will have already understood the solution to a certain problem.
Fermat goes on to announce that he will spell out the details any-
how for the benefit of M. de Roberval. Gilles Personne de Roberval
(1602-1675) was professor of mathematics at the Collége Royal in
Paris; he apparently had some difficulty in understanding the work
of Pascal and Fermat. In fact, Gottfried Leibniz (1646-1716) refers
to “the beautiful work on chance of Fermat, Pascal, and Huygens,
about which M. Roberval is neither willing nor able to understand
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anything” In fairness, we should at least mention that Roberval did
make many important contributions in mathematics and physics.)
The letter in which the topic of probability was first introduced has
been lost. From the surviving letters it appears that Pascal was inter-
ested in discussing chance, while Fermat tried to persuade Pascal to
turn his attention to number theory. Each of the two men suggests
a way of attacking a certain type of probability problem. Fermat
recommends finding probabilities by exactly the method we have
suggested here: dividing the number of favorable cases by the total
number of cases. Pascal is concerned with assigning monetary values
to contingent events when gambling, a topic we leave for Chapter
Four. Both men realized the equivalence of probability and what we
shall call expected value, and, after some misunderstandings, were
in complete agreement as to their conclusions.

Pierre Fermat
Pierre de Fermat (French, 1601-1665)

Fermat'’s father was a prosperous leather merchant. Fermat himself
studied law. His father’s wealth enabled Fermat to purchase a suc-
cession of judicial offices in the parlement of Toulouse; at that time in
France, the usual way of becoming a judge was to purchase a judge-
ship. These positions entitled him to add “de’ to his name; however
he only did so in his official capacity. Despite his profession, Fermat
is usually described in reference books as a mathematician. Cer-
tainly his mathematical accomplishments are enormous. Since the
brief biographies, of which this is the first, will not describe the sub-
ject’s mathematical accomplishments, we just conclude by pointing
out that little is known about Fermat's life.

Blaise Pascal
(French, 1623-1662)

Pascal was descended from a long line of senior civil servants. In
1470 the Pascal family was “ennobled” and thus received the right to
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add “de” to their name; however they did not do so. Blaise Pascal’s
father, Etienne, had a substantial interest in mathematics. In 1637,
Etienne Pascal, Fermat, and Roberval jointly sent René Descartes
(1596-1650) a critical comment on his geometry. Blaise Pascal’s
health was very poor almost from the time of his birth; he was
more or less an invalid throughout his life. Blaise, together with
his two sisters, was educated at home by his father. The sisters
were Gilberte, born in 1620, and Jacqueline, born in 1625. All three
children were child prodigies. In 1638, Etienne protested the omis-
sion of interest payments on some government bonds he owned,
and, as a result, Cardinal Richelieu (1585-1642) ordered his arrest.
The family was forced to flee. Then the two sisters participated
in a children’s performance of a dramatic tragedy sponsored by
the cardinal. After the performance, Jacqueline read a poem she
had written to the cardinal, who was so impressed that he recon-
sidered his feelings about Etienne. As a result, Etienne was given
the post of intendent at Rouen. This office made him the adminis-
trator of, and chief representative of the king for, the surrounding
province. It is curious that Fermat was a member of a parlement
while Etienne Pascal was an intendent. At this time, there was great
political tension between the intendents, representing the central au-
thority of the king, and the local parlements, representing regional
interests. In fact, in a revolution that took place between 1648 and
1653, the intendents, including Etienne Pascal, were driven out of
office. Etienne died in 1651. During the 1640s, the family had be-
come more and more taken up with the Jansenist movement. Their
ties to it had been strengthen by Gilberte’s marriage in 1641. In
1652, shortly after the death of her father, Jacqueline became a
nun at the Jansenist convent of Port-Royal. In 1655, Blaise entered
the convent. While he turned his attention primarily to theology,
he did do so some important mathematical work on the cycloid
in 1658. Jacqueline, broken-hearted by the pope's suppression of
Jansenism, died in 1661. On March 18, 1662, an invention made
by Blaise Pascal went into operation in Paris: carriages running on
fixed routes at frequent intervals could be boarded by anyone on
the payment of five sous. In short, Pascal invented buses. Shortly
after seeing the success of his bus system, Pascal died at the age
of 39. His surviving sister, who was then Gilberte Perier, was in-
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strumental in securing the posthumous publication of much of his
work.

Two years after the correspondence between Fermat and Pascal
mentioned above, Christiaan Huygens became interested in proba-
bility theory. He worked out the basic ideas on his own. Then he
wrote to Roberval and others to try to compare his methods with
those of the French mathematicians; the methods are the same. In
1656, Huygens wrote a short work on probability in Dutch. This work
was translated into Latin and published with the title, De ratiociniis
in ludo aleae, in 1657. It thus became the first published account of
probability theory. While Huygens added little of significance to the
work of Fermat and Pascal, he did set out explicitly the relationship
between the probability approach of Fermat and the expected-value
approach of Pascal.

Christiaan Huygens
(Dutch, 1629-1695)

Christiaan Huygens'’s father, Constantijn, was a diplomat and poet
of some note. He was also a friend of René Descartes (1596-1650).
Descartes was much impressed by the young Christiaan’s mathemat-
ical ability when he visited the Huygens's home. Christiaan studied
both mathematics and law at the University of Leiden. He want on
to devote his time to mathematics, physics, and astronomy; since
he was supported by his wealthy father, he did not need to seek
gainful employment. While some of his work was theoretical, he
was also an experimenter and observer. He devised, made, and used
clocks and telescopes. When he visited Paris for the first time in
1655, he met Roberval and other French mathematicians. In 1666,
he became a founding member of the French Academy of Sciences.
He was awarded a stipend larger than that of any other member
and given an apartment in which to live. Accordingly he moved to
Paris, remaining there even while France and Holland were at war.
In 1681, serious illness forced him to return home to Holland. Vari-
ous political complications made it impossible for him to go back to
France, and so he spent the rest of his life in Holland.
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Exercises

1. Allen, Baker, Cabot, and Dean are to speak at a dinner. They will
draw lots to determine the order in which they will speak.

a. List all the elements of a suitable sample space, if all orders
need to be distinguished.

b. Mark with a check the elements of the event, “Allen speaks
before Cabot”

¢. Mark with a cross the elements of the event, “Cabot’s speech
comes between those of Allen and Baker”

d. Mark with a star the elements of the event, “The four persons
speak in alphabetical order”

2. An airport limousine can carry up to seven passengers. It stops
to pick up people at each of two hotels.

a. Describe a sample space that we can use in studying how many
passengers get on at each hotel.

b. Can your sample space still be used if we are concerned only
with how many passengers arrive at the airport?

3. A coin is tossed five times. By counting the elements in the
following events, determine the probability of each event.

a. Heads never occurs twice in a row.
b. Neither heads nor tails ever occurs twice in a row.
c. Both heads and tails occur at least twice in a row.

4. Two dice are thrown. Consider the sample space with 36 elements
described above. Let:

A be “The total is two!

Bbe “The total is seven.

C be “The number shown on the first die is odd”

D be “The number shown on the second die is odd”
E be “The total is odd”

By counting the appropriate elements of the sample space if nec-
essary, find the probability of each of the following events: a. A;
b.B;c.C;d.D;e. E; f. AUB; g2 ANB,h. AUC;1. ANC;j. A\C;
k. C\A;1.D\C;m. BUD;n. BND;0.CND; p. DNE; q. CNE;
r.CNDNE.



16 1. Introduction

5. Show that, for any events A, B, and C:
a. PANB)+P((A\B)U(B\A)+P(ANB)=1.
b. PGLANB) + P(A) + P(ANB) = 1.
c. FANBNC)+PA)+PANB)+P(AANBNC) = 1.
d. P(A N B) — P(A)P(B) = P(A N B) — P(A)P(B).
6. Suppose P(A) > .9, P(B) > .8, and P(A N BN C) = 0. Show that
P(C) < .3.

7. Prove: FANBNC = @, then P(AUB) N (BUC) N (CU A)) =
P(A N B) + P(BN C) + P(CN A).



Counting

CHAPTER

Recall that we saw in the last chapter that determining probabilities
often comes down to counting how many this-or-thats there are.
In this chapter we gain practice in doing that. While occasionally
we shall phrase problems in terms of probability, the solutions will
always be obtained by counting, until, in later chapters, we develop
more probabilistic methods.

Let us begin by working two problems. Since we are just be-
ginning, the problems will of necessity be easy; but they serve to
introduce some important basic principles. We state the first prob-
lem: Suppose we are going to appoint a committee consisting of two
members of congress, one senator and one representative. In how
many ways can this be done; in other words, how many different
committees are possible? We may choose any one of the 100 sen-
ators. Whichever senator we choose, we may then choose any one
of the 435 possible representatives to complete the committee, that
is, for each choice of a senator, there are 435 possible committees.
Thus in all there are 100 - 435 = 43,500 possible committees.

Now we change the conditions of the problem just worked and
thereby raise a new question. We add to the original conditions the
rule that the two members of the committee must be from differ-

17
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ent states. We try to proceed as before. Again we can choose any
one of 100 senators. But how many representatives can serve with
that senator depends on from which state the senator comes. The
author does not believe he is unusual in not knowing the number
of representatives from each of the states. Thus, unless we take the
time to look up the information, we are stuck. The key to this whole
book, especially this chapter, is, “When stuck, try another method”
Let us think about choosing the representative first. We can choose
any of 435 representatives. For each possible choice, two senators
are excluded and 98 are available to complete the committee. Thus,
for each of the 435 representatives there are 98 possible commit-
tees that include that representative. We conclude that there are
435 - 98 = 42,630 possible committees.

Now the most important part of the last two paragraphs is very
general. Faced with a problem, we try to look at it from several
points of view until a solution becomes obvious. Sometimes, but
far from always, a formula is useful. In such cases, deciding that
a formula will help, and determining which formula, is the heart
of the problem. Using the formula is in itself a minor task. And, to
repeat, much of the time no formula is available. That had to be the
case in the problems worked so far, since we have not yet derived
any formulas. It may take time to work a problem. It may appear
that no progress towards a solution is being made until suddenly
the answer becomes obvious. However, it is possible to learn to
work problems that one could not have done earlier. One learns
by practice, even just by trying and failing. (One does not learn
much by simply following another person’s reasoning. Don't expect
to find many problems coming back for a second time, perhaps with
a trivial change in numbers. The point is not to learn to work certain
types of counting problems; the point is to learn to solve counting
problems.) All that really remains to be done in this chapter is to
practice solving problems.

Many of the exercises of this chapter can now be done. No special
information as to how to do them will be obtained by reading the
rest of the chapter. However, in other exercises it is important to
have some of the thinking done in advance. In other words, in some
cases a formula will be a useful tool in shortening our thinking—a
formula should never replace thinking. We proceed to develop some
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useful formulas. We begin by recording part of the solution to our
two introductory problems, about choosing a committee of members
of congress, as a formula.

Suppose we are going first to select one of f alternatives and then
independently to select one of s alternatives. In how many ways can
we make our selection? Clearly fs ways, since each of the f possible
first choices leads to s possible second choices. The last sentence
contains the heart of the matter. We don't care if we have the same s
possibilities for a second choice regardless of which first choice we
make; what is important is the number s of possibilities. This same
multiplication principle may be used repeatedly if we are concerned
with more than two successive choices.

One basic type of problem runs along the following lines: We are
going to make successive choices, each of one object from the same
given collection of objects. Suppose there are n objects in all and we
are going to make r selections, each of one of the objects. How many
different ways are there to make all of the selections? The question
is too vague. We don't know if the same object may be chosen more
than once. If so, we speak of drawing, or choosing, “with replace-
ment” If an object that is chosen once may never be chosen again,
we say “without replacement” Another vagueness in our question is
that we have not stated whether or not we distinguish two different
sets of choices that differ only as to the order in which they were
made. In other words, are we concerned only with which objects
we have chosen when we are all done, or does the order in which
we select the objects have some significance? We can say, for short,
“order counts” or “order does not count.” In accordance with the mul-
tiplication principle of the last paragraph, we have four problems to
do. In increasing order of difficulty they are:

1. order counts, with replacement;

2. order counts, without replacement;

3. order does not count, without replacement;
4. order does not count, with replacement.

We shall now solve these four problems, with some digressions along
the way.
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1. order counts, with replacement

For each of the r selections from the n objects, we can choose any one
of the objects, independently of how we make the other selections.
Repeated application of the multiplication principle stated above
tells us that there are

nT

ways to make the selections in this case.

We work an example using this last formula. How many six-
letter computer words can be formed using the letters A, B, C, D,
E, with repetitions permitted. We say “computer words” to indicate
that we allow any six letters in a row; BBBCCC counts just as well
as ACCEDE, even though the former is not an English word. (In
other problems, we will even use characters, such as digits, that are
not letters.) In the case at hand, we must choose which letter to
put in each of six different positions; thus 5° = 15,625 answers our
question.

2. order counts, without replacement

In the first place, since no object may be chosen more than once, the
choice cannot be made at all if r > n. We consider in turn the values
1,2,3,...,nfor r. If only one object is to be chosen, this one object
can be any one of the n objects; thus there are n ways to make the
selection. If two objects are to be chosen, the first can be chosen inn
ways, as we just said, and each of these ways gives us n — 1 possible
choices for the second object; thus there are n(n — 1) ways to select
the two objects. If three objects are to be chosen, we just saw that
there are n(n — 1) ways to choose the first two objects, and each of
these ways leads to n — 2 possibilities for the third object; thus there
are n(n—1)(n— 2) ways to make all three choices. Continuing in this
manner, we obtain the answer we desired: For r < n, there are

nn—1)---n—r+1)

ways to make the selection under consideration. (By convention, this
notation means the values already explicitly stated in case r =1, 2,
or 3.)
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The notation n(n—1) - - - (n—r+1) just obtained is a little awkward
to work with; it is sometimes more convenient to express the number
in a different way. If we multiplynn—1)---(n—r+1) by n—r)! =
(n—r)(n—r—1)---1, the product is n!. Thus, n(n—1)--- (n—r+1) =
n!/(n — r)!. The form n!/(n — r)! will be especially useful after we
obtain, in Chapter Six, a method of approximating k! when k is so
large that the direct computation of k! is difficult, or even impossible.

We give an example of the use of the formula just derived. Sup-
pose five of a group of 100 people are each to receive one of five
prizes, each prize having a distinctive name. Disregarding the order
in which the prize recipients are chosen, but taking into account that
the prizes are all different, in how many ways can the five recipients
be selected from the 100 candidates? The first step is typical of many
problems along these lines. If objects are being regarded as different,
they may as well be regarded as arranged in order. Specifically, con-
sider the prizes. We are not told their names, but the names might
be “First Prize;” “Second Prize etc. It is thus clear that the problem of
choosing in order five people to receive five identical prizes is equiv-
alent to the given problem of choosing five people to receive five
different prizes. Thus our problem as originally stated amounts to
choosing five out of 100 people, order counts, without replacement.
The answer is thus 100!/95! = 9,034,502,400.

An important special case is n = r. Then all the objects are
selected, and we are concerned only with the order in which they
are selected. In other words, we are finding the number of ways of
arranging n objects in order. With the standard convention 0! = 1,
the formula n!/(n — r)! just obtained gives n! as the number of ways
that n objects can be arranged in order so that there is a first, a
second, etc.

We just found the number of ways we can arrange »n objects in a
row. Sometimes we want to arrange them in other ways, such asin a
circle. It can be helpful to think of the places the objects will occupy
as preexisting. Then careful application of the formula just derived
can be helpful. The special case of arranging n objects in a circle is
the same problem as that of seating n people at a round table. We
next give an example of just that.

The president and ten members of the cabinet are to sitata round
table. In how many ways can they be seated? To make the question
interesting, we adopt a certain natural convention. The whole point
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of a round table is that all seats are alike. If each person moves one
seat to the right, the arrangement of the people is still the same.
As between different arrangements, someone would have to have a
different right-hand neighbor. When we consider a round table, we
want to determine how many different, in that sense, arrangements
are possible.

Now we return to the president and cabinet. As is often the
case, introducing a time factor will help explain our computation.
Of course, the president sits down first. It makes no difference where
the first person to be seated sits; all chairs at a round table are alike.
After the president is seated, the position of each chair may be
specified in relation to the president’s chair. For example, one chair
is four chairs to the president’s right; some chair is three chairs to the
president’s left, etc. Thus after the president is seated, we consider
the number of ways ten people can be placed into ten different
chairs. This can be done in 10! = 3,628,800 ways, and that is the
answer to our question.

It is now a trivial exercise to give a formula for the number of
ways n people can sit at a round table. Problems involving other
shapes of tables can be done on the basis of analogous reasoning,.

The next topic, which is also a digression, is most easily de-
scribed by way of examples. In how many ways can the letters of
the word SCITOOL be arranged? There are some obvious conven-
tions in understanding what the question means. The letters are to
be arranged in a row from left to right, as we normally write letters.
Thus HOOLCS is one arrangement; SCLOOH is another. The point
of the question is that the two Os cannot be distinguished from each
other. The way to answer the question is first to compute the num-
ber of arrangements there would be if the Os differed, say by being
printed in different fonts, and then adjusting. Six distinct letters can
be arranged in 6! = 720 ways. But in fact we cannot tell the two Os
apart. Thus the 720 ways counts SIIOLOC and SHOLOC as differ-
ent, when they should have been counted as the same. Clearly the
answer to our question is 720 divided by 2, since either O can come
first. In other words, the answer is 720/2 = 360, because the Os can
be arranged in order in two ways.

Now let us try a more complicated problem. In how many ways
can the letters of the phrase



2. Counting 23

SASKATOON SASKATCHEWAN

be arranged? Note that the question says “letters”; the space is to
be ignored. The first step is simply to count how many times each
distinct letter appears. There are five As; four Ss; two each of K, T,
O, and N; and one each of C, H, E, and W. That makes a total of 21
letters, counting repetitions. If all the letters were different, there
would be 21! ways they could be arranged. As in the last problem,
we divide by two because there are two Os. Then we again divide by
two for the two Ks; then again for the Ts; and finally a fourth time for
the Ns. At this point we have 21!/2*. There are four Ss; they can be
arranged in 4! ways. Thus there are 4! times as many arrangements
if we distinguish the Ss as there are if we do not. We divide by 4!
because we do not want to distinguish the Ss. Finally we divide by
5! because the five As are all alike. Our final answer is thus

21!
5141 (204"

To make the procedure by which we obtained this number clearer,
we may write the number as

21!
511011112120 2041 201

where the numbers 5,1, 1,1, 2, 2, 2, 4, 2, 1 refer to the letters A, C, E,
H, K N, O, S, T, W in alphabetical order. (With a calculator, we find
that the answer just given is roughly eleven hundred trillion.) Since
the ideas here are not made any clearer by writing out a general
formula, we shall just assume that the method is now obvious and
g0 on.

3. order does not count, without
replacement

The idea here is to build on the last item we discussed, item 2.
In both items 2 and 3, we are selecting r objects out of n, without
replacement. In both, we must have r < n to avoid the answer zero.
We saw that there were n!/(n—r)! ways to make the selection if order
does count; denote this number by y. We are now trying to find the
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number of ways to make the selection when order is not counted;
denote this number by x. We may think of choosing the objects with
order counting as a two-stage process. First decide which objects
to use, and then arrange them in order. Each choice of a certain
r object leads to r! arrangements of these objects in order. Thus
xr! = y. Obviously then,

Yy n! 1 n!

rom=n =

We use the notation () for this number; thus

ny n!
r]  rm—r)

is the number of ways of choosing r objects out of n, without
replacement, disregarding the order of selection.

We illustrate the use of this formula. How many different com-
mittees of 10 United States senators can be formed? Since we are
choosing 10 out of 100 senators, the answer is

100\ 100!  100-99-98-97-96-95-94-93-92-91
10/ 1001900 10.9.-8.7-6-5-4-3-2-1

which comes to roughly 17 trillion.

It is instructive, and useful from the point of view of general-
ization, to also give an alternative derivation of the last formula
obtained. Suppose we begin by placing all n objects in a row. Then
we make our selection of r of the objects by marking these r with
the letter A. Then we mark the other n — r objects B. The result is
that we now have arranged in a row n letters; r of these letters are As
and n—r of them are Bs. Each way of choosing r objects corresponds
to an arrangement of the letters, and vice versa. Thus there are just
as many ways to pick the objects as there are ways to arrange the
letters. We already know that there are

n!
rt(n—rn)!

ways to arrange the letters. Thus we have a new proof of the formula
of the last paragraph.



2. Counting 25

Let us take a moment to generalize the argument just concluded.
Choosing r objects out of n, without replacement, amounts to divid-
ing the objects into two categories—those that are chosen and those
that are not. We designated these categories with A and B, respec-
tively. In exactly the same way we can consider dividing the objects
into more than two categories. We do retain the condition that the
number of objects in each category be determined in advance. Sup-
pose that there are k categories, and that we plan to put r; objects
into the first category, r; into the second, and so on. If we can do this
at all, we must have r; +r, + - - - 4+ rx = n, since each object is placed
in just one category. We reason as in the last paragraph. Put all n
objects in a row. We make our selection by marking the objects put
in to the first category with the letter A, those in the second category
with B, those in the third with C, and so on. The number of ways to
divide the objects into categories is the same as the number of ways
to arrange a certain collection of n letters, not all distinguishable, in
a row. We saw earlier that this number is

n!

rirpt-ord

4. order does not count, with replacement

Curiously enough, after we solve the practical problem of keeping
track of which objects are selected how many times, the theoretical
problem of determining the number of ways in which the selection
can be made becomes easy. The practical difficulty in knowing how
many times each object has been chosen is that we must replace
each object as soon as we choose it. Obviously, one would overcome
this difficulty by keeping a written record. One way to do this is the
following: Divide a sheet of paper into n compartments by drawing
vertical bars. The diagrams illustrate the example, n = 5, r = 12.
In that example, we divide our paper into five compartments by
drawing four vertical bars, thus:

In general, the number of bars is n — 1, one less than the number of
compartments. We assign a different one of the n compartments to
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each of the »n objects. Now we start choosing objects. Each time an
object is selected, we put a star in the compartment corresponding
to that object. We may as well put all the stars in one horizontal
row. Then, when we have made all the selections, we have stars and
bars arranged in a row. (Only the relative order of the stars and bars
counts; the amount of space between them has no significance.) For
example, we could have:

ook | stk | | etk | stk

In this example, the first object was selected twice, the second object
four times, the third object was never selected, and the fourth and
fifth objects were selected three times each. Each way of making
r selections from n objects, with replacement, disregarding order
of selection, corresponds to just one arrangement of the stars and
bars. Furthermore, each such arrangement corresponds to a certain
selection. Thus the number we seek is simply the number of ways
to put the stars and bars in order. As noted above, there are n — 1
bars. Since there is a star for each selection, there are r stars. The
number of ways of arranging n — 1 bars and r stars in a row was
discussed earlier; it is

(n—14n!

n—1r
We now have the notation

n—r+1
Y
for this number.

We give a couple of applications of this last formula. In how many
ways can 14 chocolate bars be distributed among five children? For
each of the 14 bars we choose one of the five children to receive it.
Thus, in our formula, n = 5, r = 14 and the answer is

54+14—1\ (18 — 3060
14 “\14) ‘

Suppose, in the interest of greater fairness, we require each child to
receive at least two of the chocolate bars. Since the bars are alike,
we may as well first distribute the ten bars necessary to meet the
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guaranteed minimum of two bars per child. The number of ways the
remaining four bars can be distributed is given usingn =5, r = 4 in
our formula; thus this time our answer is

)

We have been discussing choosing r objects out of n objects. Thus
we are, of course, regarding n and r as positive integers. Occasionally
it is convenient to have a definition for the symbol (7) with r = 0.

The formula
ny n!
r]  rtn—r)Y

together with the usual definition 0! = 1, gives

o)

for all nonnegative integers n. We take this last equation as the
definition of the symbol (7) for r = 0, with n a nonnegative integer.

We digress briefly to describe an important application of
the numbers just considered. Consider the familiar problem of
evaluating

(A + B)".
By multiplying out, or, to say the same thing in more formal lan-
guage, by applying the distributive laws, without simplifying at all,
we find that (A4 B)" is the sum of many terms. Each term is obtained
by choosing either the A or the B from each of the n factors in

(A+B)(A+B)---(A+B)
and listing the chosen letters in order. Now we simplify. First each
term can be written as
Aan—r
where 7 is an integer with 0 < r < n. For a given r, the number of

repetitions of A”B"™” that appear is the number of ways to arrange r
letter As and n — r letter Bs in a row; we recall that this number is

n!
rmn—n!
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The total of all terms with a given r is thus

n AT
. .

Summing over all », we have

n ny in-l ny in-2p2 Y\ on
(A+B)'= A"+ A" B+ A"B .+ B".
0 1 2 n

This last equation is the well-known Binomial Theorem. Because of
their appearance in this theorem, the numbers

n
Y
are called binomial coefficients.

In a corresponding way, we could develop the Multinomial Theo-
rem that replaces A + B with the sum of more than two letters. The
numbers

n!
ritry!-- 'Vk!r

which we mentioned earlier, would appear in that theorem and are
therefore called multinomial coefficients.

As pointed out above, choosing k objects out of n objects, dis-
regarding order, without replacement, amounts to dividing the n
objects into two categories—those that are selected and those that
are rejected. In other words, selecting k objects amounts to rejecting
n — k objects. There are (,",) possibilities for which n — k objects are
rejected. Reasoning that way, or using the formula

()=
(=)

whenever n and k are integers with 0 < k < n.
Next we shall derive a formula that is very useful in finding (7)
for small values of n. For larger values of n, the formula is still useful

we see that
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because it is helpful in discussing theory. We suppose neither n nor
v is zero; we also suppose r # n. Suppose we are going to choose r
objects out of n, without replacement, where the order of selection
does not count. There are () ways to choose the objects. Let us
classify these ways according to whether a certain object is chosen
or not. To make the wording easier, we may assume that just one of
the objects is red; judicious use of paint can always bring that about.
In choosing r objects from the n, we may or may not include the red
object. If the red object is among those that are selected, we also have
to select r — 1 other objects. These r — 1 other objects are selected
from the n—1 objects that are not red. Thus in choosing r objects out
of our n objects, there are (I_]) ways to make the selection if the red
object is to be included. Now turn to the case where the red object
is not picked. Then we must make all our r choices from the n — 1
objects that are not red. We can do this in (*}') ways. To summarize,
of the (7)) ways to pick r objects from n objects, just one of which is
red, (’rl:l] ) involve picking the red object and (";1) involve leaving the
red object behind. Since the red object either is chosen or it is not,

()-C=)+()
= + .
r r—1 Y

The formula derived in the last paragraph may be used to draw
up a table of binomial coefficients (7). We use a row of the table for
each value of n, beginning at the top with n = 0. In each row, we list
the coefficients for »r = 0,1, ..., n in that order. For convenience in
using the formula of the last paragraph, we begin each row a little
further to the left than the row above, so that (7) appears below and
to the left of (n:l), but below and to the right of (;’j ). [Of course, the
last sentence tacitly assumes that (”;1) and (';j) are defined; that is,
we need n # 0, r # 0, and r # n.] We begin the table with (g) =1;1
is the only entry in the top row of the table. The next row contains
(;) and (), both of which are 1. For esthetic reasons, we insert these
1s as follows:



30 2. Counting

The next row lists (7), (}), (%), namely, 1, 2, 1. As stated above, these

numbers are placed as follows:

3

Now we consider () with n = 3. (S) = (3

entries in the row. The others are

(-6 ()=
()-()r()-20s

We show this computation by

) = 1 are the first and last

We continue in this way. Each row begins and ends with a 1. Each
of the other entries, according to the formula

()-G=) )

is the sum of the two numbers most nearly directly above it. The
array described above, part of which is shown in the table below,
is known as Pascal’s Triangle. (A short biography of Pascal appears
in Chapter One.) However the triangle was invented by Jia Xian,
sometimes spelled Chia Hsien, in China in the eleventh century.
Jia Xian devised his triangle to use in raising sums of two terms to
powers. Even in Europe, something was known about the triangle
before the time of Pascal. But the important properties of the triangle
were first formally established by Pascal. We note in passing that
Pascal invented the method now called “mathematical induction”
for just this purpose. Pascal’s Triangle provides a convenient way to
compute binomial coefficients when we need all (7) for a given, not
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too large, n. The triangle begins:

1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11
1 12 66 220 495 792 924 792 495 220 66 12

Exercises

1. a. In how many ways can the letters of the word

FLUFF
be arranged?
b. In how many ways can the letters of the word
ROTOR

be arranged leaving the T in the middle?

¢. In how many ways can the letters of the word

REDIVIDER

be arranged so that we still have a palindrome, that is, the

letters read the same backwards as forwards?

2. a. In how many ways can the letters of the word

SINGULAR
be arranged?

b. In how many ways can the letters of the word

DOUBLED
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be arranged?

. In how many ways can the letters of the word

REPETITIOUS

be arranged?

. In how many ways can the letters of the word

KRAKATOA

be arranged?

. In how many ways can the letters of the word

MISSISSIPPI

be arranged?

. In how many ways can the letters of the phrase

MINNEAPOLIS MINNESOTA

be arranged?

. In how many ways can the letters of the phrase

NINETEEN TENNIS NETS

be arranged?

. Suppose your campus bookstore has left in stock three copies of
the calculus book, four copies of the linear algebrabook, and five
copies of the discrete probability book. In how many different
orders can these books be arranged on the shelf?

. How many numbers can be made each using all the digits 1, 2,
3,44, 5, 5,57

. How many numbers can be made each using all the digits 1, 2,
2,3,3,3 07
. Five persons, A, B, C, D, and E, are going to speak at a meeting.

a. In how many orders can they take their turns if B must speak

after A?

b. How many if B must speak immediately after A?

. In how many ways can the letters of the word

MUHAMMADAN
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10.

11.

12.

13.

14.

15.

16.

be arranged without letting three letters that are alike come
together?

At a table in a restaurant, six people ordered roast beef, three or-
dered turkey, two ordered pork chops, and one ordered flounder.
Of course, no two portions of any of these items are absolutely
identical. The 12 servings are brought from the kitchen.

a. In how many ways can they be distributed so that everyone
gets the correct item?

b. In how many ways can they be distributed so that no one gets
the correct item?

a. In how many ways can an American, a Dane, an Egyptian, a
Russian, and a Swede sit at a round table?

b. In how many ways can an amethyst, a diamond, an emerald,
a ruby, and a sapphire be arranged on a gold necklace?

In how many ways can five men and five women sit at a round
table so that no two men sit next to each other?

In how many ways can five men and eight women sit at a round
table if the men sit in consecutive seats?

In how many ways can eight people, including Smith and Jones,
sit at a round table with Smith next to Jones?

Mr. Allen, Mrs. Allen, Mr. Baker, Mrs. Baker, Mr. Carter, Miss
Davis, and Mr. Evans are to be seated at a round table. What is
the probability each wife sits next to her husband?

a. Twenty-two individually carved merry-go-round horses are to
be arranged in two concentric rings on a merry-go-round. In
how many ways can this be done, if each ring is to contain 11
horses and each horse is to be abreast of another horse?

b. Suppose instead that 12 of the horses are to be placed on
one single-ring merry-go-round and the other ten on another
single-ring merry-go-round?

a. In how many ways can eight people sit at a lunch counter
with eight stools?

b. In how many ways can eight people sit at a round table?

¢. In how many ways can four couples sit at the lunch counter
if each wife sits next to her husband?
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. In how many ways can four couples sit at the round table if

each husband sits next to his wife?

In how many ways can four couples sit at a square table with
one couple on each side?

17. Atarectangular dining table, the host and hostess sit one at each
end. In how many ways can each of the following sit at the table:

**18.

a.
b.

six guests, three on each side?

four male and four female guests, four on each side, in such
a way that no two persons of the same sex sit next to each
other?

eight guests, four one each side, so that two particular guests
sit next to each other?

Show that four persons of each of n nationalities can stand in
a row in 12"(2n)! ways with each person standing next to a
compatriot.

19. A store has in stock one copy of a certain book, two copies
of another book, and four copies of a third book. How many
different purchases can a customer make of these books? (A
purchase can be anything from one copy of one book to the
entire stock of the store.)

20. A restaurant offers its patrons the following choices for a
complete dinner:

i. choose one appetizer out of four;
ii. choose one entree out of five;

iii. choose two different items from a list of three kinds of
potatoes, three vegetables, and one salad;

iv. choose one dessert out of four;
v. choose one beverage out of three.

How many different dinners can be ordered without ordering
more than one kind of potato, assuming that no course is
omitted?

How many different dinners can be ordered with no more
than one kind of potato if one item, other than the entree, is
omitted?
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21.

22.

23.

24,

25.

26.

27.

28.

29.

Of 12 men, just two are named Smith. In how many ways, disre-
garding the order of selection, can seven of the men be chosen:
a) with no restrictions? b) if both Smiths must be included? c) if
neither Smith may be included? d) if just one Smith must be in-
cluded? e) if at least one Smith must be included? f) if no more
than one Smith may be included?

Consider computer words consisting of six characters each. If the
characters are chosen from a, b, ¢, d, 2, 3, 4, 5, 6, each of which
may be used at most once, how many words can be formed:
a) with no other restrictions? b) if the third and fourth characters
must be digits and the other characters must be letters? c) If
there must be three digits and three letters? d) if no two digits
and no two letters may be adjacent?

Do the last problem with the modification that the characters
may be used more than once.

For each of k = 0, 1, 2, 3, 4, find the probability that a poker
hand (five cards) contains just k aces.

Of ten twenty-dollar bills, two are counterfeit. Six bills are cho-
sen at random. What is the probability that both counterfeit bills
are chosen?

An urn contains eight balls—two red, two blue, two orange, and
two green. The balls are separated at random into two sets of
four balls each. What is the probability that each set contains
one ball of each color?

A bin contains 100 balls numbered consecutively from 1 to 100.
Two balls are chosen at random without replacement. What is
the probability that the total of the numbers on the chosen balls
is even?

What is the probability that a bridge hand (13 cards) contains all
four aces?

a. How many five-person committees can be chosen from a club
with 15 members?

b. In how many ways can a five-person committee consisting of
a chair, a secretary, and three other members be chosen from
the club?
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32.

33.
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a. In how many ways can a club with 15 members be divided
into three committees of five members each, with no member
serving on more than one committee, if each committee has
different duties?

b. If all committees perform the same functions?

¢. In how many ways can the club be divided into three commit-
tees, each consisting of a chair, a secretary, and three other
members, if the committees have different duties and no one
serves on more than one committee?

A student committee consists of five women and four men. It

is to be divided, by chance, into two working groups, one group

having three members and one group having six members. John
and Joan are on the committee and hope to work together. What
is the probability that they will not be disappointed?

A poker hand contains five cards. Find the probability that a

poker hand be:

a. “four of a kind” (contains four cards of equal face value);

b. “full house” (three cards of equal face value and two others of
equal face value);

c. “three of a kind” (three cards of equal face value and two
cards with face values different from the three and from each
other);

d. “one pair” (two cards of equal face value and three cards with
face values different from the two and from each other);

e. “two pairs” (two cards of equal face value, two other cards
of equal face value different from the value of the first two,
and one card with face value different from each of the other
four).

A class of 30 children comes into a store that sells ice cream

cones. There are five flavors available. Each child gets just one

cone. The management of the store does not care who gets which
flavor. From the point of view of the management, how many
different selections of flavors are possible?

In how many ways can 22 identical bottles of soda be distributed

among four people, disregarding the order of distribution, so that

each person gets at least one bottle?
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35. In how many ways can five apples and six oranges be distributed
among seven children, disregarding the order of distribution?

36. How many ways are there to choose three letters from the phrase
MISS MISSISSIPPI NEVER EVER SIMPERS,

ignoring the order of selection.
37. How many different computer words of six characters each can
be made with letters chosen from the phrase
E PLURIBUS UNUM?
38. A store has in stock 20 cans of each of four flavors of a particular
brand of soda.

a. In how many ways can a customer purchase ten of these cans
of soda?

b. In how many ways can a customer purchase 65 of these cans
of soda?

39. What is the probability that four randomly chosen people were
born on four different days of the week?

40. A die is thrown four times. What is the probability that each
number thrown is higher than all those that were thrown earlier?

41. A die is thrown four times. What is the probability that each
number thrown is at least as high as all of the numbers that
were thrown earlier?

42. In how many ways can 11 # signs and 8 * signs be arranged in a
row so that no two * signs come together?

43. In how many ways can 11 men and 8 women stand in a row so
that no two women stand next to each other?

**44. In how many ways can 11 women and 8 men sit at a round table
so that no two men sit next to each other?

45. In how many orders can the letters of the word
INDIVISIBILITY

be arranged without having two Is together.

46. One arrangement of the letters of the word

MISSISSIPPI
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48.

49.

50.

**51.

52.
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is chosen at random.
a. What is the probability no two Ss are together?
b. What is the probability all the Ss are together?

How many arrangements of the letters of the phrase
MINNEAPOLIS MINNESOTA

have no two vowels together?

In a certain city the streets all run north-south and the avenues
run east-west. The avenues are numbered consecutively, and
the streets are denoted by letters in alphabetical order. A po-
lice car is patrolling the city. At each intersection it either goes
straight ahead, makes a left turn, or makes a right turn—it never
makes a U-turn. The car starts by entering the intersection of
J Street and Twelfth Avenue coming from I Street. How many
different routes can it take if:

a. it reaches L Street and Eighth Avenue after going just six
blocks?

b. it returns to J Street and Twelfth Avenue after going four
blocks?

¢. itreturnstoJ Street and Twelfth avenue after going six blocks?

In the city described in the last problem, suppose a police car is
at B Street and Second Avenue when it gets word of an accident
at J Street and Tenth Avenue. If the car is instructed to proceed
to the accident by as short a route as possible, from how many
routes can the driver choose?

How many collections of letters, in no particular order, can be
formed by choosing one or more letters from the phrase

MISSISSIPPI RIVER?

How many computer words of six characters each can be made
by choosing letters from the phrase

NINETEEN TENNIS NETS?

(Consider various cases separately.)

a. A disgruntled letter carrier has to place ten different letters
into seven mail boxes. He pays no attention to the addresses
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53.

54.

55.

on the letters. In how many ways can he distribute the letters
into the boxes?

b. Suppose he has ten identical circulars, instead of the letters,
to place. In how many ways can he distribute the circulars?

In the New York State “Numbers” game, three digits are drawn,
with replacement, each evening on television. The player
chooses, in advance of course, three digits and may pick from
several types of bets:

a. “Straight”: To win the player’s digits must match those drawn
in the order they were drawn.

b. “Six-Way Box”: The player chooses three different digits and
wins if they match those drawn in any order.

¢. “Three-Way Box”: The player announces a digit once and a
different digit twice. To win, these three digits must match
the three digits drawn in any order.

Find the probability of winning each of these bets.

In the New York State “Win 4" game, four digits are randomly
drawn, with replacement. The player chooses four digits and
may pick from several types of bets:

a. “Straight”: To win, the player’s digits must match those drawn
in the order they were drawn.

b. There are four kinds of “box” bets. In each, the player wins
by matching the digits drawn in any order. “24-Way Box”:
The player's digits are all different. “12-Way Box": The player
names one digit twice. “6-Way Box”: The player names two
different digits twice each . “4-Way Box": The player names
one digit three times and a different digit once. Find the
probability of winning each of these bets.

New York State’s “Lotto” game is played with 54 balls, numbered
from 1 to 54. The player picks six of these numbers. The next
Wednesday or Saturday night, the balls are placed in the Lotto
draw machine. The machine automatically releases six balls, at
random; the numbers on these six balls are called the winning
numbers. Then the machine releases a seventh ball; the num-
ber on this ball is called the supplementary number. There are
several ways to win:
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a. To win the Jackpot, the player must have picked all six
winning numbers (in any order).

b. To win a Second Prize, the player must have picked five
winning numbers.

¢. To win a Third Prize, the player must have picked four
winning numbers.

d. To win a Fourth Prize, the player must have picked three
winning numbers and the supplementary number.

Find the probability of winning each of the prizes.

According to Laplace, in his time the lottery of France was
played as follows: Ninety numbers were used and five were
randomly drawn, without replacement, each time the game was
played. The player could make a bet on from one to five dif-
ferent numbers and won if all these numbers were drawn. (Of
course, the amount won depended on how many numbers the
player chose.) Find the probability that the player won for each
of the five possible kinds of bet.

Let
m= )
2
Show that
2 4
Show that

have the same parity, that is, either both are odd or both are
even.

Show that there are infinitely many rows of Pascal’s Triangle
that consist entirely of odd numbers.
We have m balls of each of three colors. We also have three boxes,

each of a different shape. In how many ways can the balls be
distributed among the boxes so that each box contains m balls?
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CHAPTER

In this chapter we study how the knowledge that one event definitely
occurs influences our judgement as to the chances for some other
event to occur. The case we consider first is that in which there is
no influence.

3.1 Independence

We begin by describing the intuitive background. We may as well
work with specific numbers. Suppose P(A) = 1/3 and P(B) = 1/4.
Then, in many repetitions of our experiment, A occurs one-third
and B occurs one-fourth of the time. If the occurrence of A does
not change the likelihood of B, then B would occur on one-fourth of
those occasions when A occurs. Since A occurs one-third of the time,
A N B would occur one-fourth of one-third of the time. In symbols,
P(ANB) = (1/3)(1/4) = 1/12. Of course, the conclusion P(A N B) =
P(A)P(B) would remain valid if we used different numbers.

Now, with the last paragraph in the back of our minds, we
make the following definition: Two events A and B are called

41
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independent if P(A N B) = P(A)P(B). To repeat, the statement that
A and B are independent simply means that the equation just given
holds. (Experience leads the author to include a warning. “Inde-
pendent” and “mutually exclusive” are different terms with very
different meanings. In fact, the terms are almost contradictory; see
Exercise 1.)

How do we know that two events are independent? One way is,
of course, to verify the equation that defines independence. More
often, independence is simply part of the definition of the problem
we are considering. For example, suppose a pair of dice is thrown
twice. Let A be “The first throw results in an odd total.” Let Bbe “The
second throw gives a total of seven or more.” Then A and B are inde-
pendent on the basis of common sense; how the first throw comes
out does not affect the outcome of the second throw in any way.
What we are really saying is that we understand the description of
the experiment to imply that the events are independent. Whenever
we have this kind of physical independence, we shall assume that
we have mathematical independence. Our intuitive understanding
of the real world suggests that that is in fact the case. As a matter
of abstract mathematics, to repeat, all we can do is to regard the
independence as part of the definition of the problem.

Most of the cases of independent events that arise in our dis-
cussion of probability are the kind of physical independence just
mentioned. Occasionally, however, we may have a different situa-
tion. We illustrate this alternative possibility with an example. The
king of spades, the queen of hearts, the three of diamonds, and the
two of clubs are placed in a hat. One card is drawn from the hat
at random. Note that to know the face value of the chosen card
is to know the suit, and vice versa. Nevertheless, the following is
true. Let A be the event, “The chosen card is black” Let B be the
event, “The chosen card is a picture card” Clearly both P(A) and
P(B) are 1/2. A N B occurs just when the king of spades is drawn.
Thus, P(A N B) = 1/4. Since P(A N B) = P(A)P(B), we see that A and
B are independent. The point is that knowing that a black card is
drawn gives us no indication of how likely the card is to be a picture
card.

Now that we have the concept of independence, we are able to
consider the following rather curious example. A man says his name



3.1. Independence 43

is John Doe and offers to make a bet with you. He begins to describe
the bet with a demonstration. John selects some cards from the deck
and arranges them into three stacks. He lets you see which cards are
in each stack. You note that:

Stack S contains 2 tens and 3 threes.
Stack T contains 1 nine, 3 sevens, 3 sixes, and 3 fives.
Stack U contains 4 eights and 2 twos.

John offers to give you first choice of stack; you may select
whichever stack you think is best. Then he will choose from the
remaining stacks the one he wants. Next you will pick a card at
random from your stack and John will pick a card at random from
his. High card wins. Your opponent is willing to bet at even money
despite the fact that you get first choice of stack. Is the bet to your
advantage?

Let us compute your chances of winning. Since which stacks are
used is not a matter of chance, but of choice, we must make several
separate computations.

First, suppose you select stack U. Then John is free to choose
stack §; suppose he does so. If you draw a two, you lose. In order for
you to win, you must drawn an eight and your opponent must draw
a three. The probabilities of these two independent events are 2/3
and 3/5. Thus the probability that you win is only (2/3)(3/5) = 2/5;
more likely than not, you will lose.

Perhaps you think you'll do better by using stack S. Suppose you
do choose §; then John can select T. With these choices, you will
win if you draw a ten and lose with a three, regardless of which card
your opponent picks from T. Thus the probability that you win is
again 2/5 and you must try to do better.

By now you may think T is the stack to choose. Suppose you pick
stack T and your opponent then picks stack U. He will win if he gets
an eight while you get a seven, six or five; otherwise, you win. The
probability that he gets an eight is 2/3; the probability that you will
get a seven, six or five is 9/10. Thus the probability that that you
winis 1 — (2/3)(9/10) = 2/5.

In short, if you bet at all, you will probably lose. Accordingly, you
shouldn't bet. Later on, in Chapter Five, we will see that, assuming
that you are fool enough to play many times, you are essentially
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sure to come out behind. How long it takes for you to go broke will
be discussed in Chapter Eight.

Let us consider the problem of when we should call more than
two events independent. We begin with three events, A, B, and C.
We would not call the events independent unless

P(A N BN C) = P(A)P(B)P(C).

But that equation by itself is not enough. For example, if C = @,
the equation holds no matter what A and B are. If A, B, and C
deserve to be called independent, then surely A and B should be
independent. On the other hand, we have the following example:
Suppose two dice are thrown. Let A be “The first die falls odd” Let B
be “The second die falls odd.” Let C be “The total on the dice is odd.”
Clearly A and B are independent. Direct computation verifies that
P(ANC) = P(A)P(C); thus, A and C are independent. Likewise, B and
C are independent. Should we say that A, B, and C are independent?
No; when A and Bboth happen, C cannot happen. Looked at another
way, P(A N BN C) = 0, while P(A)P(B)P(C) = (1/2)(1/2)(1/2) = 1/8;
thus A, B, and C should not be called independent.

Our conclusion is the following definition: A, B, and C are called
independent if all four of the following equations hold:

P(ANBNC) = P(A)P(B)P(C),
P(A N B) = P(A)P(B),
P(ANC) = P(A)P(C),
P(BN C) = P(B)P(C).

More generally, we say that the events in a certain collection of
events are independent when the following condition holds: When-
ever Ay, Ay, ..., A, are distinct events chosen from the collection,
then

P(A; N AN ---NAy) = P(A)P(A2) - - - P(Ay).

Note that “whenever” means that we have many statements to verify;
we must check the equation for each choice of A4, ..., A,. If a single
one of the equations fails to hold, the events are not independent.
However, in many cases, all the equations are obvious. For example,
if the events By, By, . .., By, are each determined by what happens on
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a different toss of a die, for the reason we discussed above in the case
of two events, we take the events By, B, ..., B, to be independent.

Exercises

1. Prove: If A and B are mutually exclusive, and A and B are also
independent, then either A or B has probability zero.

2. a. Prove: If A and B are independent, then so are A and B.
b. Prove: If A and B are independent, then so are A and B.

c. Give an example of events A, B, and C such that
P(AN BN C) = P(A)P(B)P(C),
but
P(ANBNC) # P(A)P(B)P(C).

3. Prove:
a. Suppose that

P(AN BN C) = P(A)P(B)P(C),
P(A N BN C)= P(A)P(B)P(C),
P(ANBNC)= P(A)P(B)P(C)
and
P(AN BN C) = P(A)P(B)P(C).
Then, A, B, and C are independent.

b. Suppose A, B, and C are independent. Then so are A, B, and
C.

c. Suppose A, B, and C are independent. Then so are A, B, and
C.

d. Suppose A, B, and C are independent. Then so are A, B and
C.

4. Prove: If
P(A) P(B) 1 1
PANB T PANB  P@A) | PGB

then A and B are independent.
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5. A card is drawn from a deck and then replaced; then a second
card is drawn. Let:

A be “The first card is a spade”
Bbe “The second card is a spade”
C be “Both cards are the same color”

Are A and B independent? How about B and C? A, B, and C?
6. In this problem, we say a die falls “high” if it falls “four,” “five,” or

“six”; otherwise, we say it falls “low” Two dice are thrown. Let:

A be “The first die falls high.’

Bbe “The second die falls high”

Cbe “One die falls high and one low.
D be “The total is four”

Ebe “The total is five’”

F be “The total is seven.

Which of the following statements are true?
A and F are independent.

A and D are independent.

A and E are independent.

P(AN BN C) = P(A)P(B)P(C).

A and C are independent.

C and E are independent.

P(A N CNE) = P(A)P(C)P(E).

A, C, and E are independent.

7. For each of n = 4, 5, 6, 7, what is the probability that the World
Series lasts just n games if the games are independent and, in
each game, the probability that the National League team wins
is: a) .57 b) .67

8. Four passengers enter an elevator. There are four floors at which
they can get off. The floors at which the passengers get off are
independent. Each passenger is as likely to get off at any one
floor as at any other floor. What is the probability that:

5o 2 & o0 T o

a. All passengers get off at the same floor?
b. All get off at different floors?



3.2. Bernoulli Trials 47

10.

11.

12.

**13.

**14.

¢. Three get off at one floor and one at another?
d. Two get off at one floor and two at another?

. A snack bar sells three flavors of ice cream cones. Customers

choose the flavor they want independently. The probabilities

that a random customer orders vanilla, chocolate, and straw-

berry are 1/2, 1/3, and 1/6, respectively. What is the probability

that three customers order three different flavors?

A coin is tossed repeatedly until tails has occurred ten times. a)

What is the probability that, at that point, heads has not occurred

twice in a row? b) What is the probability that, at that point, tails

has not occurred twice in a row?

Four dice are thrown.

a. What is the probability that none of them fall higher than
“three"?

b. What is the probability that none of them fall higher than
“four"?

¢. What is the probability that “four” is the highest number
thrown?

Five dice are thrown.

a. What is the probability that none of them fall “one”?

b. What is the probability that neither “one” nor “two” is thrown?

¢. What is the probability that “two” is the lowest number
thrown?

Four dice are thrown. What is the probability that “five” is the

highest number thrown and “three” is the lowest?

Five dice are thrown. What is the probability that “two” is the
lowest number thrown and “six” is the highest?

3.2 Bernoulli Trials

A certain situation will arise many times in the future. To make it
easy to announce that we are making the same basic assumptions
that we regularly make, we introduce the term, “Bernoulli trials”
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[The Bernoulli family included at least a dozen mathematicians;
here we refer to Jakob Bernoulli (1654-1705). We shall say more
about Jakob and the other Bernoullis in Chapter Five.] Frequently,
we are concerned with an experiment in which something is done
more than once. We speak then of repeated trials. Examples are
obvious: We could toss a pair of dice 27 times. Or, we could throw
one coin until it falls heads for the fifth time. In fact, every problem
we have considered could be made into an example of repeated trials
just by deciding to repeat many times whatever was done. We still
have just one sample space; the points of this one sample space each
describe how each of the trials comes out. We call the trials Bernoulli
trials when three conditions are satisfied:

1. The trials are “independent”; the way any one trial turns out does
not affect the chances of any outcome on any other trial.

2. We designate a certain outcome of each trial as “success”; when
this outcome does not occur, we say the trial resulted in “failure”

3. The probability of success on any one trial is the same as the
probability of success on any other trial.

For example, in repeated throws of a pair of dice, throwing seven or
higher could be called a success. Or, in tossing a coin, a head could
be a success. By convention, we use the letter p for the probability,
mentioned in 3 above, of success on any one particular trial. We
always let g = 1 — p. To avoid triviality, we always assume that
0 < p < 1. (The definition of Bernoulli trials just given is obviously
rather informal. It is possible to be more abstract, but only at the risk
of being mysterious and hiding the intuitive ideas. The important
thing is that we have independent events that all have the same
probability.)

There are two obvious ways which we can set up an experiment
involving Bernoulli trials. We can decide before starting the experi-
ment how many trials we intend to make; say we decide on n trials.
Then we can ask, what is the probability that we shall get just k
successes in these n trials? Or we can reverse the procedure. We can
decide in advance how many successes we want and plan to keep
trying until we get that number of successes; say we decide on r suc-
cesses. Then we can ask, what is the probability that it will take just
k trials to get these r successes? Let us compute these probabilities.
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We now assume that the number n of trials is fixed in advance.
We seek the probability that k of these n trials result in success.
First, what is the probability that the first k trials each result in
success? Clearly p* since the trials are independent and we have the
probability p of success for each particular trial. Assuming that the
first k trials do all result in success, we must have a failure on every
one of the remaining n — k trials if the total number of successes is
to be k. The probability that all the last n — k trials result in failure
is ¢"*. We use independence to combine these conclusions; p*q"*
is the probability that the first k trials all give success and the last
n — k trials give failure. If we select in advance any other k trials,
the probability of success on all the selected trials and failure on all
the other trials is also p*q"~*. We are trying to find the probability of
getting exactly k successes, without regard to which trials they occur
on. To get that probability, we add up the probabilities of k successes
on specified trials for each choice of k trials. There are

¥

ways to choose k trials out of n, and p*q"* is the probability of
success on the chosen trials only for each choice. Thus

N\ k n—k
(k)p q

is the probability we seek. It is clear from the context that the n we
have been using is a positive integer. Our reasoning applies when k
is any integer with 0 < k < n. Since we made the obvious definition

o)

the conclusion obviously holds for k = 0 and k = n. Thus, for any
integers n and k with 0 < k < n, the probability of k successes in n

Bernoulli trials is
n\ % nk

Now we consider the other problem. Suppose we plan to con-
tinue until we get r successes. What happens if we keep going and
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going and never get r successes? In the first place, we shall see later
that this cannot happen; sooner or later we will have the r successes.
In the second place, the question is irrelevant anyhow. We want to
find the probability that it takes just k trials to get the r successes.
After the kth trial, we shall know whether or not that event hap-
pened. To say that it takes just k trials to get r successes is to say that
the rth success occurs on the kth trial. Rewording our requirements
once more, we see we must have a success, the rth success, on the
kth trial, and we must have had r — 1 successes on the earlier trials.
We finally get to the point: It takes k trials to get r successes exactly
when there are r — 1 successes on the first k— 1 trials and then a suc-
cess on the kth trial. As we saw in the last paragraph, the probability
of r — 1 successes in k — 1 trials is

k—1 r—1 k-1
()

The probability of success on the kth trial is p. The events whose
probability we just announced are independent, since one event
refers to the first k—1 trials and the other to the kth trial. Thus we may
multiply these probabilities to get our final conclusion. However we
first must make explicit the values of r and k for which our reasoning
holds; from the context, r and k must be positive integers with r < k.
For such r and k, the probability that it takes k trials to get r successes

is
k—1 r k—r
(r—l)pq '

Exercises

15. A coin is tossed repeatedly until it falls heads for the fourth
time. What is the probability that the fourth head occurs on the
seventh toss?

16. If 101 coins are tossed, what is the probability that at least 51 fall
heads?
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17.

18.

19.

20.

21.

A die is thrown four times.
a. What is the probability it falls “six” just once?
b. What is the probability it falls “six” at least once?

¢. What is the probability it falls “six” for the first time on the
last throw?

A marksman scores a bull’s eye on 90% of his shots.

a. What is the probability that he gets at least eight bull’s eyes if
he shoots ten times?

b. If he shoots until he gets eight bull's eyes, what is the
probability that he needs at most ten shots?

If nine coins are tossed, what is the probability that the number
of heads is even? How about 99 coins? 100 coins?
Consider the following two systems of Bernoulli trials:
1. A coin is tossed; heads is a success.
2. A die is thrown; “six” is a success.
a. For each of 1 and 2, find the ratio P(A)/P(B), where:

A is “The third success occurs on the fifth trial”

B is “Three of the first five trials result in success.
b. Generalize, replacing three by i and five by j.
Samuel Pepys described dice labeled with the letters A, B, C, D,
E, F instead of the numbers 1, 2, 3, 4, 5, 6. Then he posed the
following question to Isaac Newton: “Peter a criminal convict
being doomed to dye, Paul his friend prevails for his having the

benefitt of one throw only for his life, upon dice soe prepared;
with the choice of any one of these three chances for it, viz.,

One F at least upon six such dice.
Two F’s at least upon twelve such dice.
or

Three F’s at least upon eighteen such dice.

Question: - Which one of these chances should Peter in this case
choose?”

(Suggestion: Use a calculator, even though Newton didn't have
one.)
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**22. Two men, Ben and Frank, want to settle who will pay a dinner
check, which must be placed on a single credit card. To prolong
the excitement, they do not want to decide on the basis of a
single toss of a coin. Ben suggests that they each toss a coin 20
times and the one who gets the most heads wins. Frank points
out that there could be a tie. Ben then proposes the following:
Frank wins in case they toss the same number of heads, but Ben
will get to toss 21 times to Frank's 20. Is this fair?

3.3 The Most Likely Number of
Successes

This section may be postponed indefinitely.
It is not needed in the rest of the book.

An obvious question is, “In a given number of Bernoulli trials,
with a given probability of success on each trial, what is the most
likely number of successes?” In other words, if, for some fixed n, we

set
n
ar = (k)pkqn—ky

for which k is ax largest? Towards finding an answer, we compare
ax to ax—1. Whether ay is larger or smaller than ax_; corresponds to
whether ay/ayx_; is larger or smaller than 1. We have

n! k n—k
ax kl(n — k)p 1

ax—1 n! k=1 n—k+1
k—1n—k+nf 4

(k=1 (n—k+1)p

k! n—K! ¢

_n—k+112
-
np —kp+p

kq
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This fraction is larger than 1 exactly when its numerator np — kp+ p
is larger than its denominator kg, in other words, when (np — kp +
p) — (kg) is larger than 0. We have

(mp—kp+p)—kq) =np—k(p+q) +p=np—k+p=pn+1)—k

Thus whether ax/ax—; is larger than 1 is determined by whether
p(n+1)islarger than k. To summarize,

ifk < p(n+ 1), then ax > ax41;
ifk > p(n+ 1), then ax < ax41.

In the exceptional case k = p(n + 1), ar = axy1. First consider the
case where p(n+1) is not an integer; then k = p(n+1) is impossible.
Looking at ayp, a1, ..., a, in turn, we find that each ax is larger than
the one before as long as k < p(n + 1); after that point, each ay is
smaller than the one before. The k for which a; is largest is thus
the largest integer less than p(n + 1). With the usual notation [x] for
the largest integer not exceeding x, we have shown: The most likely
number of successes is [p(n+1)], provided p(n+ 1) is not an integer.
Now consider the other case where p(n + 1) is an integer. Then, for
k = p(n+ 1), ax = ax—1. Reasoning as before, we see that p(n + 1)
and p(n+ 1) — 1 are tied in the race to be the most likely number
of successes. There is just as much chance of p(n + 1) successes
as p(n + 1) — 1 successes, and more chance of these numbers of
successes than any other number of successes.

We give an example. Suppose p = 4/5 and n = 8. We list in a table
the probability of k successes in eight Bernoulli trials with probability

k  Probability of

k successes
.0000026
.0000819
.0011469
.0091750
.0458752
.1468006
.2936013
3355443«
1677722

RO Ok~ O
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4/5 of success on each trial. Of course, the numbers in the table are
approximations accurate to the number of decimal places shown.
The most likely number of successes is clearly seven, and we have
[P+ D] =[7.2]=7.

Exercises

23. n coins are tossed. For each of n = 100, 101, 102, and 103, what
is the most likely number of coins to fall heads?

24. n dice are thrown. For each of n = 14, 15, 16, 17, 18, and 19,
what is the most likely number of dice to fall “six”?

25. Twenty-two red dice and ten blue dice are thrown. What is the
most likely number of “sixes” to be shown on:
a. the red dice?
b. the blue dice?
c. all the dice?

26. n pairs of dice are thrown. For each of n = 2, 4, 6, and 8, what is
the most likely number of pairs to total six?

27. Urn A contains two red balls and eight blue balls. Urn B contains
two red balls and ten green balls. Six balls are drawn from urn A
and four are drawn from urn B; in each case, each ball is replaced
before the next one is drawn. What is the most likely number of
blue balls to be drawn? What is the most likely number of green
balls to be drawn?

28. Prove: In a system of Bernoulli trials, the first success is more
likely to occur on the first trial than on any other trial.

29. Prove: Consider a system of Bernoulli trials and a fixed positive
integer s. Let
S —
==
p

With the exception noted below, the sth success is more likely
to occur on the xth trial than on any other trial. However, if
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(s — g)/p is an integer > 2, the sth success is as likely to occur
on the (x — 1)st trial as on the xth trial.

3.4 Conditional Probability

Our judgement as to how likely a certain event is may be influenced
by the knowledge that some other event definitely takes place. Be-
fore making a formal definition, we discuss the intuitive ideas behind
the definition. First we raise a question. Suppose we know that an
event B has happened. How likely is it that A happens under these
circumstances? In other words, in many repetitions of our experi-
ment, what fraction of these occasions on which B happens does A
also happen? To make our ideas more vivid, we use an example.

In fact, we'll work a problem before developing the theory be-
hind it. A certain company classifies absenteeism as high when more
than 12% of its employees are absent. Absenteeism is high on 1/18
of all Tuesdays, Wednesdays, and Thursdays. However, absenteeism
is high on 1/6 of all Mondays and Fridays. A distinguished visitor
is going to visit the company on a day yet to be determined. This
day is as likely to be any one weekday as any other. What is the
probability that absenteeism is high on the day the visitor comes?
We first compute the probability that the visitor comes on a Mon-
day or Friday and absenteeism is high on that day. Two-fifths of all
weekdays are Mondays or Fridays. Of this 2/5 of all weekdays, 1/6
are days with high absenteeism. Thus (1/6)(2/5) = 1/15 of all week-
days have high absenteeism and are Mondays or Fridays. Likewise,
(1/18)(3/5) = 1/30 of all weekdays have high absenteeism and are
Tuesdays, Wednesdays, or Thursdays. Thus the probability of high
absenteeism on a randomly chosen weekday is 1/15+ 1/30 = 1/10.
That answers the question above.

Strictly speaking, the numbers 1/6 and 1/18 in the problem just
worked are not probabilities. The experiment was to choose a day,
and nothing in particular happened on 1/6 of all days. One-sixth is
the “probability” of one event, high absenteeism, on the assumption
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that another event, Monday or Friday, occurred. In other words,

1 1/15

6 2/5
is the ratio of the number of days that both have high absenteeism
and are Monday or Friday to the number of days that are Monday

or Friday.
Let us now generalize. Let A and B be events. We define

P(A N B)

P(A | By = 5

This equation makes sense only when P(B) # 0, since we cannot
divide by zero. Thus, P(A | B) is defined only when P(B) # 0. We
read P(A | B) as “the probability of A given B’ We call P(A | B)
a conditional probability. The intuitive idea behind the definition is
that, in many repetitions of our experiment, P(A | B) is the fraction
of those occasions on which B happens that A also happens.

It might seem appropriate to discuss the history of “conditional
probability” here. But, in fact, there really is no such history. In
a certain sense, all probabilities are conditional. We ask about, for
example, the probability that three coins will fall heads, under the con-
dition that five coins are tossed. Alternatively, we could ask about
the probability that three coins fall heads, under both of the condi-
tions that five coins are tossed and that at least two fall heads. In
more philosophical discussions, all probabilities are shown in the
form P(A | B) for this reason. Of course, from the point of view of
abstract mathematics, we can clearly see that P(A) depends on one
subset of the sample space while P(A | B) depends on two. But this
twentieth-century abstraction is irrelevant to the history of the be-
ginnings of probability theory. The discussion of Fermat and Pascal
involved conditional probability from the first; they simply did not
distinguish conditional probability from probability.

Suppose A and B are independent and P(B) # 0. By definition,
we have

P(A N B)

P(A | B) = )
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Since A and B are independent,

P(ANB)  P(A)P(B)
P(B) ~  P(B)
= P(A).

Thus for independent A and B, P(A | B) = P(A). Conversely, if
P(A | B) = P(A), it follows that A and B are independent. Note that
if neither P(A) nor P(B) is zero, then P(A | B) = P(A) holds exactly
when P(B | A) = P(B).

From the definition of P(A | B), we have

P(A N B) = P(B)P(A | B).

If any two of the three numbers P(A N B), P(A | B), and P(B) are
known, the equation may be used to find the third of the numbers.
In particular, it may be used to find P(A N B) even when A and B
are not independent. Before illustrating this use with examples, we
state the last equation in words. We can probably do no better than
to quote, from The Doctrine of Chances by Abraham DeMoivre, the
first explicit statement of the idea of the equation. (We shall say
more about DeMoivre and his book in Chapter Six.) As DeMoivre
says, “...the Probability of two Events dependent, is the product of
the Probability of the happening of one of them, by the Probability
which the other will have of happening, when the first shall have
been consider’d as having happen'd; and the same rule will extend to
the happening of as many Events as may be assign’d” The meaning
of the final comment about extending the rule will be made clear in
the examples to which we now proceed.

1. Suppose two cards are drawn from the deck, without replacement.
What is the probability that both are aces? Of course, this problem
may be solved by the methods of the last chapter. But we now
have an alternative method that simplifies the computation. We
may suppose the cards to be drawn one at a time. Let A be the
event, “The first card is an ace” Let B be “The second card is an
ace!” We seek P(A N B). We have P(A N B) = P(B | A)P(A). Note
P(A) = 4/52. After the first card is drawn, the second card is
chosen from the remaining 51 cards. If the first card is an ace,
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there are 3 aces left among the 51 cards. Thus, P(B | A) = 3/51.
Hence P(A N B) = (4/52)(3/51) = 1/221.

2. Suppose three cards are drawn from the deck, without replace-
ment. What is the probability all three are aces? Let C be “The
first two cards are both aces” Let D be “The third card is an
ace” We seek P(CN D) = P(D | C)P(C). By the last example,
P(C) = (4/52)(3/51). If the first two cards are aces, the third card is
chosen from 50 cards, of which 2 are aces. Thus, P(D | C) = 2/50.
Hence P(CN D) = (4/52)(3/51)(2/50) = 1/5525.

3. What is the probability that all five cards in a poker hand are

spades? Since the problem is like the ones we just did about aces,
we shall be brief. The probability the first card is a spade is

13
57"
The probability that the first two cards are both spades is
13 12
52 51
The probability the first three cards are all spades is
13 12 11

52 51 50
The probability the first four cards are all spades is
13 12 11 10

52 51 50 49
Thus the answer to the original question is
13 12 11 10 9 33

52 51 50 49 48 66640

Note that this answer could have been written down directly if
we had omitted the explanation.

4. Given that a poker hand (five cards) contains both black aces,
what is the probability that it contains at least three aces? We
work this problem by several different methods to illustrate both
the methods and the flexibility of the concept of conditional prob-
ability. The first method by which we solve the problem begins
by defining certain events:
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A is “The hand contains both black aces.”
B is “The hand contains at least three aces.
Thus we seek P(B | A). We have

P(ANB)

P(B|A) = D

We find P(A) first. How many poker hands contain both black
aces? As many as there are ways to choose the other three cards
the hand contains in addition to the black aces. Thus there are

50\ 50-49.48
= 19,600
3 3.2

hands with both black aces; hence
19,600

52\

3
Now consider P(A N B). We need hands with both black aces and
at least one additional ace. That includes the 48 hands with all
four aces. To get the hands with both black aces and one red ace,

we must pick one red ace out of two red aces and two non-aces
out of 48 non-aces. Thus there are

P(A) =

48
48+2(2):48+48-47:2304

poker hands containing both black aces and at least three aces in
all. Thus

2304

52\

5
When we divide P(A N B) by P(A), the denominators of (%) cancel
out and we get

P(ANB) =

2304 144

19600 1225
dasS our answer.
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Our second method is basically the same as the first. The differ-
ence is that we anticipate the fact that the total number of poker
hands, (352) will cancel out. We simply compute the number, 19,600,
of hands that contain both black aces and determine that 2304 of
these hands contain at least three aces. Thus 2304/19,600 gives us
our answer.

The third method is an obvious modification of the second. In
the last paragraph, we particularly studied the three cards in the
poker hand besides the black aces. We now restrict our attention
entirely to these three cards. These three cards can be any of the 50
cards left when the black aces are excluded. The three cards are as
likely to be any three of the 50 as any other three of the 50. Thus we
are trying to find the probability that when three cards are chosen
from a certain 50, at least one ace is chosen. The obvious way to find
that probability is to begin by finding the probability that no aces are
chosen. Reasoning in this way, we find the answer to our original

question to be
48
3

50\
3
Again we change our approach slightly. As in the last method,
we are concerned with choosing three of the 50 cards left when both
black aces are excluded. We may suppose the cards are to be selected
one at a time. As before, we first compute the probability that none
of the chosen cards is an ace. The probability the first card chosen is
not an ace is 48/50, since only two of the 50 cards are aces. Assuming
that the first card is not an ace, the probability the second card is

not an ace is 47/49. Likewise we have 46/48 for the third. Thus our
answer is

48 47 46

Which of the four methods is best? The one we think of first.
None is overly complicated. Thus, if we have one method in hand,
looking for others merely gives us additional work.
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Suppose we are trying to estimate how likely a certain event E
is. We may say to ourselves, “If such and such happens, then the
chance of E happening is thus and so. On the other hand, under the
following different circumstances, the chance of E is this or that. If
we choose to distinguish more than two alternative conditions, we
would continue in the same vein. The basic procedure is to iden-
tify various mutually exclusive sets of circumstances that together
cover all possibilities. Then we estimate the likelihood of each set of
circumstances and the chances for E under each of them. The next
theorem tells us how to put all these estimates together.

Before stating the theorem, we introduce some terminology that
we shall use here and elsewhere. We call Ay, A, ..., A, a partition of
Q if each A; is an event, and, whenever the experiment is done, just
one of the events A; must happen. Thus, in the first place, A4, ..., A,
must be mutually exclusive; i.e., A, N A; = ¥ whenever i # j. And, in
the second place, A;U---UA, = Q. The following theorem is almost
obvious, but we state it here because it is so useful.

Theorem Let Ay,..., A, be a partition of Q. Suppose none of the A;
have probability zero. Let B be any event. Then

P(B) = P(B | A1)P(A1) + P(B| A2)P(A2) + -+ -+ P(B | An)P(An).

Proof For each i, we have P(A; N B) = P(B | A;)P(A;). Also, since
A1 NB,..., A, N B are mutually exclusive and B=(A;NB)U..-U
(An m B)r

P(B) = P(A, NB) +---+ P(A,, N B). .

We illustrate with an example. On a television show, a contestant
is required to throw a die. She then tosses as many coins as there
were spots shown on the die. If she throws exactly four heads, she
wins $10,000. What is the probability she wins? Two possible choices
for a partition suggest themselves. We could use A;, Ay, ..., A, cor-
responding to the six ways the die might fall. Instead we define
events B, A], A2, A3, Ay by

B is “The contestant gets the $10,000”

Aj is “The die falls ‘one’, ‘two’ or ‘three’”



62 3. Independence and Conditional Probability

A, is “The die falls ‘four””
Aj is “The die falls ‘five””
Ay is “The die falls ‘six”

P(B | Ay) is clearly 0, since one cannot get four heads by tossing
three or fewer coins.

1
P(B|Az) = 16’

the probability of four heads when four coins are tossed. Likewise

we compute
5\ 1 5
P(B| Ajy) = — = —
(B | A3) <4) 32 32

p@lAy=(0) L =1
Y7 \4)64 " 64
Obviously, P(A1) = 1/2 and P(A;) = P(A3) = P(A4) = 1/6. Thus we
have

P(B) = P(B | A1)P(A1) + P(B | A2)P(Az) + P(B | A3)P(A3)
+ P(B | A)P(Ay)
:0.l+i.l+i.l+15 1
2 16 6 32 6 64 6
29
= o1

The following theorem goes just one step further than the last
theorem. It is a matter of taste whether one should memorize and
apply the theorem, or avoid possible faulty recollection by simply
thinking things out. The theorem does have a name, “Bayes’s For-
mula”; it was named after Thomas Bayes, whom we will discuss
shortly. It does solve a natural problem: Suppose we know how
likely an event B is under each of various sets of circumstances.
Assume that we have an opinion as to how likely it is for each of
these sets of circumstances to occur. [Tow do we modify our opinion
if we learn that B does in fact occur?

Theorem Let Ay, Ay, ..., Ay, be a partition of Q. Suppose none of the
A; have probability zero. Let B be an event with P(B) # 0. Then, for
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each i,

B P(B | A)P(Ay)
~ P(B|A1)P(A1) + P(B| A))P(A) + -+ P(B| An)P(Ay)

P(A; | B)

Proof From the definition of conditional probability we have

P(A; N B)
P(B) '
P(A; N B) = P(B | A})P(A;).

P(A; | B) =

We use the last theorem to evaluate P(B). O

We apply Bayes's Formula to the situation of the television con-
testant in the last paragraph. We consider the following problem: If
the contestant wins the $10,000, what is the probability that the die
fell “four"? With notation as before, we seek P(A; | B). The theorem
states that

P(A; | B)
_ P(B | Az)P(A3)
P(B | A)P(A1) + P(B| A)P(Az) + P(B | A3)P(Az) + P(B | Ay)P(Ay)

Thus we have

1 1
16 6
P(A; | B) =
Jlo11 51 151
2 16 © 32 04
_4
=2

We give another application of Bayes’s Formula. Even when a
gizmo-making machine is in good working order it occasionally mal-
functions; each gizmo made has independently a 1% chance to be
defective. A certain gizmo-making machine has just had a new part
installed. The first gizmo it makes is defective. It is known that one
in every 50 new parts installed is a dud. When a dud is used in a
gizmo-making machine, only 10% of its output is usable. Should the
new part be replaced?

All we can do is compute the probability that the part is a dud.
Let us introduce some events:
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D is “The new part is a dud”
A is “The new part is all right”
F is “The first gizmo made is defective.

We are told that P(D) = .02; hence P(A) = .98. We also have
P(F | D) = .9 and P(F | A) = .01. We seek P(D | F). Bayes's Formula
states that
P(F' | D)P(D)
P(F | D)P(D) + P(F | A)P(A)
All we need to do is substitute. We have
(.9)(.02)
(.9)(.02) 4 (.01)(.98)
.018

.018 +.0098
= .6475

P(D|F) =

P(D | F) =

to four places; that is, roughly two-thirds. While the part is more
likely than not to be a dud, there is about one chance in three that
it is all right.

We conclude the chapter with some comments about history.
First we discuss Bayes and what Bayes actually did. Bayes wrote a
single, but very important, paper involving probability. In the paper,
he considered a certain problem in statistics; in doing so, he founded
the subject of statistics. The problem is easy for us to describe here:
Suppose we do an experiment involving Bernoulli trials. Assume
that we do not know the probability p of success on any one trial.
How do we best estimate p from the number of successes that ac-
tually occur? Of course, we cannot find p; the observed number of
successes could have been obtained for any p. But it may well be
that that number would have been very unlikely to occur for cer-
tain values of p. Bayes describes a method that he claims may be
used to determine the probability that p lies in any given interval.
The method is essentially equivalent to the application of a special
case of the theorem we have called Bayes's Formula. Now Bayes’s
problem involves continuous, rather than discrete, probability; the p
involved can vary continuously from zero to one with every value in
between being a possibility. Towards continuing to try to understand
what Bayes did, let us replace his problem with a discrete, if artificial,
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problem. Suppose we make a known number n of Bernoulli trials,
knowing only that the probability p of success on a single trial is one
of the numbers .1, .2, .3,...,.9. Assume we observe that s successes
occur. For each of the listed possibilities for p, what is the probability
that p had that value? Trying to use Bayes’s formula, as we stated
it, we see that we need to know P(A;), ..., P(Ag), the probabilities
we would have assigned to each possible value for p before doing
the experiment. Bayes's paper proceeds as though we could simply
cancel out all these P(A;) on the ground that they are all the same,
namely unknown. (Later work in this area treats the question of
assigning “prior” probabilities in more detail.) Thus Bayes's formula,
as he stated it, is the continuous analog of the special case of our
Bayes’s Theorem where P(A1) = - -+ = P(Ay).

Thomas Bayes
The Reverend Thomas Bayes (English, 1702-1761)

Thomas Bayes’s father, Joshua, was one of the first six men to be
publicly ordained Nonconformist ministers. That is to say, when it
became legal to be a minister outside of the established Anglican
Church, Joshua Bayes was one of the first such ministers. He was a
respected theologian and also a fellow of the Royal Society. Thomas
followed in his father’s footsteps, becoming minister of the Presbyte-
rian Chapel in Tunbridge Wells. Thomas Bayes published two works
in his lifetime. The first was about theology. The second, published
anonymously, was an attempt to refute Bishop Berkeley’s objections
to calculus as illogical (George Berkeley, 1685-1753). Bayes did the
best that could be done at the time; it was not until the late nine-
teenth century that the reasoning behind calculus was brought up to
modern standards. Bayes was elected a fellow of the Royal Society
in 1742. e retired a rich man in 1750. IIis most important work,
the “Essay Towards Solving a Problem in the Doctrine of Chances,
was not published until 1763, but was judged important enough to
be worth republishing for its ideas as recently as 1958.

We continue our discussion of the history of probability theory
by turning to the work of Laplace. The importance of Laplace as
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a scientist can best be judged by his omission from the Dictionary
of Scientific Biography (published by Scribner’s), as it first appeared.
Someone was, of course, selected to write up a biography of Laplace,
which was to include a summary of Laplace’s work. When the time
to publish arrived, no biography had been completed. Thus it was
necessary to find a new biographer and leave Laplace to appear
in the scheduled supplementary volume. But when the time came
to print this supplement, no biography had yet been completed.
After “much delay” had been caused to the supplement, the editor
despaired of any one person’s being able to summarize Laplace’s
work; accordingly the task was divided into five parts, each for a
different person. The best we can do here is to list some of the
topics on which Laplace worked: shape of the earth, comets, tides,
chemical physics of heat, moons of Jupiter, our moon, the velocity
of sound.

Laplace published the first edition of his short popular book, Es-
sai philosophique sur les probabilites, in 1814. I1e also published four
revisions, the last in 1825. In the book, he presents a summary of
the rules for computing probabilities that we have developed in our
book so far. He includes Bayes’s Formula, essentially as stated above.
Laplace’s book is very much concerned with applications of proba-
bility to human affairs. In general, Laplace was most interested in
applying probability theory to his scientific work. I1is contributions
to probability theory were primarily technical methods of computing
probabilities and are beyond the scope of this book.

Laplace
Pierre Simon, Marquis de Laplace (French, 1749-1827)

Laplace was born in Normandy; reports about the circumstances of
his family are conflicting. Laplace attended a school where half the
students had their expenses paid for by the king; most students went
on to the church or the army. Laplace demonstrated aptitude in all
areas and particularly distinguished himself in debating the subtle
points of theology. Nevertheless, his primary interest was mathe-
matics. Upon completing his studies at the school, he immediately
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secured a position teaching mathematics there. At the age of 18 or
19, Laplace decided to visit Paris; he took with him letters of intro-
duction. Despite the letters, he was unable to secure a meeting with
Jean d'Alembert (1717-1783), the leading French mathematician of
the day. Then Laplace himself wrote a letter to d’Alembert discussing
mechanics. D'’Alembert was so struck by this letter that, the day he
received it, he arranged to meet Laplace. D'’Alembert was able to
secure for Laplace the choice between professorship in Berlin or at
the Ecole Militaire in Paris. Laplace preferred the latter. He became
a member of the Academy of Sciences in 1795. Laplace also became
a confidant of Napoleon. When Napoleon came to power, he gave
the position of Minister of the Interior to Laplace. Napoleon wrote
later, “Laplace was a worse than poor administrator. Ile considered
nothing beneath his notice. He searched for subtleties everywhere
and everywhere looked only for the infinitely small” Laplace was re-
placed after six weeks. ITowever he was made a senator and became
President of the Senate. In 1806, he was made a count. Despite this,
in 1814 Laplace was one of the first to vote to oust Napoleon. When
the Senate of the empire was replaced by the Chamber of Peers of
the restored monarchy in 1817, Laplace was reclassified from count
to the higher position of marquis. He continued his scientific work
almost until his death in 1827. In 1842, the Chamber of Deputies
passed a law providing for the printing of a new edition of Laplace’s
work at the expense of the state.

Exercises

30. Suppose A, B, and C are events none of whose probabilities are
zero. Prove:

a. PAUB) =1 — P(B)P(A | B).

b. PLANB|BUC) = P(ANB | BYP(B | BU O).

c. PBNC| A)=P(C | AYP(B| AN C)if P(ANC) # 0.
d. P(A | BP(B | C)P(C | A) = P(B | A)P(C | B)P(A | C).
P(A|AUB) P(A)

P(B|AUB) P(B)
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31.
32.

33.

34.

35.

36.

37.

38.
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_P(B|A)  PA) PA|B)  P(B)
P(B) P(A)  P(A) P(B)’
Suppose A, B, and C are independent events and P(C) # 0.
Prove:
a. PANB|C)=P(A | C)P(B| C).
b. PAUB|C)=PA |C)+PB|C)—P(ANB]|C).
Suppose A, B, and C are independent. Prove that P(A | BN C) =
P(A) provided P(BN C) # 0.

Assume that each child in a family is independently as likely to
be a boy as a girl. Consider families with just two children.

Prove

a. If at least one child is a boy, what is the probability both
children are boys?

b. Ifthe older child is a girl, what is the probability both children
are girls?

A die is tossed five times.

a. Given that the die falls “six” at least once, what is the
probability that it falls “six” at least twice?

b. Given that the first throw was a “six, what is the probability
that “six” was thrown at least twice?

We select from a deck of cards the four kings and the aces of
spades, diamonds, and hearts. From these seven cards, three are
chosen at random.

a. What is the probability that at least one ace is chosen?

b. What is the probability that the ace of spades is chosen?
¢. What is the probability that all three aces are chosen?
d

. If it is known that at least one ace was chosen, what is the
probability that all three aces were chosen?

e. If it is known that the ace of spades was chosen, what is the
probability that all three aces were chosen?

If a poker hand (five cards) is known to contain at least three
aces, what is the probability that it contains all four aces?

If a poker hand (five cards) is known to contain the aces of hearts,
clubs, and diamonds, what is the probability that it contains the
ace of spades?
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39.

40.

41.

42.

43.

44,

45.
46.

Find the probability that a poker hand (five cards) contains both
black aces given that it contains at least three aces.

In a bridge game, Players N and S each are dealt 13 cards. If
Player N has exactly two aces in his hand, what is the probability
that Player S has at least one ace?

Suppose that in a hog calling contest the more skillful participant
always wins. Suppose that Alphonse, Beatrice, and Charlene are
randomly chosen hog callers. If Alphonse beats Charlene in hog
calling, what is the probability that Alphonse is a better hog
caller than Beatrice?

A coin is tossed ten times. Given that heads occurred for the
first time on the second toss, what is the probability that heads
occurred for the fifth time on the last toss?

We select from a deck of cards the four kings and the four queens.
From these eight cards, we draw one card at a time, without
replacement, until all eight cards have been drawn. Find the
probability that:

a. All kings are drawn before the queen of spades.

b. There is at least one queen that is drawn after all the kings.
¢. Each queen is drawn before each of the kings.

d. Each queen is drawn before the king of the same suit.

e. The last king to be drawn is the sixth card to be drawn.

A closet contains three pairs of black socks and two pairs of white
socks, all new and all of the same size and style. Two socks are
chosen at random. What is the probability that these two socks
can be worn together without exciting comment?

Do the last problem with “socks” replaced by “shoes” throughout.

Each employee of a certain large hotel works five days a week,
getting two consecutive days off. The days off of the various
employees are scattered evenly through the calendar week.

a. If Smith and Jones each work for the hotel, what is the
probability that they have a day off in common?

b. If Doe also works for the hotel, what is the probability that
no two of these three persons have a day off in common?
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¢. What is the probability that there is a day on which all three
are off?

47. The four aces and the four kings are selected from a pack of
cards. From these eight cards, four cards are chosen at random.
What is the probability that one card of each suit is chosen?

48. Four dice are thrown. What is the probability of obtaining four
different numbers?

49. A drawer contains ten pairs of gloves, no two pairs alike. Alice
takes one glove; then Betty takes a glove; then Alice takes a
second glove; finally Betty takes a second glove. What is the
probability that:

a. Alice has a pair of gloves?
b. Betty has a pair of gloves?
c. Neither has a pair?

50. A closet contains six different pairs of shoes. Five shoes are
chosen at random. What is the probability that at least one pair
of shoes is obtained?

51. Six men and six women sit at a round table so that no two men
sit next to each other; otherwise, the seating is random. What
is the probability that Ms. Smith and Mr. Jones, who are bitter
enemies, sit next to each other?

52. At a camera factory, an inspector painstakingly checks 20 cam-
eras and finds that three of them need adjustment before they
can be shipped. Another employee carelessly mixes the cameras
up so that no one knows which is which. Thus the inspector must
recheck the cameras one at a time until he locates all the bad
ones.

a. What is the probability that no more than 17 cameras need to
be rechecked?

b. What is the probability that exactly 17 must be rechecked?

53. Urn N contains five red balls and ten blue balls. Urn D contains
two red balls and six white balls. A nickel and a dime are tossed.
If the nickel falls heads, a ball is chosen at random from Urn
N; if the dime falls heads, from Urn D. (Thus if both coins fall
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54.

55.

56.

57.

heads, two balls are drawn.) What is the probability that at least
one red ball is drawn?

Urn H contains six red balls and four white balls. Urn T contains
two red balls and three white balls. A coin is tossed. If it falls
heads, a ball is chosen from Urn H. If the coin falls tails, a ball
is chosen from Urn T.

a. If the ball is chosen from Urn H, what is the probability that
it is red?

b. What is the probability that the chosen ball is red and is
chosen from Urn H?

c. What is the probability that the chosen ball is red?

d. If a red ball is chosen, what is the probability that it came
from Urn H?

Urn A contains two red balls and three white balls. Urn B con-
tains five red balls and one blue ball. A ball is chosen at random
from Urn A and placed into Urn B. Then a ball is chosen at
random from Urn B.

a. What is the probability that both balls are red?
b. What is the probability that the second ball is red?

c. Given that the second ball is red, what is the probability that
the first ball was red?

d. Given that the second ball is blue, what is the probability that
the first ball was red?

Urn A contains six red balls and six blue balls. Urn B contains
four red balls and 16 green balls. A die is thrown. If the die
falls “six,” a ball is chosen at random from Urn A. Otherwise, a
ball is chosen from Urn B. If the chosen ball is red, what is the
probability that the die fell “six”?

A medical test is not completely accurate. When people who
have a certain disease are tested, 90% of them have a “positive”
reaction. But 5% of people without the disease also have a “pos-
itive” reaction. In a certain city, 20% of the population have the
disease. A person from this city is chosen at random and tested;
if the reaction is “positive,” what is the probability the person has
the disease?
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58.

59.

60.

61.
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The WT Company turns out 10,000 widgets a day. As every-
one knows, the most important part of a widget is the idge at
its center. WT buys it idges from two other companies: Ser-
tane Company can supply only 2,000 idges per day, but 99% of
them work properly. The remaining 8,000 idges are purchased
from Kwik Company; 10% of these are defective. Suppose a ran-
domly chosen widget from WT has a defective idge. What is the
probability that Kwik is responsible?

An inspector has the job of checking a screw-making machine
at the start of each day. She finds that the machine needs re-
pairs one day out of ten. When the machine does need repairs,
all the screws it makes are defective. Even when the machine
is working properly, 5% of the screws it makes are defective;
these defective screws are randomly scattered through the day’s
output. Use a calculator to get approximate answers to the fol-
lowing questions. What is the probability that the machine is in
good order if:

a. The first screw the inspector tests is defective?
b. The first two screws are both defective?
c. The first three are all defective?

The word spelled HUMOR by a person from the United States
is spelled HUMOUR by a person from Britain. At a party, two-
thirds of the guests are from the United States and one-third
from Britain. A randomly chosen guest writes the word, and a
letter is chosen at random from the word as written.

a. If this letter is a U, what is the probability that the guest is
from Britain?

b. If the letter is an H, what is the probability that the guest is
from Britain?

Urn A contains two black balls, urn B contains two white balls,
and urn C contains one ball of each color. An urn is chosen
at random. A ball is drawn from the chosen urn and replaced;
then again a ball is drawn from that urn and replaced. If both
drawings result in black balls, what is the probability that a third
drawing from the same urn will also yield a black ball?
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62.

63.

64.

65.

66.

67.

68.

A man is somewhat absent-minded. He remembers to take his
umbrella away with him only three-fourths of the time when he
brings it into a store. He visits three stores in succession. Then
he realizes that he had his umbrella with him when he entered
the first store, but didn't have it when he left the third store. Find
the probability that the umbrella is in each of the stores.

A women checks a suitcase to be carried successively by three
connecting airlines. Airy Airlines gets the bag first; Airy mishan-
dles 1% of the baggage it receives. Blue Airlines is supposed to
get the suitcase next; if Blue gets it on time, the probability that
the bag will reach the next airline properly is 97%. Clearsky, the
third airline, has a probability of 2% of not doing its part. The
suitcase does not arrive on time. Find the probability that each
of the airlines is responsible.

One card of a deck of cards has been lost. Thirteen cards are
drawn simultaneously from the remaining 51 and turn out to be
two spades, three clubs, four hearts, and four diamonds. What is
the probability that the missing card belongs to each suit?

Urn A contains five red balls and one blue ball. Urn B contains
two red balls and one blue ball. A coin is tossed. If it falls heads,
aball is chosen from urn A; if the coin falls tails, a ball is chosen
from urn B. If the chosen ball is red, what is the probability that
a second choice from the same urn will also produce a red ball,
the first ball not being replaced?

A certain country has a careless mint. One coin in every 801
manufactured has heads on both sides. The remaining coins
have heads on one side, tails on the other, as usual. A randomly
selected coin made at the mint is tossed five times and falls
heads each time. What is the probability that this same coin will
fall heads again if it is tossed for a sixth time?

An urn contains five red and ten blue balls. A ball is chosen at
random and replaced. Then ten balls of the same color as the
chosen ball are added to the urn. A second ball is now chosen at
random and seen to be red. What is the probability that the first
ball was also red?

No two members of the Piquet Club have exactly the same skill
at the game of piquet. In this game, chance and skill each play a
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role. Assume that, when two people play, the better player wins
three-fourths of the time. Alice and Bob are randomly chosen
members of the club. What is the probability Alice is the better
player if:

a.
b.

Alice and Bob play one game and Alice wins?

Alice and Bob play three games and Alice wins just two of
them?

Alice and Bob agree to decide a match on the basis of two out
of three and Alice wins the match?

Using a calculator to get approximate answers where conve-
nient, do parts b and ¢ with “three” and “two” replaced by
“nine” and “five,” respectively.

We again consider the Piquet Club of the last problem. Suppose
Chuck, Debby, and Ed are randomly chosen members of the
club.

a.

b.

If Chuck plays a game with Debby and Chuck wins, what is
the probability that Chuck is a better player than Ed?

If Chuck now also plays Ed and Chuck wins, what is the
probability that Chuck is a better player than Debby?



Random
Variables

CHAPTER

Often the results of an experiment are quantitative, rather than qual-
itative; in other words, the outcome of the experiment is a number
or numbers. Assume for the moment that the result of the experi-
ment is a single number, say the amount of money we shall be paid
as the result of a bet. Then we may want to take into account that,
if we receive $50, that is exactly half of $100. For some purposes,
we regard a probability of one-fifth of getting $100 as equivalent to
a probability of two-fifths of getting $50. We next introduce random
variables into our study of probability to make it possible to take a
quantitative point of view along those lines.

The language that, for historical reasons, is involved in discussing
random variables can be confusing. However, if we face up to the
problem, there is no real difficulty. The term “random variable” itself
is the first obstacle; we shall see in a moment that, strictly speaking,
it is not a variable and is not chosen at random. But there is good
reason, besides long-standing custom, to use the phrase “random
variable” The phrase denotes something that varies at random. For
example, we could throw a lot of coins, of different values, and count
how many fall heads. The number of coins falling heads would be
determined by chance. If we repeat the experiment, we shall likely
get a different number of heads. We shall say that the number of

75



76 4. Random Variables

coins that fall heads is a random variable X. The value of the coins
that fall heads would be another random variable Y. We should not
let the need for a formal definition obscure the basic simplicity of
the concept.

A function that assigns a number to each point in the sample
space is called a random variable. (Calling a function a variable, or a
variable a function, is not unusual, even if it is somewhat confusing.)
One obvious way in which random variables arise is in the situation
where a bet is made on the outcome of our experiment. Then the
amount of money paid is a random variable X. In more detail, if
the point u of the sample space is the one that occurs, the number
X(u) assigned by X to u is the amount actually paid. Some very
important random variables came very close to being introduced
in the last chapter. The number of successes in a predetermined
number of Bernoulli trials is a random variable. So is the number of
trials needed to get a predetermined number of successes.

We next introduce some notation that is almost self-explanatory.
Suppose we are given a random variable X and a number t. When
our experiment is done, we get a particular point u of the sample
space, and X assigns a certain value X(u) to this point u. Either X(u)
is t or it is not; we consider the probability that X(u) = t. We write
P(X = t) for this probability. The event A involved here is simply the
set of those u € @ for which X(u) = t; P(X = t) means, by definition,
P(A).

4.1 Expected Value and Variance

We shall soon consider certain sums that have one term for each
point of Q. If  has infinitely many points, we shall then have infi-
nite series. Infinite series and sums of finitely many terms are alike
in many ways. On the whole, it will make little difference whether
the number of points in Q is finite. However, there are some im-
portant differences between infinite series and finite sums; most
notably, infinite series sometimes diverge. So that we may concen-
trate on the important ideas without being distracted by continually
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discussing convergence, we first consider the case where Q contains
only finitely many points. Then later we can modify our work to
cover the infinite case. The changes will be minor; as long as the
series involved do converge, the same conclusions remain valid.
Therefore, we now make the assumption, to remain in effect until
further notice, that  contains only finitely many points.

Suppose we consider a random variable X on our sample space
Q. If we do the experiment just once, we get one point u of 2, and
X assigns a certain value X(u) to this point. The value X(u) cannot
in general be predicted in advance. But what happens if we do the
experiment many times and average the results?

We first discuss this averaging in an example. Suppose we make
a bet as follows: We shall pay $20 in advance. Then we shall throw a
die. The amount we are to be paid depends on the number of spots
shown on the die. If the die shows n spots, we are to get 2" dollars.
If we play the game just once, obviously the result will “depend on
chance” However, if we play many times, we suspect that “things
will average out” and the result will be fairly predictable. Let us
be definite and replace “many times” by 60,000 times. In 60,000
throws of a die we expect to get about 10,000 “ones’; thus there will
be about 10,000 times when we are paid $2. Likewise, there will
be about 10,000 times when the die falls “two” and we are paid $4.
Similarly, we expect to receive each of the amounts $8, $16, $32, and
$64 about 10,000 times. To find the average amount we get we add
all the amounts we receive and divide by the number of times we
play. We are adding approximately 10,000 of each of the numbers
2, 4, 8, 16, 32, and 64. The 10,000 twos total 20,000; the 10,000
fours total 40,000; etc. Thus, the total amount we expect to receive is
20,0004-40,0004-80,0004160,0004-320,000+640,000 = 1,260,000; we
receive a total of about $1,260,000. Dividing by the number of games,
namely 60,000, we have an average of 1,260,000/60,000 = 21 dollars
per game. To summarize, we expect to receive about $21 per game
if we play 60,000 games. It is clear that we would have obtained
the same answer, $21, with any number of games; of course, our
reasoning did use the fact that 60,000 was “large.” Since we pay $20
and expect to receive an average of $21, it is clear that the game is to
our advantage. We expect to gain $1 per game, on the average. Very
soon we shall define $21 to be the “expected value, also called the
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“average value, of the random variable that is the amount we are
paid.

Now we repeat the computation of the last paragraph in a general
form. Let N be the number of times we do the experiment. On
the basis of the intuitive ideas with which we started our study of
probability, we believe that each point u of @ will occur about NP(u)
times in the N trials. Let us suppose that each u does occur NP(u)
times and compute the average of the values assumed by X on that
basis. For each u € Q, we have NP(u) occurrences of the value X(u).
Thus the total of the values assumed by X would be the sum of all
the numbers NP(u)X(u) for all u € Q. Accordingly the average of the
values taken by X would be expected to be this sum divided by N; in
other words, it would be expected to be the sum of P(u)X(u) for all
u € Q. Note that we have not proved anything; all we have done is
to find a certain sum that seems to be worth further study.

We define the expected value of a random variable as follows:
For each u in ©, compute the number P(u)X(«). The sum of all these
numbers is called the expected value of X and is denoted by E(X).
The definition we just gave for E(X) is expressed in symbols by the
following equation:

EX) = ) P@)XwW.
ue2
Sometimes we shall refer to the expected value of X as the average
value of X or as the mean value of X.

As we said back in Chapter One, the idea of an expected value
appears in the correspondence between Fermat and Pascal, at the
very beginning of the formal study of probability theory. However,
the formal definition of a random variable had to wait until proba-
bility theory was formalized in the twentieth century. At that time
our definition of an expected value became meaningful. The basic
theorem,

E(X) =) tP(X =1),

which we shall discuss shortly, is essentially the content of Huy-
gens's third proposition, but the idea behind this formula appears in
the Fermat-Pascal correspondence.



4.1. Expected Value and Variance 79

Curiously, the important point to make here is about terminol-
ogy. The word “expectation,” which is just about the same in Latin
as in English, was used by Huygens in connection with the num-
ber we have denoted by E(X). However, the abstract concept of a
random variable X not yet existing, the reference was originally to
“my expectation” In all of the early works on probability, it was
always a person who had an “expectation” of receiving something.
More recently, and, it seems to the author, illogically, many books on
probability refer to E(X) as the expectation of X. Be that as it may, the
reader should recognize that “expected value,” “expectation,” “mean,”
and “average” are all synonyms.

We next consider an example. Suppose three coins are tossed. In
this first example, we shall write out all the details in full. Let Q =
{hhh, hht, hth, htt, thh, tht, tth, ttt}, where the notation is obvious. Let
X be the number of coins that fall heads. Then

P(hhh) = 1/8, X(hhh) =3
P(hht) = 1/8, X(hht) =2
P(hth) =1/8, X(hth) =2
P(htt) = 1/8, X(htt) =1
P(thh) =1/8, X(thh) =2
P(tht) =1/8, X(tht) =1
P(tth) =1/8, X(tthy=1

P(ttty = 1/8,  X(ttt) = 0.

Thus E(X) = §-3+§-2+5-2+5-1+4-2+4-1+1-1+1-0. Hence,
E(X) = 3/2. We say that we expect 3/2 heads. Of course, we know
that on any one toss of three coins we must get a whole number
of heads, not 3/2. But, on the average, we expect 3/2 heads. Note
that now we only have a suspicion that in many tosses of the three
coins we would average approximately 3/2 heads per toss; later on
we shall state and prove a theorem along these lines.

The method just used to find E(X) requires adding up one number
for each point of Q; that might be very many numbers. So we look
for shortcuts. In the example, we could have combined all of the
terms for each value of X(u) into a single term. Thus, instead of
considering hht, hth, and thh separately, we could have written
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(3/8)2, where 3/8 is the probability that two of the coins fall heads.
The computation of E(X) then would be

E(X)—13+ 2+ 1+10—3
8 8 2

Now let us consider another example. In a lottery, one million
tickets are sold. One ticket—of course, no one knows which ticket
in advance—entitles the holder to the first prize, which is $100,000.
Ten tickets win second prizes of $10,000 each. Ten thousand tick-
ets win $5 each, as consolation prizes. What is the mean value
of a randomly chosen ticket? The obvious sample space contains
one million points, one for each ticket. There is no reason to add
up one million numbers, even though a computer could do it. In-
stead, we reason as follows. Only 10,011 tickets win anything. The
other 989,989 tickets win $0. One term of zero is more than enough;
we don't need 989,989 such terms. Now consider the consolation
prizes. Instead of using 10,000 terms of (.000001)5, we can use one
term of (10000)(.000001)5 = (.01)5 = .05. Note that .01 is the to-
tal probability of all the sample points corresponding to consolation
prizes. Thus .01 is the probability of winning a consolation prize.
Now consider the second prizes: ten terms of (.000001)(10000) sum
to (.00001)(10000) = .1. Here .00001 is the probability of winning a
second prize. The one first prize contributes (.000001)(100000) = .1;
note that .000001 is the probability of winning $100,000. Let X be the
value of a randomly chosen ticket. Using our work so far, we have

EX)=.05+.1+.1=.25.

Let us develop the procedure of the last paragraph into a general
method. We consider in turn each of the values X can take. Let t be
one of these values. The definition of E(X) involved a term for each
u € Q such that X(u) = t; these terms were of the form tP(u). The
total of all these terms is then tP(X = t). Now we need merely add
all these totals, for all values ¢ that X can take, to get E(X). We write

E(X) =) tP(X =1).

It appears that we have a term in the sum for every number t. But
if P(X = t) is zero, which will be the case for almost all values of ¢,
the term is zero, and we simply ignore the term. Thus what the last
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equation really says is that we may find E(X) as follows: For each
number t such that P(X = t) # 0, multiply t by P(X = t) and then
add up all the products.

Let us consider another example of the use of this formula. A coin
is tossed ten times. John pays Tom $1 if the first toss is heads, $2 if
heads occurs for the first time on the second toss, $4 if heads occurs
for the first time on the third toss, etc. In other words, for each of
n=1,2,...,10, ifheads occurs for the first time of the nth toss, John
pays Tom 2"~ ! dollars. If, however, heads never is thrown, that is, if
all ten tosses result in tails, Tom must pay John $5,000. We seek to
find out which player has an advantage, and how big this advantage
is. Let X be the net amount John pays Tom; in particular, if tails
does come up all ten times, X would be —5000. E(X) is computed
as follows: P(X = 1) = 1/2, since John pays $1 exactly when the
first throw is heads; 1(1/2) = 1/2. The probability that $2 is paid is
(1/2)(1/2) = 1/4; 2(1/4) = 1/2. Likewise, tP(X = t) = 1/2 for each
of t = 4,8,...,1024. The remaining value t for which P(X = t) £ 0
is t = —5000; P(X = —5000) = 1/2'° Thus E(X) is the sum of
(—5000)(1/2'%) and ten terms each equal to 1/2. In short,

E(X) = 10(1/2) — 5000/2'° = 5 — 5000/1024 = 15/128.

This is approximately 12 cents. On the average, John pays Tom
about 12 cents per game. After a thousand games, Tom would tend
to be approximately $120 ahead. As we said before, we shall make
a precise statement about this later. At that time, we shall see that,
since E(X) is positive, the limit of the probability of Tom being an
overall loser after n games as n tends to infinity is zero.

We would not call the game just described fair, because Tom
averages a net gain of 12 cents per game. Let us take a more positive
point of view. We do call a game fair if the expected value of the
amount each player gains is zero. (In the case where there are only
two players and one player’s loss is the other player’s gain, it is clear
that the game is fair if we know that one player has an expected gain
of zero.) In a fair game, on the average, nobody wins. However, it is
not obvious what the implications of that statement are. In this and
subsequent chapters, we shall explore what the consequences of a
game's being fair are.
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A special kind of function is a constant function. It is possible that
X(u) is the same for all points u in the sample space. For example,
suppose some dice are thrown and then some coins are tossed. Then
Karen pays Susan $10. Let X be the amount that Karen pays Susan;
then we can, if we wish, talk about E(X). We do talk about E(X) just
to avoid having an exception to our theory. Just as a formality, we
compute E(X): P(X = t) # 0 only if t = 10; 10P(X = 10) = 10; thus
E(X) = 10. We may as well generalize. If X(u) = ¢ for every u € Q,
then E(X) = c.

We shall next be considering situations that involve more than
one random variable. Keep in mind that all our theory involves
just one sample space; we consider many examples, but at any one
time we have a single sample space. Thus, when we discuss random
variables X and Y together, it is unnecessary to say, “on the same
sample space”; that is automatically the case.

Let X and Y be random variables. Then X 4+ Y is defined in the
obvious way; explicitly, X + Y is that random variable that assigns
to each u € Q the sum of the numbers assigned by X and Y. Thus

X+ V() = X(u) + Y(u) for all u € Q.
Next we define X — Y and XY in a similar manner. Thus we have

X - V(W = X(u) — Y(w for all u € Q;
(XY)(u) = X(u)Y(u) for all u € Q.

Theorem Let X and Y be random variables. Then
E(X +7Y) =EX) + E(Y).
Proof We have (X 4 Y)(u) = X(u) 4+ Y(u) for all u € Q. Thus,
X + V(WP = X(w)P(u) + Y(w)P(w)
for all u € Q. Adding these equations for all u € 2, we have
EX+Y) =) X+ V)WPw =Y _ X@WPw) + Y Y(wPw)
ueQ ueQ ueQ
= E(X) + E(Y).

Corollary Let X3, Xo, ..., X, be random variables. Then

E(Xl +-- +Xn) = E(Xl) +--+ E(Xn)-
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Proof By repeated applications of the theorem, we have

E(X))+ -+ EX,) =EX; + X)) + E(X3) + --- + E(X,,)
=EX) + X2+ X3) + EXy) + -+ - + E(X})

=EX; + -+ Xy1) + E(X)
:E(Xl +...+Xn)_

Theorem Let X be a random variable and t be a number. Then

E(tX) = tE(X).

Proof tX is that random variable such that (tX)(u) = tX(u) for all
u € Q. Thus (IX)(wWP(u) = tX(w)P(u) for all u € Q. Adding all these
last equations, we have

E(tX) = ) _(X)(WPwW) = Y _tXWPu) =t Y XWPu) = tEX).
Oa

ue2 ue2 ue2

Obviously, the single number E(X), while important, gives a very
incomplete picture of the random variable X. It is remarkable just
how much information about X can be given by E(X) and just one
other number, Var(X), which will be defined in a moment. On the
other hand, two numbers can only do so much. Knowing E(X) and
Var(X), we know a lot, but by no means everything, about X. E(X)
tells us the average of the values we would get for X by doing our
experiment many times—at least, this average will “probably” be
“close” to E(X). What we would most like to know in addition is
how far from E(X) we are likely to find X on any one performance
of the experiment. In repeating the experiment, do we always get
values that are far from E(X), or do we always come close to E(X)?
Quite possibly, sometimes far and sometimes near. For brevity, we
set m = E(X). Now we may regard m as a constant random variable.
On this basis, X — m makes sense. In fact, it makes mathematical
and practical sense to ask how big (X — m)? is on the average. Why
square? Since we are concerned with how far X is from m, that
is, with |X — m|, we want to get rid of the sign of X — m; 97 is
just as far from 100 as 103 is. Clearly (X — m)? depends only on
|X — m|. Why not use, for example, (X — m)* or |X — m| itself? It
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will turn out, although it is not obvious at this point, that studying
(X —m)? gives us a particularly nice theory. Therefore we will study
(X — m)?.

We denote E([X — E(X)]?) by Var(X). We call Var(X) the variance
of X. The reasons for studying the variance of X were discussed in
the last paragraph: Var(X) tells us the extent to which X fluctuates
from one performance of the experiment to another.

Let us illustrate with an example. Moe and Joe have an agreement
whereby Moe will pay Joe an amount determined by the throw of
a die. In detail, the amount to be paid is described in the first two
columns of the table below: If u is the number shown on the die,
then X(u) is the amount paid.

u X Y Xw-—10 Y@m) —10 [X(w) —10]* [Y(w) —10]*
1 7 —2990 -3 —3000 9 9000000
2 8 —1990 -2 —2000 4 4000000
3 9 —990 -1 —1000 1 1000000
4 11 1010 1 1000 1 1000000
5 12 2010 2 2000 4 4000000
6 13 3010 3 3000 9 9000000

Using the table, it is easy to find the expected value of the random
variable X. We have

E(X)—l 7+1 8+1 9+1 11+1 12+1 13 =10
6 6 6 6 6 6 -

We contrast Moe and Joe with Sue and Pru. Sue and Pru have an
agreement similar to that of Moe and Joe. But the amount Y that Sue
pays Pru is described by the first and third columns of the table. For
example, if the die falls “two,” Sue pays Pru $—1990; in other words,
in that case, Pru pays Sue $1990. We compute

1 1 1 1
E(Y) = £(~2990) + - (~1990) + ~(~990) + ~(1010)
1 1
+ 5(2010) + =(3010)
= 10.

Thus, E(X) = E(Y). The difference between X and Y is revealed only
when we examine their variances.
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The next step is to compute Var(X) and Var(Y). The beginning
of the computation is shown in the fourth, fifth, sixth, and seventh
columns of the table above. We finish finding Var(X) by finding
E(X — E(X)]»); we have

14

,oo 1 1 11 1 1
Var(X):E([X—E(X)] ): g'9+g-4+6'1+g'1+g'4+6'9: ?

Similarly, we have
Var(Y) = E(Y —E(W])

_1 9 106+l 4 106+1 1 106+1 1.10°
) 6 6 6
+1 109+l 4 106+1 9.10°

6 6 6

14

— . 10°.
3

In short, the variance of Y is one million times the variance of X.

Let us try briefly, and informally, to understand the significance
to Moe, Joe, Sue, and Pru of the million-fold difference in the vari-
ance. As for Moe and Joe, Moe necessarily pays Joe approximately
$10. The amount paid may be a few dollars off from $10, but there
is no reason for excitement. As for Sue and Pru, one of them will
pay the other at least $1000, in round numbers. They probably will
be concerned about who pays whom, with several thousand dollars
involved. We may say that how Sue and Pru fare is more affected by
chance than the fate of Moe and Joe. In a way, the variance of a ran-
dom variable tells us how large a role chance plays in determining
the value of the variable.

If Y(u) > 0 for all u € , then it is clear from the definition of
E(Y) that E(Y) > 0. Applying this remark to Y = [X — E(X)]?, we see
that Var(X) = E(Y) > 0 always; Var(X) is never negative.

We call the square root of Var(X) the standard deviation of X. [We
just saw that Var(X) is never negative and thus always has a square
root.] The name “standard deviation” is used because, as we shall see
later, the number so called is a standard for measuring deviations
from E(X).

The following theorem contains a formula for Var(X) that is usu-
ally more convenient in specific examples than the definition of the
variance.
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Theorem Let X be a random variable. Then
Var(X) = E(X’) — [E()]".

Proof To simplify notation, let m = E(X). By definition, we have
Var(X) = E((X — m)?). Thus we have

Var(X) = E(X? — 2Xm 4+ m?)
= E(X?) + E(—2mX) 4+ E(m®)
= EX?%) — 2mE(X) + m?
= E(X?) —2m? + m®
= EX?%) —m?

as required. O

We next work a simple problem two ways, first directly and then
using the formula just derived. As we shall see, in a simple problem it
makes little difference which method we use. In a more complicated
situation, the advantage of the new formula is more substantial. To
get to the point: Suppose a die is thrown. Bob pays Ray $2 if the
die falls “one, “two,” or “three” And Bob pays Ray $3 if the die falls
“four” or “five”” But if the die falls “six,” Bob pays Ray $600. In seeking
Var(X), we must first find E(X). We have

1 1 1
EX)=—--24—-3+4 —-600=102.
X 3 +3 +6

Directly from the definition of Var(X) we have
1 , 1 1 )
Var(X) = E(—IOO) + 5(—99) + 5(498) = 49601.
With easier arithmetic we can find
E(X?) = 1-22+1-32+l-6002:60005
2 3 6 '
Thus

Var(X) = 60005 — 102 = 49601.

We end the section with a theorem that gives us a written record
of two fairly obvious formulas.
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Theorem Let X be a vandom variable and t be a number. Then

EX+1)=EX) +t¢,
Var(X + t) = Var(X).

Proof In the expression X 4+ t, the t denotes a constant random
variable. We already have noted that E(t) = t. Thus we have E(X+t) =
EX) + E(t) = E(X) +t. Setting Y = X + ¢, we have Y — E(Y) =
X+t—[E(X)+{] = X—E(X). Thus Var(X+t) = Var(Y) = Var(X). O

Exercises

1. John provides and tosses a dime and a half-dollar. Richard gets
to keep whichever coins fall heads.

a. Find the expected value of the amount Richard gets.

b. How much should Richard pay John in advance to make the
game fair?
2. Fred tosses two coins. If both fall heads, he wins $10. If just one
falls heads, he wins $4. But if both coins fall tails, he must pay a
$2 penalty. Find the expected value of Fred's gain.

3. In certain lottery, 5,000,000 tickets are sold for $1 each.

1 ticket wins a prize of $1,000,000.

10 tickets win prizes of $100,000 each.

100 tickets win prizes of $1,000 each.

10,000 tickets win prizes of $10 each.

1,000,000 tickets receive a refund of the purchase price.

a. Find the mean value of the amount a ticket gets.
b. Find the expected net gain for each ticket.

4. Six coins are tossed. Alice pays Betty according to the following
table:

If no heads $200
If 1 head $50
If 2 heads $10
If 3 heads S5
If 4 heads $20



38

7.

4. Random Variables

If5heads  $25
If6heads  $80
If X is the amount Alice pays, find E(X).

Alan tosses a coin 20 times. Bob pays Alan $1 if the first toss falls
heads, $2 if the first toss falls tails and the second heads, $4 if
the first two tosses both fall tails and the third heads, $8 if the
first three tosses fall tails and the fourth heads, etc. If the game
is to be fair, how much should Alan pay Bob for the right to play
the game?

Find the mean and variance of each of the random variables
described below; each of parts a-o refers to a different random
variable.

a. PX=-1)=1/4, P(X=0)=1/2, (X =1) = 1/4.
b. PX=-1)=1/4 P(X=0)=1/2, P(X = 5) = 1/4.
c. P(X =—5)=1/4, P(X = 0) = 1/2, P(X = 5) = 1/4.
d. P(X = —5) = .01, P(X = 0) = .98, P(X = 5) = .01.
P(X = —50) = .0001, P(X = 0) = .9998, P(X = 50) = .0001.
PX=1)=1.

PX=0)=1/2 P(X =2)=1/2.

P(X = .01) = .01, P(X = 1.01) = .99.

P(X = 0) = .99, P(X = 100) = .01.

P(X = 0) = .999999, P(X = 1000000) = .000001.
PX=0)=1/2, P(X =2) =1/2.

P(X =0)=3/5 P(X =2)=1/5, P(X = 3) = 1/5.
P(X=0)=4/7, P(X = 2) = 2/7, P(X = 3) = 1/7.
n PX=0)=5/8 P(X=2)=1/8, P(X =3) = 1/4.
0. P(X =0)=2/3, P(X = 3) = 1/3.

A SR

8

A coin is tossed repeatedly until heads has occurred twice or
tails has occurred twice, whichever comes first. Let X be the
number of times the coin is tossed. Find:

a. EX).

b. Var(X).
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10.

11.

12.

13.

. Suppose that the random variable X takes only the values 0, 2,

and 3. Suppose also E(X) = 1. Show that 1 < Var(X) < 2.

Suppose P(X = a) = P(Y = a) = 0 unless a is one of three given
numbers. Suppose also X and Y have the same mean and the
same variance. Show that P(X = a) = P(Y = a) for all numbers
a.

Arthur and Ben play a game as follows: Arthur tosses three
Anthony dollars, which he provides. Ben gets to keep these three
coins, but Ben must give Arthur a five-dollar bill if all three coins
fall heads.

a. Find the mean and variance of Arthur's net gain.
b. Find the mean and variance of Ben's net gain.

In a game, a die is thrown. Alan pays Betty $2 if the die falls
“one! “two, or “three”; $3 if it falls “four” or “five”; and $6 if it
falls “six” Let X be the amount Betty receives. Find:

a. E(X).
b. Var(X).

A store has in stock a supply of packages of candy corn.
Specifically, suppose there are

20 packages of 100 candy corns each,
40 packages of 200 candy corns each,
20 packages of 300 candy corns each.

Let X be the number of candy corns in a randomly chosen
package. Find:

a. The mean of X.
b. The variance of X.

Three coins are tossed together. If all three fall heads, they are
tossed again. If again all three fall heads, a third toss is made.
Continuing in this way, the process goes on until the coins fall
some way other than “three heads.” Ms. Payor pays Mr. Gettor
2 dollars, where k is the number of times the coins are tossed.
Find the expected value and variance of the amount Mr. Gettor
gets. (Note that this exercise is an exception to our current rule
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that Q may contain only finitely many points. Use your best
judgement as to how to proceed.)

14. A box contains one twenty-dollar bill and four one-dollar
bills. Two bills are randomly drawn, one at a time, without
replacement.

a. Find the expected value of the bill drawn first.
b. Find the expected value of the total amount drawn.

15. Ahat contains two tickets each marked $2, one ticket marked $4,
and one ticket marked $20. Mr. Smith draws a ticket and keeps
it. Then Ms. Jones draws a ticket. Each receives the number of
dollars stated on the ticket. Let X be the amount Mr. Smith gets
and Y the amount Ms. Jones gets. Find:

a. E(X).
b. E(Y).
c. Var(X).
d. Var(Y).

16. A hat contains one thousand-dollar bill and four five-dollar bills.
Five persons, one at a time, each draw a bill at random and keep
it. Let X; be the value of the first person’s bill, X, the value of
the second person's bill, etc. Find:

a. E(Xy).

E(X5).

Var(X,).

Var(X3).

E(X; + -+ X5).
Var(X; + --- + X5).

- 0 & o0 O

4.2 Computation of Expected Value
and Variance
Some basic properties of random variables were introduced in the

last section. Now we consider the computation of means and vari-
ances in more complicated circumstances. We first develop some
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formulas that apply in connection with Bernoulli trials. Then we
point out that the same technique that derived the formulas also
works under more general conditions. But we need just a little more
theory, before we get to the problems.

We have seen that the equation

EX +Y) = EX) + E(Y)

holds for any two random variables. The situation is different for the
superficially similar equations

E(XY) = E(X)E(Y)
and
Var(X 4+ Y) = Var(X) + Var(Y).

These latter equations are not always correct. We next investigate
circumstances in which, as we shall see later, they do hold. The
definition that comes next describes a condition that is more than
enough to ensure that both equations hold.

We call random variables Xj,..., X, independent if for every
choice of numbers ty, ..., t, the following condition holds: For each
i, let A; be the event consisting of those u € Q such that X;(u) = t;
then the events A4, ..., A, are independent. It will turn out that all
we really need to know is when two random variables are indepen-
dent. Since it is easy to say when two events are independent, we
can rephrase the definition just given into a simpler form when only
two random variables are involved. Let X and Y be random variables.
Then X and Y are independent if and only if

PX=sY =1t =PX=s)PY =1

for every choice of numbers s and t.

The next step is to state and prove a certain lemma. To make the
lemma easier to understand, we first consider an example. Five coins
are tossed. Let X be the absolute value of the difference between the
number of coins that fall heads and the number that fall tails. We
make the following computation:
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Probability times
No. of heads Probability Value of X value of X
0 1/32 5 5/32
1 5/32 3 15/32
2 10/32 1 10/32
3 10/32 1 10/32
4 5/32 3 15/32
5 1/32 5 5/32
Total 60/32

Is the number we found, 60/32, equal to E(X)? Yes, but why?
We assume that we are using the obvious sample space with 32
points, one for each way the coins can fall. Since we added only
six terms, we certainly didn't use the definition of E(X). But, for
example, P(X = 1) = 20/32 wasn't used either. Thus we didn't use
the formula

E(X) =) tP(X =1).

We are somewhere in between. We may justify our work by the
following lemma:

Lemma Let Ay,..., A, be a partition of Q and ty, ..., t, be numbers.
Suppose, for each i and each u € A;, X(u) = t;. Then

E(X) = ) tP(A).
i=1
Proof Consider any one of the sets A;. Then
P(A)) = ) P(w).
UEA,
Thus
LP(A) = Y P = Y X(P(w),
UEA, UEA,

since t; = X(u) for each u € A;. Now we simply add these equations
for alli. Since each ubelongs to just one A;, the sum of the right-hand
sides is just

> X(uyP(w),

ue

which by definition is E(X); hence the conclusion is clear. O
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Theorem Let X and Y be independent random variables. Then
E(XY) = E(X)E(Y).

Proof Letty,...,1t, be all the numbers r for which P(X = r) # 0; let
81,...,Sy be the numbers r for which P(Y = r) # 0. Then

EX) =tPX =t)+ -+ tP(X = t),
E(Y) =8 P(Y = 5)) + - + 5, P(Y = s,.).

If we multiple together the sums on the right in these two equations,
we get a sum of terms of the form

L§P(X = L)P(Y = x);

in this last sum, we have one such term for each choice of i and j.
Since X and Y are independent, P(X = t)P(Y = §) = P(X =4, Y =
s). Let B; consist of those u € Q such that X(u) = t; and Y(u) = 5. We
have just seen that E(X)E(Y) is the sum of t;5P(B;) over all choices
of i and j. Given u € €, there is just one i for which X(u) = t; and
just one j for which Y(u) = s; thus u belongs to just one of the sets
By. In other words, the sets B; form a partition of Q. If u € By, then
X(u) = t;, Y(u) = s, and hence (XY)(u) = ;5. Thus by the lemma,
E(XY) is the sum of t;5P(Bj) over all choices of i and j. Since we have
already noted that E(X)E(Y) is equal to the same sum, the proof is
complete. a

Lemma Let X and Y be random variables. Suppose E(XY) =
EX)E(Y). Then

Var(X 4+ Y) = Var(X) 4+ Var(Y).
Proof By an earlier theorem,
Var(X +Y) = E(X + Y)?) — [EX + V)]~
We have,

E(X+ V%) = E(X? +2XY + Y?)
= E(X*) + EQXY) + E(Y?)
= E(X*) + 2E(XOE(Y) + E(Y?).
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On the other hand,

[EX + V)]* = [EX) + E())]
= [EX)]* + 2EXDE(Y) + [E(V)]".

Subtracting [E(X + Y)]* from E((X + Y)%), we have

Var(X +Y) = E(X?) + E(Y?) — [E(X)]* — [E(D)]

= Var(X) + Var(Y). -

Theorem Suppose X1, ..., X, areindependent random variables. Then
Var(X; + - -+ X)) = Var(X;) + - - - + Var(X,)).

Proof Since X; and X; are independent whenever i # j, E(XXj)) =
E(X;)E(X)) provided i # j. Thus we have, for all suitable k,

E((Xi+ - 4+ X)Xik) = B Xk + -+ + XaeXi1)
= EX)EXiq1) + - + E(X)E(Xieq1)
=[EX)) + -+ + E(Xp)] E(Xk41)
=EX; + - + Xi) E(Xpeq1).

By the lemma then,

Var(X;) + - - - + Var(X,,) = Var(X; + X;) + Var(X3) + - - - 4+ Var(X,,)
= Var(X1 + X5 + Xg) + Var(X4)
+ -+ Var(X;,)
= Var(X1 + -+ Xy,_l) + Var(Xn)
= Var(Xj + - + X»). -

In the hypothesis of the last theorem, we assumed X3, ..., Xy to
be independent. Obviously, we could merely have required each
two of Xy, ..., X, to be independent; that is all we used in the proof.
We used the first condition for brevity. In most applications, it is
obvious that both conditions are satisfied.

We work an example using independent random variables. One
hundred dice are thrown; let X be the total number of spots shown
on the dice. We seek E(X) and Var(X). Let X,, be the number of spots
shown on the nth die. Then X = X; + - - + Xj90. We first find E(X;)
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and Var(X;) for one, and hence all, i. We have

B(X) == 14— 24+ 34+= 4+=. 54+ 6=_
=% 6 6 6 6 6 2
E(XZ)—l 1_|_l 4_1_1 9—}—l 16—|—l 25-|-l 36—9—1
N 6 6 6 6 6 6’

2 6 12
Now we have E(X) = E(X1) + --- + E(X100) = 100E(X;) = 350 and,
using the independence of Xj,..., Xip9, Var(X) = Var(X;) + --- +
Var(X,o) = 100Var(X;) = 875/3.
We need just one more theorem in this chapter.

7\% 91 35
Var(Xi):(—) - — = —

Theorem Let X be a random variable and t be a number. Then
Var(tX) = t*Var(X).
Proof

Var(tX) = E((tX)%) — [E(tX)]* = E(*X?) — [(E(X)]*
= PE(X?) — 2[EX)])* = t*Var(X). .

We return to the 100 dice thrown just before the statement of the
theorem. Let Y be the average number of spots shown on the 100
dice. In other words, let Y = X/100. We have E(Y) = E(X/100) =
E(X)/100 = 7/2. Also, Var(Y) = Var(X/100) = Var(X)/10000 =
7/240. Note that the expected value is the same as that for throwing
a single die, but the variance is much less than that for a single die.
We leave a discussion of the significance of this computation for the
next chapter.

Now we are ready to remove the restriction that the sample
space contain only finitely many points. Suppose Q contains in-
finitely many points. In accordance with the assumption we made
in Chapter One, we may designate these points as uy, Uy, Uz, .... We
make the obvious definition of E(X); that is, we let

E(X) =) Pu)X(w).
i=1

There are some problems: The series may be divergent. In that case,
X has no expected value. The choice of which point of 2 is u;, which
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uy, etc. is arbitrary. If we change the order, we may change the sum
of the series. To avoid this difficulty, we agree to define E(X) only
when the series above is absolutely convergent. It is a property of
such series that the series remains absolutely convergent with the
same sum if the terms are put into a different order. To repeat, if the
series above is not absolutely convergent, X has no expected value.
If the series is absolutely convergent, we say, “E(X) exists” With the
new definition of E(X), all the theory we just did goes through with
obvious minor modifications. We give a description of the changes
necessary in the next paragraph.

We restate the theorems just discussed here partly to include
the case of infinite Q2 and partly just for the convenience of having
them all together. We shall not worry about proofs; the proofs are
essentially unchanged from the finite case, except that we must
use the properties of infinite series. Note that the definition of
variance, Var(X) = E(X — E(X)]?), still makes sense. If X has no
expected value, then it has no variance. If X has an expected value
but [X — E(X)]* does not, then X still has no variance. Now we list
the theorems:

Theorem Let X and Y be random variables. Suppose E(X) and E(Y)
exist. Then E(X + Y) exists and
E(X +Y) = E(X) + E(Y).

Theorem Let X be a random variable and t be a number. Suppose
E(X) exists. Then E(tX) exists and

E(tX) = tE(X).
Theorem Let X be a random variable. Suppose E(X) and E(X?) exist.
Then Var(X) exists and

Var(X) = E(X*) — [E(OT.
Theorem Let X and Y be independent random variables. Suppose E(X)
and E(Y) exist. Then E(XY) exists and

E(XY) = E(XOE(Y).
Theorem Suppose X, ..., X, are independent random variables, each
having a variance. Then Var(X; + - - - + X,)) exists and

Var(X; + - - -+ X)) = Var(X;) + - - - + Var(X,).
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Theorem Let X be a vandom variable and t be a number. Suppose
Var(X) exists. Then Var(tX) exists and

Var(tX) = t*Var(X).

There is a certain method for finding expected values that often
greatly simplifies their computation. We shall illustrate this method
in several examples, the first two of which are very important. The
method is absurdly simple. Suppose we want to find the expected
value of a somewhat complicated random variable X. If we can find
much simpler random variables X1, ..., Xy such that X = X;+- - -4+Xj,
we can use the fact that E(X) = E(X;) + -+ + E(Xy) to find E(X).
Further details of the method become clear in the examples we
work next.

Suppose we are going to make n Bernoulli trials. We let p and
q have their usual meanings. Let X be the number of successes we
shall get; we seek E(X). Let

X, — { 1 if the first trial results in success,
! 0 otherwise.

For those who like formality, we reword the definition: Let A be
the event, “The first trial results in success” We define the random
variable X; by letting

Xi(u) =1 foreach u € A,
Xi(u)=0  foreachucA.

We define X;, Xj,...,X, in the same way using the second,
third,. .. nth trials. Consider X; + --- + X,,. At each point u of the
sample space, the value of X;(u) + - - - + X,,(u) is a sum of zeros and
ones—a one for each trial that results in success when that point is
the point that occurs. In short, X = Xj + --- + X,,. E(X)) is easy to
find: P(X; = 1) is the probability of success on the first trial; thus,
P(X; = 1) = p. Likewise P(X; = 0) = q. Thus we have

EX)=0-PX;=0)+1-PX; =1) =p.

In exactly the same way we see that E(X;) = p, E(X3) =
p, ..., EX,) = p. Now we have
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EX) =EX1 4+ -+ Xp)
=EX) + -+ E(Xy)
=p+---+p (withn terms)
= np.

This important formula for the expected number of successes in n
Bernoulli trials should be memorized.

It is also easy to find the variance of the number of successes in n
Bernoulli trials. We continue using the notation of the last paragraph:

EX)=0-PX; =0)+1%-P(X; =1) =p.
Thus
Var(X,) = E(X}) — [E(X) =p —p* = p(1 —p) = pq.
Now note that X, ..., X, are independent. Thus

Var(X) = Var(X;) 4 - - - 4+ Var(X,,)
=pq+---+pg (withnterms)
= hpq.

Again, this formula should be memorized.

Now consider an obvious alternative experiment. We make
Bernoulli trials until we get r successes; we seek to know the av-
erage number of trials necessary to get the r successes. We started
the discussion of this experiment in the last chapter. Before com-
puting an expected value, we must supply the formal definition of
a suitable sample space. We leave it to the reader to decide if our
mathematical abstraction fairly models their intuitive ideas.

We first do the case r = 1; then we do the general case. When
r = 1, we are investigating the number of trials necessary to get
just one success. Since this number is a positive integer, we may as
well let @ = {1,2,3,...}. For each k € Q, we define P(k) = ¢~ 'p.
(How do we get that number? It is the probability, determined for
a different experiment and sample space, that in k Bernoulli trials
success occurs for the first time on the last trial. But here we are
doing abstract mathematics and just making a formal definition.)
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Next we define

P(A) =) P(k)
keA

for all subsets A of 2. We must check that the basic assumptions of
Chapter One are satisfied. The only one of them that is not obvious
is P(Q) = 1. We have P(Q) = P() +P(2)+---=p+gp+¢’p+ -
We recognize the series as a geometric series with first term a = p
and ratio r = g. By the well-known formula,

. a

11—

for the sum of the geometric series a + ar +ar? +ar® + - - -, we have

p) =L =E_1
I-q q
(Informally, the computation just completed has the following signif-
icance: The probability that we get a success sooner or later has the
value one. In other words, we're sure to get a success eventually.)
Thus we have established a formal sample space and probability
function.

Even in the last paragraph, the author could not force himself to
avoid parenthetical intuitive explanations. Having indicated how to
be formal if we want to be, let us agree that we prefer to be rather
informal. Once the basic ideas of the theory of probability and that of
infinite series are mastered, the technical details are easily supplied.

Finally we really do the problem at hand. Recall we are going to
make Bernoulli trials until we get a success. Let X be the number
of trials necessary. For each of n = 1,2,..., we define a random
variable X, as follows:

X — [ 1 if at least n trials are necessary
: 0 otherwise.

In other words, if the first n — 1 trials all result in failure, then
X, assumes the value 1; if a success occurs before n trials are made,
then X, assumes the value 0. In particular, X is the constant random
variable that assigns the number 1 to every point of the sample space;
the first trial is always needed. A moment'’s reflection convinces us
that X = X;+X,+- - -; the reasoning is the same as in the last example.
(The ridiculously simple key idea of the method we are using is the
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following: To count how many times something happens, just add 1
to your running total each time it happens.) We have no proof that
E(X) = E(X)) + E(X3) + - -+, since the theorem about the expected
value of a sum does not apply to infinite sums. Since our X, are
never negative, that equation can be shown to be correct for them.
We shall apply the equation here, and we shall give an alternative
derivation of the formula for E(X) in Chapter Seven. Let us compute
E(X,). P(X,, = 1) is the probability of failure on all of the first n — 1
trials; thus P(X, = 1) = ¢q" .. (This equation holds even if n = 1.)
Thus

E(X,)=1-PX,=1)+0-P(X, =0)=q""".
Hence
EX) =EX)+EX)+ - =14qg+¢ + .

Applying the standard formula for the sum of a geometric series, we
have

B(X) = ——
1—-q
Since 1 —q = p, E(X) = 1/p is the formula we seek. [Since the X, are
not independent, we have no easy way to find Var(X). We defer the
computation of the variance to Chapter Seven.]

Now suppose we seek r successes instead of just one. Let X be
the number of Bernoulli trials necessary to get r successes. It is easy
to find E(X). Let X; be the number of trials necessary to get the first
success; let X; be the number of additional trials necessary to get the
second success; and so on up to X,. Then X = X; + - -- + X,. Hence,
E(X) = E(X3) + - - -+ E(Xy). By the formula we just derived, not only
does E(X1) = 1/p, but E(X;) = 1/p for alli. Thus, E(X) = r(1/p) = r/p.

Aswe said before, the method just used to derive certain formulas
is important in itself. We shall give some examples to illustrate that
point. But first we should make a record of the formulas by summa-
rizing them in a table. Even before doing that, it will be convenient
to introduce some terminology.

An example will help explain what we're going to say. A pair of
dice are thrown; let X be the number shown on the first die and Y be
the number shown on the second die. Clearly X and Y are very much
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alike. Viewed separately as abstract mathematical objects, they are
essentially identical. However, X and Y are certainly two distinct
things. When the experiment is done, X and Y will probably assume
different values. We may demonstrate the difference numerically
by computing E(X?) and E(XY) and getting two different numbers;
the details appear in Exercise 41. In a case like this, we say the two
random variables have the same distribution. More precisely, we say
two random variables X and Y have the same distribution if

PX=k)=P(Y =k) for all k.

In some cases, the values of P(X = k) for a random variable X
are given by a well-known formula. In such a case, a name may
be assigned to the formula. For example, to say X has a binomial
distribution is to say there are positive numbers p and g withp+g =1
and a positive integer n such that

PX =k =p'q* fork=0,1,2,...,n
PX=k =0 for all other k.

Whether X is obtained from a system of Bernoulli trials is irrelevant.
As long as P(X = k) is given by the formula announced, X has a
binomial distribution.

Now we are ready to make a record of the formulas for means and
variances we have derived so far. The asterisks in the table below
denote values that we have not yet computed; the completed table
appears at the end of the book. As we just said, a random variable X is
said to have a binomial distribution if P(X = k) has, for all k, the value
shown in the table for “binomial”; likewise we speak of a Bernoulli
distribution, a geometric distribution, and a Pascal distribution. The
table gives means and variances for such random variables.

Now we return to the method used to derive the means and
variances in the table. This method is very important in itself. We
use it next to work three examples. In thinking about these examples,
note particularly that it can be easier to find E(X) than to find the
probabilities of X taking various values.

Example 1
Suppose a committee with six members is to be formed by randomly
selecting six of the twelve senators from the New England states.
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k for which  P(X = k)
Name P(X=k)#0 forthesek E(X) Var(X) Description

Bernoulli 0,1 q,p p Pq One trial; 1 if
success, 0 if failure

Binomial 0,1,...,n (Vkl)pkq”‘k np npq Number of
successes in n
Bernoulli trials

***  Number of
Bernoulli trials
needed to get one
success

g = ***  Number of
p Bernoulli trials
needed to get r
successes

Geometric  1,2,3,... 9 'p

S

k—1
r—1

Pascal nr+1,...

What is the expected number of states to be represented on the
committee? Let

1 if Maine is represented,
X = . .
0 if Maine is not represented.

Likewise, define X3, .. ., X¢ corresponding to the other five states (in
any order). Then, if the number of states represented is denoted
by X, we have X = X; + --- 4+ Xg. Since clearly E(X;) = E(X;) =
... = E(Xg), it follows that E(X) = E(X;) + --- + E(X5) = 6E(X;). To
find E(X;), we find the probability that Maine is represented. The
probability that Maine is not represented is

10
()
[(12\ 22
(+)
Thus E(X))=1-P(X; =1)+0-P(X; =0)=P(X; =1)=1—5/22 =
17/22. We conclude that E(X) = 6(17/22) = 51/11. O



4.2. Computation of Expected Value and Variance 1()3

Example 2

Suppose that an urn contains 100 balls, numbered from 1 to 100. Jane
is to draw balls at random, one at a time, without replacement, until
she draws a ball with a lower number than one she drew earlier. She
will be paid $1 for each ball she draws. How much does she get—of
course we mean, how much does she get on the average?

Now, for each positive integer r, the probability that Jane draws
just r balls is not hard to find. But we shall see that we do not need
these probabilities; there is an easier way to do the problem. The first
step we take is the same whether we find the probabilities or not. We
change the description of the procedure Jane follows to provide that
she continues to draw balls until all the balls are drawn. However,
she still is paid a dollar only for each ball up to and including the
first ball that has a lower number than a ball drawn earlier. Thus
she receives k or more dollars if and only if the first k — 1 balls are
drawn in numerical order; the probability of this event is clearly
1/(k — 1)!. Let X be the amount Jane receives. We define random
variables Xj, ..., Xjqo as follows:

Y — [ 1 if Jane receives at least k dollars,
0 if Jane receives no more than k — 1 dollars.

In forming X; + X, + - - - + X100, we add up zeros and ones; we con-
sider how many ones. In those circumstances where Jane receives r
dollars, Xx = 1 exactly when k < r; thus in this case there are r ones.
It follows that X = X; + -+ - + Xj90. Thus E(X) = E(X1) + - - - + E(X100)-
We already noted, but stated it a different way, that P(Xx = 1) =
1/(k — 1)!. Thus, E(Xx) = 1/(k — 1)!, and hence

1

() =~ 4+ = oot
o1 2 99!’

E(X) is thus VEry, very close to
1 1 1 1
e=1+1+ 5 + —' + -

To the nearest cent, Jane receives $2.72 on the average.

The reasoning just completed would work even if we had con-
sidered starting with a different number of balls. We would have
obtained

1 1 1
EX)=1+14—+—+ -
( it atat ot T
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if we had used n balls. The surprising thing is how little the amount
Jane gets depends on the number of balls originally in the urn. The
problem really only makes sense with at least three balls; thus we
can say E(X) is always between $2.50 and $2.72. It is $2.72 to the
nearest cent if there are at least six balls in all. O

Example 3

Suppose we have 100 letters, each addressed to a different person by
name. We prepare an envelope for each letter. Suppose we are called
away for a while. In our absence, a helpful, but not very clever, per-
son puts the letters in the envelopes and mails them off. How many
people get the correct letter? Obviously, that number is a random
variable X. The probabilities of X taking various values are some-
what hard to find; we defer the computation of these probabilities
to Chapter Seven. However, E(X) is very easy to find. Number the
letters from 1 to 100. Let

o [ 1 if the ith letter is in the correct envelope,
' 0 otherwise.

Then X = X; + -+ - + X100; hence, E(X) = E(Xy) + - - - 4+ E(X100). Since
clearly E(X;) = -+ = E(Xjq0), we have E(X) = 100E(X;). P(X; = 1)
is the probability that the first letter gets in the correct one out of
100 envelopes. Thus, P(X; = 1) = 1/100, and hence E(X;) = 1/100.
Therefore E(X) = 1; on the average, just one person gets the right
letter. It is somewhat surprising that the number 100 did not affect
the final answer; we would have gotten E(X) = 1 even if we had used
any other number in place of 100. This problem is a good example
of a situation in which it is easy to find an expected value, but hard
to find the probabilities behind it. O

Exercises

17. Suppose X and Y have the same mean and have the same
variance. Suppose also X and Y are independent. Then

E((X — Y)%) = 2Var(X).
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18.

19.

20.

21.

22.

23.

24.

25.

26.

Suppose X and Y have the same variance. Show that

E(X+ VX -Y)=EX+ VEX-Y).
Suppose that X and Y are independent and that each has mean
3 and variance 1. Find the mean and variance of X 4+ Y and XVY.

Suppose X and Y are random variables such that E(XY) = 0.
Suppose also each of X and Y has mean 1 and variance 3. Find
the variance of X + Y.

Show that
Var(X + Y) 4+ Var(X — Y) = 2Var(X) + 2Var(Y).

Four coins are tossed. Let X be the number of heads obtained.
Find:
a. The mean of X.

b. The standard deviation of X.

Find the mean and variance of the total number of spots obtained
when 60 dice are thrown.

An urn contains five balls numbered 1, 2, 3, 4, 5. Aball is drawn
at random; let X be the number shown on the ball. This ball is
replaced. Then 200 balls are drawn, one at a time, with replace-
ment. Let Y be the sum of the numbers on the 200 balls. Let Z
be the average of the numbers on the 200 balls. Find

a. E(X).

b. E(Y).

c. Var(X).

d. Var(Y).

e. E(2).

f. Var(Z).

2500 coins are tossed. Let X be the number of heads obtained.
Find E(X), Var(X), and E(X?).

Cards are drawn, one at a time, from a standard deck; each card

is replaced before the next one is drawn. Let X be the number
of draws necessary to get an ace. Find E(X).
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27.

28.

29.

30.

31.

32.

Cards are drawn as in the last problem. Let Y be the number of
draws necessary so that ten of the draws result in spades. Find

E(Y).
Suppose that in bobbing for apples there is a probability of 2/3
of getting an apple on any particular try.

a. Let X be the total number of apples obtained in eight tries.
Find the mean and standard deviation of X.

b. Let Y be the total number of tries it takes to get a total of four
apples. Find E(Y).

Suppose in a certain game a player receives $1 for each “five”
and each “six” thrown on a single die.

a. If the die is thrown six times, find the mean and variance of
the amount the player receives.

b. If the player throws repeatedly until he gets $10, find the
mean of the number of throws necessary.

Alice and Betty each provide and toss 100 dimes. Alice keeps all
the dimes that fall heads and Betty keeps those that fall tails. Let
X be Alice’s net gain in cents. Find E(X) and Var(X).

A die is thrown and eight coins are tossed. Let X be the number
shown on the die and Y be the number of coins that fall heads.
Find:

E(X).

E(Y).
Var(X).
Var(Y).
EX +Y).
Var(X + Y).
E(XY).

h. Var(XY).

A Kennedy half-dollar, an Eisenhower dollar, an Anthony dollar,
and a Roosevelt dime are tossed once. Ms. Kear gets to keep all
that fall heads. What are the mean and variance of the amount
she gets to keep?

&0 O m

Q - o
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33.

34.

35.

36.

37.

38.

39.

40.

$3.00 worth of nickels and $2.40 worth of dimes are tossed. Find
the mean and variance of the value of the coins that fall heads.

Ten dimes, 30 Eisenhower dollars, 20 Anthony dollars, and 20
nickels are tossed. Ms. Dean gets to keep those that fall heads.
Let X be the number of coins Ms. Dean gets and Y be their value
in cents. Find:

E(X).

E(Y).
Var(X).
Var(Y).
E(X 4+ Y).

f. Var(X + 7).

A bag contains 12 coins as follows: 3 nickels, 4 dimes, and 5
quarters. Four coins are drawn from the bag at random without
replacement. Let X be the value of the coins drawn. Find E(X).

& &0 O @

Assume that 40% of the “public” likes a certain television pro-
gram. Find the mean and standard deviation of the number of
persons in a randomly chosen group of 100 that like the program.

A coin is tossed repeatedly until tails appears. Find the mean of
the number of tosses necessary.

A coin is tossed repeatedly until heads has appeared four times.
Find the mean of the number of tosses necessary.

A coin is tossed repeatedly until either tails appears or heads
has appeared four times, whichever comes first. Find the mean
and variance of the number of tosses necessary.

Eight United States pennies and four Canadian pennies are
tossed. Let X be the number of U.S. pennies and Y the number
of Canadian pennies that fall heads. Complete the table below.
(Warning: The hard part of this problem is to decide in what
order the required items should be computed.)

E(X) = E(X?) = Var(X) =
E(Y) = E(Y?) = Var(Y) =
EX+Y) = E(X +Y)?) = Var(X + Y) =

E(XY) = E(XY)?) = Var(XY) =
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41.

42.

43.

44,

45.

46.

A pair of dice is thrown. Let Z;, be the number shown on the
first die and Z, be the number shown on the second die. Let
X=Z1+2, and Y = VAVER Find

E(Z)).
E(Z)).
E(X).

E(Y).

E(XY).
E(X?).
E(Y?).

Four dimes and four nickels are tossed. Let Z; be the number
of dimes that fall heads. Let Z, be the number of nickels that
fall heads. Let X = Z; + Z, and Y = Z;Z,. For these random
variables, find items a-g of the last problem.

IS

®Q - o & 0

In a problem involving independent random variables X and Y,
a probability student correctly finds that

E(Y)=2, EX’Y)=6, EXY*) =8, andE(XY)%) =24.

Then a goblin destroys the data the student used. Find E(X).

On an imaginary television show, there are five identical closed
boxes. One box contains $10,000, two boxes contain $1000 each,
one box contains $1, and the last box contains a miniature stop
sign. A contestant is allowed to select a box, open it, and keep
the contents. The contestant is allowed to repeat this process
until the box with the stop sign is opened; at this point, the
game ends. Find the mean amount the contestant gets.

An urn contains six balls of each of the three colors: red,
blue, and green. Find the expected number of different colors
obtained when three balls are drawn:

a. with replacement;
b. without replacement.

A poker hand contains five cards. Find the mean of each of the
following:

a. The number of spades in a poker hand.
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47.

48.

49.

50.

51.

52.

53.

b. The number of different suits in a poker hand.

¢. The number of aces in a poker hand.

d. The number of different face values in a poker hand.
e.-h. Do a-d for a bridge hand (13 cards).

Cards are drawn, one at a time, from a standard deck, without
replacement.

a. Let X be the number of draws necessary to get an ace. Find

E(X).

b. Let X, X3, and X4 be the number of draws necessary to get

two, three, and four aces, respectively. Find E(X3), E(X3), and
E(Xy).

In a well-shuffled deck of cards, what is the expected number of
spades between the ace of diamonds and the king of hearts?

A purse contains 12 quarters and 2 pennies. All the coins are to
be drawn, one at a time, without replacement. You are to keep
all the quarters that are drawn between the two pennies. What
is your expectation?

a. A purse contains $101 in Anthony dollars and $1 in pennies.
Smith is allowed to draw and keep coins, one at a time, until
he has drawn 30 pennies. Find the expected value of the value
of the coins he keeps.

b. Suppose the value of each coin drawn is credited to Smith,

and then the coin is replaced before the next coin is drawn.
Now what is the expected value of the amount credited to
Smith?

Four letters are drawn, one at a time, from
WALLA WALLA.

What is the expected number of different letters to be drawn?

An urn contains 5 red balls and 15 blue balls. The balls are drawn,
one at a time, without replacement, until three red balls have
been drawn. Find the expected number of balls to be drawn.

Repeat the last exercise assuming the balls are drawn with
replacement.
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54.

55.

56.

57.

**58.

A committee is to consist of 50 randomly chosen United States
senators. Find the expected number of different states to be
represented on the committee.

We choose letters, one at a time, at random, from the word
CHOOSE

until the C is obtained. What is the expected number of choices
necessary if the letters are chosen:

a. With replacement?
b. Without replacement?

We randomly choose letters, one at a time, without replacement,
from the word

CHOOSE

until both Os have been obtained. What is the expected number
of choices necessary?

We randomly choose letters, one at a time, without replacement,
from the word

DEPOSITOR.

What is the expected number of choices if:
a. We stop when any one letter of the word STOP is obtained?

b. We stop when all letters of the word STOP have been
obtained?

Alphonse and Beatrice are passengers on a ship. For the conve-
nience of those interested in probability theory, the ship has on
board an urn, some red balls, and some blue balls. Beatrice wins
a bet from Alphonse. By the terms of the bet, the following is to
be done: All the balls are to be placed in the urn. Alphonse is to
draw balls, one at a time, with replacement, until a red ball is
drawn. Alphonse is to pay Beatrice $10 for each ball drawn. How-
ever, before this process can be carried out, one of the red balls
falls overboard. Beatrice proposes that they go ahead anyhow,
but that, to compensate for the missing red ball, the drawing be
without replacement. Is this fair?



More About
~ Random
CHAPTER Variables

The last chapter covered the basic facts about random variables. In
this chapter we discuss a number of different topics related only in
that all involve random variables. The first section covers some very
important theoretical matters that are necessary for understanding
the basic ideas of probability theory. The second section discusses
the computation of expected values in certain circumstances; this
material is used extensively in Chapters Eight and Nine. The optional
third section is concerned with finding variances. The three sections
may be read in any order.

5.1 The Law of Large Numbers

At the beginning of the book we expressed some rather vague ideas
of what probability should mean. We broke off our discussion when it
became clear we didn’t know what we were talking about. We started
anew in a more abstract way by discussing a set, the sample space,
and a function that assigned numbers, that is, probabilities, to the
subsets of that set. We made certain reasonable assumptions about
the probability function. The remarkable thing is how well these few

111
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simple assumptions forced our theory to work out along the lines we
envisaged. We are almost ready to make a precise statement about a
coin falling heads half the time, but first we need a few more facts.

Let X be a random variable. We suppose that X has a variance
and, consequently, a mean. We denote the mean of X by m and
the standard deviation of X by o; that is, we set m = E(X) and
o? = Var(X). We seek to study the probability that X takes a value
“far” from m. We must first say what “far” means. In fact, an arbitrary
standard of closeness will do. Let t be any positive number. We
investigate how likely it is that X takes a value differing from m by ¢
or more. In other words, we consider P(|X — m| > t). The definition
of variance is,

o = E((X — m)?).
Now using the definition of expected value, we have
o’ =) (X(w) — m)* Pw).
uef2

Let us consider those points in the sample space at which X takes
a value “far” from m; more precisely, let A be the set of those u for
which |X(u) — m| > t; we are studying P(A). Let B = A. Clearly then
of =" (Xw) — m)*Pw) + »_ (X(u) — m)* P(w).
UEA U€EB

Each term of the second sum is nonnegative; thus that sum itself is
nonnegative. We have then

o > Z (X(u) — m)% P(w).
UEA
Foru € A, |X(u) —m| > t; thus (X(u) — m)? > t>. It follows that
o* > Y *Pu) = 1> Y P(u) = *P(A).

UEA UEA

Dividing by t?, we have
A/ =P(X—m|=1).

This last inequality was first established by Irené-Jules Bienaymé
(1795-1878). Nevertheless it is usually called the Chebyshev Inequal-

ity. We shall explain this name, and say more about Chebyshev, after
we study the implications of the inequality.
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It is easier to understand the Chebyshev Inequality if we write it
in a slightly different form. Suppose we change the units in which we
measure deviations from the mean and work in terms of the standard
deviation. We may, for example, speak of deviating from the mean
by two standard deviations, that is to say, by two times the standard
deviation. The Chebyshev Inequality gives us information about
the probability of deviating from the mean by at least ¢ standard
deviations. We rewrite the Chebyshev Inequality as

P(|X —m| > co) <1/c%

for every ¢ > 0; this form is obtained by simply setting t = co in the
original form of the Chebyshev Inequality.

Let us think about what the new form of the Chebyshev Inequal-
ity says. We do this by considering examples. First suppose ¢ = 2.
Then we have

P(|X —m| > 20) < 1/4.

In other words, no matter which random variable X we have, as-
suming it does have a variance, the probability that when we do
the experiment X will miss its mean by as much as two standard
deviations is no more than one-fourth. It is important to realize that
for any particular X the probability just mentioned will “most likely”
be way below one-fourth; one-fourth covers the worst possible case.
With any additional information available, we could quite possibly
make a much stronger statement about the probability. The extraor-
dinary thing is that we can say anything at all that covers all cases.
Now suppose ¢ = 10. Then the inequality

P (X —m| > 100) < 1/100

makes it clear that it is unlikely for any random variable to miss its
mean by as much as ten standard deviations. The specific number
1/100 could quite possibly be much reduced if we had additional
information. Finally we give a silly example. Let ¢ = 1/2. Then we
have

P(X—m|>0/2) < 4.

While this statement may be uninformative, it is not incorrect—the
probability involved is in fact less than four. Thus, depending on the
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value we give to ¢, the statement made by the Chebyshev Inequality
ranges from the sublime to the ridiculous.

We next give a direct application of the Chebyshev Inequality
to Bernoulli trials. Let the random variable X be the number of
successes in n Bernoulli trials. Then E(X) = np and Var(X) = npq.
Let Y be the fraction of the trials in which success is obtained; in
other words, let Y be the number of successes divided by the number
of trials. Thus Y = X/n, and we have

E(Y) = E(X/n) = (1/nEX) = 1/nnp = p,
Var(Y) = Var(X/n) = (1/n*)Var(X) = (1/n*)npq = pg/n.

Let t be a positive number. Using the Chebyshev Inequality and the
factthat p <1 and g < 1, we have
pg/n _ 1

P(Y-pl=1t < 2 eE
The significance of this conclusion will be explained shortly.

Now we return to the ideas of Chapter One. There we discussed
repeating an experiment many times and counting how often a cer-
tain event occurs. For practical purposes, all the repetitions together
amount to one grand experiment. This one experiment consists of a
system of Bernoulli trials with a success corresponding to the occur-
rence of the event considered in the original experiment. We switch
our language entirely to the terminology of Bernoulli trials. Then the
idea with which we started is that, if the number of trials is large,
the fraction of trials on which we get a success should be close to p,
the probability of success on each individual trial.

Now, avoiding words like “large” and “should,” we state and prove
a definite theorem; we shall follow the proof with explanation and
discussion.

Theorem Let positive numbers s and t be given. Then there is a number
N with the following property.: Suppose we have a system of n Bernoulli
trials with n > N. Let a be the probability that the fraction of trials on
which a success is obtained will fail to be within t of p. Then a < s.

Proof Let the random variable X be the number of successes; let
Y = X/n. Then a is the probability that Y differs from p by at least t.
In other words, a = P(]Y — p| > t). As we saw a couple of paragraphs
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back,
1
nt?
that is,
1
~ nt?
Let N = 1/st?. Then, for n > N, we have
1 1 st?
1< —< — = — = S,
T nt? T Nt2 2 '
completing the proof. a

Let us try to understand the import of what we just did. The
claim is that a certain probability is less than s. The smaller s is, the
more impressive the claim. We also say Y is likely to be within t of
p. Again, the smaller t is, the more impressive the statement. The
idea is that we may set as high a standard of certainty as we like,
barring absolute certainty. Then we may set as high a standard of
closeness as we like, barring absolute equality. Then when we have
a sufficiently large number of Bernoulli trials, the fraction of the
trials on which we get a success will be that likely to be that close
to p.

The last theorem is called Bernoulli’'s Theorem, after the same
Jakob B. for whom Bernoulli trials are named; he was the first to
prove it. Bernoulli’s Theorem is basic in understanding what prob-
ability is all about. Bernoulli himself is reputed to have thought
about it for 20 years. While the reader will most likely not spend
that long, the ideas involved here are worth a great deal of thought.
Bernoulli's Theorem was historically the first example of a certain
type of theorem. A theorem of this type is often called a law of large
numbers, and, accordingly, Bernoulli's Theorem is sometimes called
Bernoulli’s Law of Large Numbers. A more typical example of this type
of theorem appears below as our next theorem. It will then be seen
that this next theorem is in a way simply a straightforward gener-
alization of Bernoulli’'s Theorem. But before going on, we pause to
discuss Bernoulli himself and his theorem.

In understanding the history of probability, it is important to note
that the abstract ideas of the Chebyshev Inequality were not devel-
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oped until a long time after Bernoulli proved his theorem. Bernoulli’s
proofinvolved very complicated estimates of the probabilities of var-
ious numbers of successes. While these computations were far from
easy, they do not constitute Bernoulli’s real achievement. As a mat-
ter of fact, as we shall see in the next chapter, DeMoivre was able
to reach a much more detailed conclusion only a few years after
Bernoulli published his theorem. But the basic idea of a law of large
numbers remains of great importance.

Probability theory forms only a small part of the mathematical
work of Bernoulli; this part was included in his book, Ars conjectandi.
However, even in that book, Bernoulli included much that is no
longer regarded as belonging to probability theory. The history of
the book is somewhat complicated and involves four Bernoullis.
When Jakob Bernoulli died in 1705, his manuscript was inherited by
his brother, Nikolaus (1662-1716). Nikolaus turned the manuscript
over to his son, also Nikolaus (1687-1759), who prepared it for pub-
lication. By the time the book was finally published, the first edition
of Montmort's book on probability had already appeared. We shall
refer to the correspondence between Johann Bernoulli (1667-1748),
another brother of Jakob, and Montmort in Chapter Eight. Thus it is
far from clear which Bernoulli did what.

Jakob Bernoulli
(a/k/a James B. and Jacques B.) (Swiss, 1654-1705)

The Bernoulli family left Antwerp in 1583, going first to Frankfort
and then to Basel, to escape persecution as Protestants by the Span-
ish. Having settled in Switzerland, a country of many languages, the
family continued to use many languages; the result is that the first
problem in sorting out the many Bernoullis is that each of them is
often referred to under a number of translations of what is basically
the same name. Even more confusing is that they, as many families
do, tended to use the same first name for different members of the
family. The following table is intended to help the reader keep track
of the names. The table includes only those Bernoullis we shall have
occasion to mention in this book. We omit the obvious variations in
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spelling, for example, Jacob and Jacobi for Jakob, that often appear
in print.

First Generation
Nikolaus (1623-1708)

Second Generation
(Sons of Nikolaus (1623-1708))

Jakob = James = Jacques (1654-1705)
Nikolaus (1662-1716)
Johann = John = Jean (1667-1748)

Third Generation

Nikolaus (1687-1759), son of Nikolaus (1662-1716)
Daniel (1700-1782), son of Johann (1667-1748)

The three most eminent Bernoullis were Jakob, Johann, and Daniel.
They were, successively in that order, professors of mathematics at
Basel. Jakob and Johann are often known as the “Bernoulli broth-
ers” [The third brother, Nikolaus (1662-1716), was a senator and a
painter, rather than a mathematician.] Daniel made many discover-
ies in mathematical physics, and the Bernoulli Principle is named
for him. Let us now turn to Jakob, whose work in probability is more
important than that of the others. Jakob became a mathematician
despite his father, who insisted that he study theology. Jakob was
forced to teach himself mathematics, and even to hide his mathemat-
ics books from his father. As a young man, Jakob taught mathematics
to a blind girl; later he wrote a book on how to teach mathematics
to the blind. Also in his youth, he travelled extensively, meeting
the leading mathematicians and physicists of the day. In 1687, he
became a professor at Basel. Jakob Bernoulli suggested the use of
the word “integral” as a term in calculus, to Leibniz.

Again we return to the basic ideas. Our discussion of E(X) started
by suggesting that if our experiment were repeated many times, and
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if all went well, the average of the values assumed by X on each
of the trials would be close to E(X). Now we're ready to prove a
theorem along those lines. As before, many repetitions of an exper-
iment are—for practical purposes, even though we have not given
repetition any mathematical meaning—equivalent to a single more
complicated experiment. We consider random variables Xj, ..., X,
on the sample space for this composite experiment. We may, if we
like, think of Xy, .. ., X,, as corresponding respectively to n repetitions
of something. We mean independent repetitions, and therefore we
require Xy, ..., X, to be independent. While we may choose to think
of X1, ..., X, as “essentially identical,” all we need is for them to have
the same mean and the same variance. Our claim is that if n is large
enough, the average

Xi+ o+ X
n

will almost certainly be close to E(X). More precisely, we claim the
following theorem holds:

Theorem Let numbers m, o, s, and t be given. Suppose s and t are posi-
tive. Then there is a number N with the following property: Let X, .. ., Xy
be independent random variables with n > N. Suppose E(X;) = m and
Var(X;) = o2 for all i. Then

> t) <s.

X 4+ X,
P(‘ 1+ +
Xi++ X,

n
n

—m

Proof Let
Y =
Then we have
E(Y) = %E(Xl + o+ Xp)
1
= B + - + E(Xy)]

1
:E(m+---+m) (n terms)

=m

’
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and we have

1
Var(Y) = EVEII‘(Xl + -+ Xp)

o) [Var(Xy) + - + Var(X,)]

1 2 2
277(0 +-+09) (n terms)

0,2

n

Applying the Chebyshev Inequality, we have

o2
P(Y—-—m[=1) < —.
t?n
Clearly, if n is large enough, o?/t*n will be less than s, completing
the proof. O

The theorem just proved was first proved by Chebyshev. We shall
call it the Law of Large Numbers, though many other theorems along
roughly the same lines share that name. Bernoulli's Theorem is a
special case of this Law of Large Numbers. To see that, we simply
consider Bernoulli trials and let X; be 1 or 0 according to whether the
ith trial results in success or failure. Now consider working the other
way round: obtaining the Law of Large Numbers as a corollary of
Bernoulli’s Theorem. Suppose the random variables X, ..., X,, of the
law all have the same distribution and assume only finitely many
values. Then the Law of Large Numbers follows from Bernoulli's
Theorem. The reasoning involved is informally described at the be-
ginning of Chapter Four, in the discussion immediately preceding
the definition of an expected value. Anyone with experience in writ-
ing mathematical proofs involving limits should be able to translate
the informal discussion into a formal proof. Jakob Bernoulli him-
self likely regarded this Law of Large Numbers as such an obvious
consequence of his theorem as to not be worth mentioning.

Now we consider the contribution of Chebyshev. We begin with a
remark on the name Chebyshev itself. Many spellings of this name
have appeared in print. The confusion arises, of course, because of
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the need to transliterate the Cyrillic. Watch out especially for such
forms as Tchebycheff that begin with a T. Turning now to Cheby-
shev’s work on probability, we begin by noting that his applications
of the inequality that bears his name are sufficient justification for
naming the inequality after him. Chebyshev was the first to prove
the Law of Large Numbers in the form we just gave; he gave the
same proof, using the Chebyshev Inequality, as we did above. In
the first place, Chebyshev’s proof is a most elegant replacement for
Bernoulli's complicated computations. What is more important, not
only is the Law of Large Numbers, as stated above, more general
than the version given by Bernoulli's Theorem, but Chebyshev's ap-
proach opens up a whole field of study, extending well beyond the
discrete probability to which we limit ourselves in this book.

P.L. Chebyshev
Pafnuty Lvovich Chebyshev (Russian, 1821-1894)

Chebyshev was one of nine children of a retired army officer. His
brother Vladimir became a distinguished artillery general. When
the family moved to Moscow in 1832, Pafnuty finished his sec-
ondary education at home before entering Moscow University. At
the university, he started on a long list of distinguished mathemat-
ical accomplishments. When the time came to seek employment,
he went to St. Petersburg. Like his brother, he concerned himself
with ballistics, although Pafnuty’s concern was theoretical; he made
computations for use by the army. Pafnuty Chebyshev was also
most interested in designing machinery. Not only did he investigate
the theoretical principles, but he actually made some calculating
machines. He continued to turn out mathematical papers until his
death.

Let us discuss for a moment the practical significance of the Law
of Large Numbers. Consider an insurance company. We recall how
insurance works. The company agrees, in return for being paid a
certain amount, the premium, in advance, to assume responsibil-
ity for paying whatever amount, the loss, that may be lost through
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a contingent event. We may regard the loss as a random variable.
When the company issues a policy, the premium must be less than
the maximum possible value of the loss; otherwise it would be ab-
surd to buy the policy. Thus, on the one policy, there is a chance
the company will pay out more than they take in. Of course, no
insurance company issues just one policy. The company’s aim is
to make an overall profit on a large number of policies. The key
words are “large number’ According to the Law of Large Numbers,
if the company sells a large enough number of policies, they can
be as good as certain that the average actual amount paid out per
policy is essentially the expected value, in our technical sense, of the
loss. The premium can thus be adjusted to guarantee the company
a profit.

A similar situation holds for gambling casinos. Naturally, the
casino sets the rules so that the expected value of its gain on each
bet is positive. Nevertheless each patron who does not bet too many
times has a chance to come out ahead. The Law of Large Numbers
assures the casino of an overall profit on the large number of bets
that it makes.

Exercises

1. Explain why the exercises for this section differ so much from
the exercises for the other sections of the book.

2. Given a number a > 1, describe a random variable X such that
P(X —EQQ)| = a0) = 1/d’,

where 0 = Var(X). Show that if random variables X; and X, both
have this property, E(X;) = E(X;) and Var(X;) = Var(X;), then
P(X; =ty =P(X, =1t) forall t.

3. We could, but will not, use the ideas above and the Chebyshev
Inequality to find an estimate of the minimum number of times a
coin must be tossed to be 99.44% sure that it falls heads between
49.9% and 50.1% of the time. Explain why one would expect the
Chebyshev Inequality to give a very substantial overestimate. (In
the next chapter we shall learn how to give a reliable estimate.)
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4. Prove: Let numbers m, o, and s be given. Suppose s and m are pos-
itive. Then there is a number N with the following property: Let
Xj, ..., X, be independent random variables with n > N. Suppose
E(X;) = m and Var(X;) = o foralli. Then P(X; 4+ - -+ X, < 0) <s.

5. Show that if in the Law of Large Numbers we replace the assump-
tion that all the X; have the same variance o by the assumption
they all have variance less than some number o2, the law remains
valid.

6. Show thatif'in the Law of Large Numbers we omit the assumption
that all the X have the same mean and replace the m in the
conclusion by [E(X;) + - - - + E(X,,)] /n, the law remains valid.

7. Combine the ideas of the last two exercises to find a generalized
version of the Law of Large Numbers.

8. Combine the ideas of exercises 4, 6, and perhaps 5 to find a
statement about random variables with positive means.

5.2 Conditional Probability

As a preliminary to the next topic, we now work an easy exercise.
Letters are chosen, one at a time, with replacement, from the word

DEFINITE

until we get a vowel. Let X be the number of times a letter is chosen.
Then, since we have Bernoulli trials and seek one success, E(X) =
1/p = 2. If instead of the word DEFINITE we use one of the words

ZERO, ONE, TWO, FIVE, SIX, SEVEN,

which one to be determined by chance in some manner unknown
to us, then it is clearly impossible for us to find E(X).

Now we give an example illustrating the next topic. Two pennies
and a nickel are tossed. The value in cents of the coins that fall
heads is described by one of the words ZERO, ONE, TWO, FIVE,
SIX, SEVEN. From that word we choose letters, one at a time, with
replacement, until we get a vowel. Let X be the number of times a
letter is chosen. It is almost obvious, on an informal basis, how to
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compute E(X). The probabilities of the respective words being used
are 1/8, 1/4, 1/8, 1/8, 1/4, 1/8. While we don't have a single value
for X for each word, we do have an average value. For example, if the
word is ZERO, it takes an average of two tries to get a vowel. Now it
seems reasonable that, in computing E(X), we need not distinguish
between an average of two and a flat two. The cases of the other five
words are similar. Thus we guess that

EX) = (1/8)2+ (1/H(3/2) + (1/8)3 4+ (1/8)2+ (1/4)3 + (1/8)(5/2).

We shall justify this equation shortly. But first we must decide
precisely what the numbers 2, 3/2, 3, 2, 3, 5/2 really represent.

Just as we consider the conditional probability P(B | A) of the
event B on the assumption that the event A is known to happen,
we can consider the conditional expectation E(X | A). We define
E(X | A) by modifying the definition of E(X) in the obvious way. By
definition,

EX) = Y XwP).
ueQ
We simply replace the probabilities P(u) by the conditional
probabilities P(u | A) and define

EX | A) =) XwP(u|A).
ueQ2

Of course, this definition makes sense only when P(A) # 0. Infor-
mally speaking, E(X | A) may be described as follows: We do our
experiment many times and each time note whether A happens.
We record the value of X only on those occasions when A does
happen. Then the average of those values of X should be close to
E(X | A). This intuitive description of E(X | A) corresponds exactly
to the more extensive discussion of E(X) with which we started the
last chapter. Likewise, the formal theory of conditional expectation
is completely analogous to that given above for expectation. For
example, the equation,

E(X|A)=) tP(X=t]A),

holds for exactly the same reasons as the corresponding formula for
E(X). We proceed at once to a theorem that is not a trivial modifica-
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tion of what we have already done. This theorem often provides a
convenient way to find E(X).

Theorem Let Ay,..., A, be a partition of Q. Suppose none of the A;
have probability zevo. Then

E(X) = P(ADEX | A1)+ -+ P(ADEX | Ap).
Proof LetXjy,...,X,be random variables defined as follows:
Xi(u) = X(u) ifu e A
X;(w)=0 ifu ¢ A;.
Since each u € Q belongs to just one A;, X = X; + --- + X,,. Hence

E(X) = E(Xy) + - - - + E(X}y,). To complete the proof, we need merely
show that E(X;) = P(A)E(X | A;) for all i. By definition,
E(X | A) =) X@Pu | Ay).
ue2
We need to evaluate P(u | A;) for each particular u; let B = {u}. Then
we have
P(BNA;)
P(A)

IfueA;,thenBNA, = {u};ifugA; then BN A; =@. Thus

Pul| A) =Pw/P4,) ifueA4,

P(ulAI):O 1fu¢Al

P(u| A)) =P(B| A) =

For u € A;, we have X(u) = X;(u), and thus
X(W)P(u | A = Xi(W)P(uw)/P(Ay).
For u & A;, we have X;(u) = 0, and thus again
XwP(u | A) = X,(Pu)/P(A),
since both sides are zero. Therefore,

E(X | A) =) X@Pu | A) =) XiwPw)/P(A;).
ue2 ue
Multiplying by P(A;), we have
P(ADEXX | A) = ) X,(wP(u) = E(X,),
ue2

completing the proof. a
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We now work a problem using the formula just derived. We
consider the three words

MINNEAPOLIS, MINNESOTA, MISSISSIPPI.

We are going to draw letters, one at a time, with replacement, from
these words until we get an I. But we shall observe the following
rules: The first drawing will be at random from all the letters, with
each of the 31 letters having the same chance to be drawn. Subse-
quent drawings, if there are any, will be from the same word from
which the first letter was obtained, with each letter in that word
having the same chance to be drawn. We seek the expected number
of drawings to be made.

Given our earlier work, it is easy to say how long it will take to
get an I if we know which word we are using. For example, since
MINNEAPOLIS has 11 letters including two Is, the probability of
an I on any one draw is 2/11. In this case, it takes an average of
11/2 draws to get an 1. Similarly, using MINNESOTA, it takes, on
the average, 9 draws to get an [; and using MISSISSIPPI it takes 11/4
draws to get an I. The theorem tells us how to combine 11/2, 9,
and 11/4 into an overall average. The probabilities the first draw is
from MINNEAPOLIS, from MINNESOTA, and from MISSISSIPPI are
11/31, 9/31, and 11/31. Thus the answer to our question is

11 11+9 9+11 11 687
31 2 31 31 4 124,

Exercises

9. Two dice are thrown. The total is noted, and that number of
coins are tossed. What is the expected number of heads to be
obtained?

10. Two coins are tossed. A die is thrown for each coin that falls
heads. What is the expected number of spots shown on the dice?

11. A pair of dice is thrown repeatedly until the total obtained on
the first throw is obtained again. What is the expected number
of throws necessary?
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12.

13.

14.

15.

16.

17.

18.

19.

A die is thrown and the number noted. Then the die is thrown
repeatedly until a number at least as high as the number ob-
tained on the first throw is thrown. Find the mean number of
times the die is thrown including the first throw.

In the game of craps, a player throws a pair of dice. The game
ends with the first throw if a 2, 3, 7, 11, or 12 is thrown. Oth-
erwise, the player throws the dice repeatedly until either the
number obtained on the first throw occurs again or a 7 is thrown.
What is the expected number of throws to complete the game?

Two coins are tossed. If two heads are thrown, letters are chosen
from the word TWOFOLD. If one head is thrown, letters are
chosen from the word ONEROUS. If no heads are thrown, letters
are chosen from the word NOMAD. Whichever word is used, we
draw letters one at a time, with replacement, until a vowel is
obtained. What is the expected number of letters then drawn?

Repeat the last exercise assuming the drawing to be without
replacement.

The words
TATTLETALE, TATTOO, TATTING

contain a total of ten Ts. We choose one of those ten Ts at random.
We continue to use the word containing that T and discard the
other words. After replacing the T, we choose letters one at a
time, with replacement, from the word in use until we get an A.
On the average, how many times do we choose a letter, including
the original choice of a T?

Repeat the last exercise assuming the drawing to be without
replacement, except for the original T.

A die is thrown. Then cards are drawn from the deck, one at
a time, with replacement, until the number of draws that have
resulted in a spade is the number shown on the die. How many
draws are made, on the average?

An urn contains two red balls and four green balls. Balls are
drawn from the urn, one at a time, with replacement. The draw-
ing continues until a red ball is drawn. If five or fewer of the
draws result in green balls, no money changes hands.
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20.

21.

**22.

a. If six or more draws result in green balls, Smith pays Jones
one dollar each time a green ball is drawn, after the first five.
Find the expected number of dollars Smith pays Jones.

b. If six or more draws result in green balls, Doe pays Roe one
dollar each time a green ball is drawn, including a retroactive
payment for the first five. Find the expected number of dollars
Doe pays Roe.

The letters of the word
MISSISSIPPI

are arranged in random order. Let X be the number of Is that
are immediately followed by an S. Find E(X).

A hat contains eight one-dollar bills and two thousand-dollar
bills. A coin is tossed. Ifit falls heads, Bill gets to draw, at random,
two bills from the hat. If the coin falls tails, Bill draws only one
bill, unless this first bill is a one-dollar bill; in the latter case, he
gets to draw two additional bills. What is the average value of
the bills Bill draws?

One of the words RHUBARB and CABBAGE is chosen randomly.
You choose letters at random from that word until you can be
sure which word was chosen. What is the expected number of
letters to be chosen if the choice is:

a. with replacement?

b. without replacement?

5.3 Computation of Variance

This section may be postponed indefinitely.
It is not needed in the rest of the book.

We have already made use of the technique of expressing a ran-

dom variable as a sum of simpler random variables. We used this
method to find the expected value of a random variable. However

we

hardly ever used the method to find a variance. The problem

is, of course, that the variance of a sum need not be the sum of
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the variances. We shall see next that this difficulty can be easily
overcome.

Before actually working a problem, let us get ready. Some ter-
minology may help. We have seen that we often work with random
variables of a certain kind. Specifically, let X be a random variable
that assumes the value 1 when a certain event A happens and 0
when it does not happen. In this situation we call X the indicator
of A. (Outside of probability theory, one would ordinarily say the
same thing in different words by saying that X is the characteristic
function of A.) If X is the indicator of A, then obviously E(X) = P(A),
a fact we have often used. Suppose X and Y are the indicators of A
and B. Since of course 1-1=1and 0-1=1-0=0-0= 0, we see
that XY, like X and Y, assumes only the values 0 and 1. In detail, XY
assumes the value 1 exactly when both X and Y assume the value 1.
Thus, XY is the indicator of AN B, and hence E(XY) = P(ANB). Now
we are ready for examples.

What are the mean and variance of the number of aces in a bridge
hand (13 cards)? There are two alternate versions of the same basic
method that we are about to use. We will do the problem twice for
extra practice. Our first computation uses the events Aq,..., A3,
where A; is the event, “The ith card in the hand is an ace” Let
X3, ..., X13 be the indicators of Ay, ..., A13. Then X3 + - - - + X33 is the
number of aces in the hand; let X = X; + - - - + X;3. As we have done
before, we find

4
E(X) = E(X)) + -+ E(X13) = 13E(X;) = 13- 5=
Now we try Var(X). Since we shall need E(X?), we begin by studying
X?. Think for a moment about

X2 = (X1 4+ X)Xy + -+ Xia).

We see X2 is the sum of all the products found by multiplying a term
from the first factor by one from the second. Thus X? is the sum
of the X;X; for all i and j. It follows that E(X?) is the sum of all the
E(X;X)). As in finding E(X), we next use the fact that one X; is very
much like another. All E(X,X;) with i # j are equal to each other;
those with i = j are also equal to each other. There are 13 ways to
choose i and j with i =j and 13 - 12 ways to choose i and j with i # j.
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Thus we have
E(X%) = 13E(X}) + 13 - 12E(X; X2),

where, essentially as we have done before, we use X; and XX, as
examples since all X; are “the same.” Referring to the last paragraph
and noting A; N A; = A;, we have

E(X%) = 13P(A1) + 13- 12P(A; N Ay).

We already used the fact that P(A;) = 4/52 = 1/13. We have

4 3 1 1
P(A;1 N Ay) = P(AP(Az | Ay) = 2 51-13 17
Thus
E(X2)=13-l+13-12-i-—:§.
13 13 17 17

Now we conclude that

Var(X) = E(X*) - [E(X)T
29
== -1

17
12
7

As we said before, we are going to further illustrate the method
by working the problem again. We emphasize that it does not make
much difference which problem we do, as long as we use the method
under discussion. Now return to the aces in the bridge hand. Let each
of Ag, An, Ag, A, be the event of the hand containing the designated
ace. Let X, Xn, X4, X; be the indicators of As, An, A4, Ac;. Then X
=X + Xn + X4 + X, is the number of aces in the hand;

E(X) = E(Xy) + E(Xp) + E(Xa) + E(Xo) = 4E(X) = 4P(Ay).

Since 13 of the 52 cards are in the hand, we have P(Ag) = 13/52 =
1/4. Hence E(X) = 4(1/4) = 1. Now, reasoning as we did earlier, we
have

E(X?) = 4P(Ag) + 4 - 3P(As N Ap).

The first 4 is the number of ways to choose one of the four aces, and
the 4 - 3 is the number of ways to choose two different aces in order.



130 _5. More About Random Variables

We just noted that P(Ag) = 1/4. We have
P(As N Ap) = P(A)P(Ap | Ag).

If the hand contains the ace of spades, it also contains 12 other cards

chosen from the 51 other cards; thus the chances are 12 in 51 that the

ace of hearts is also in the hand. Thus, P(A, | As) = 12/51 = 4/17. 1t

follows that P(Ag N Ayp) = (1/4)(4/17) = 1/17. We conclude
E(X2)=4.1+4-3-i=£

4 17 17

As before, we find Var(X) = 29/17 —1 =12/17.

Now we can find the variance of many of the random variables
we considered in the last chapter. We give an example here. Suppose
a committee with six members is to be formed by randomly selecting
six of the twelve senators from the New England states. Let X be the
number of states represented on the committee. In the last chapter
we found E(X); now we find Var(X). A standard trick will help. Let
Y be the number of states not represented on the committee. Then
X 4+ Y = 6, since there are six states in all. It is easy to see that
E(X) = 6 — E(Y) and Var(X) = Var(Y). Let each of A;,..., A be
the event that a different one of the states is not represented on
the committee; let Yy,..., Y5 be the indicators of Ay, ..., Ag. Then
Y = Y; 4+ -+ 4 Y5 and we have, similarly to the examples already
worked,

E(Y) = 6P(A1),
E(Y?) = 6P(A;) + 6 - 5P(A; N Ay).

There are several ways to compute the probabilities we need. For
example,

P(A] mAz) - =Y = .
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Substituting, we have

5 15
EY)=6-— = —
1) 22 11’
5 1 25
EY)=6.-—+6-5-— = —
(Y% 22+ 33 11’
Var(v) 25 (152 50
ar =— =) = —
11 11 121
Thus we conclude
15 51
E —-f - — = —
) 11 11’
Var(X) = >0
1217

We may as well record a portion of the technique under consider-
ation in the form of a formula. Since the proof of the formula is just
a simple application of the discussion above, we leave this proof as
an exercise. Let X, ..., X,, be the indicators of the events A;, ..., A,.
We suppose there are numbers s and ¢ such that

?

P(A) =s for all i,
PA;NA) =t whenever i # j.

Then
Var(X; + - -+ X,) = ns + n(n — 1)t — n*s*.

We give another illustration of the use of this last formula by
using it to settle a question that has been around for a while. In
fact, it has been around since we gave a formula for the variance of
the binomial distribution. That formula covered drawing balls, with
replacement, from an urn containing balls of two different colors.
We now find a formula that works when we draw the balls without
replacement.

An urn contains T balls, each of them either red or green. Sup-
pose R of the balls are red and G of the balls are green; thus, T = R+G.
We suppose n balls are to be drawn from the urn at random, without
replacement. Let X be the number of red balls to be drawn. We now
find Var(X). As usual, let the event A; be “the ith ball drawn is red.”
Preparing to use the formula,

Var(X) = ns + n(n — 1)t — n*s?,
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we note that

R
s=P(A) = Pt

R—-1 .,
— whenever i # j.

t=PA;NA) = T_1

N

Substituting, we find

nR  nRn—1)(R—-1) n?R?
Var(X) = =+ T—-1) T2
NRT(T — 1) + nRT(n — 1)(R — 1) — n®R*(T — 1)
T2(T — 1)
nR[T(T — 1)+ T(n—1)(R— 1) — nR(T — 1)]
T2(T — 1)
nR(T? — Tn — TR + nR)
T2(T — 1)

nR(T — n)(T — R)

- THT-1)

Recalling T = R+ G, we have

Var(x) n(T—nRG
ar(X) = —————.
T—1 TT

We now record our result and give a name to the distribution
involved. Let positive integers n, R, and G be given; set T = R+ G.

Suppose the random variable X is such that

for those integers k such that 0 < k < Rand 0 < n—k < G; we
suppose P(X = k) = 0 for all other k. Then we say that X has a
hypergeometric distribution. It is clear from the last paragraph that

nR
EX) = T

n(T—n)BE

Var®) =~ rr
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The formulas just stated may be applied to give still another
solution to the problem of determining the mean and variance of
the number of aces in a bridge hand. Here we are choosing 13 cards
out of 52. Thus, n = 13 and T = 52. There are, in all, 4 aces and 48
other cards. Thus, R = 4 and G = 48. We have

13-4

1339 4 48 12

Var = —— = —.
) 51 5252 17

Exercises

23. In Example 3 of the last section of Chapter Four, about putting
letters in envelopes, we introduced a random variable X. Find
Var(X).

24. Find the variance of the amount of money the contestant wins
in Exercise 44 of Chapter Four.

25. Find the variance of the random variable in each of parts a-h of
Exercise 46 of Chapter Four.

26. Find the variance of the random variable in Exercise 48 of
Chapter Four.

27. Find the variance of the random variable in Exercise 49 of
Chapter Four.

28. Find the variance of the random variable in part a of Exercise
50 of Chapter Four.

29. Find the variance of the random variable in Exercise 51 of
Chapter Four.

30. Find the variance of the random variable in Exercise 52 of
Chapter Four.

31. Find the variance of the random variable in Exercise 54 of
Chapter Four.

32. Find the variance of the random variable in part b of Exercise
55 of Chapter Four.
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33. Find the variance of the random variable in Exercise 56 of
Chapter Four.

34. Find the variance of the random variable in each part of Exercise
57 of Chapter Four.

**35. In Example 2 of the last section of Chapter Four, about Jane
drawing balls, we introduced a random variable X. Find Var(X).



Approximating
Probabilities

CHAPTER

Sometimes an approximation is more valuable than an exact answer.
For example, consider the following question: A certain association
has 4000 members; 2000 of them are men and 2000 are women.
Exactly half the members will be randomly chosen to each receive
one ticket to a special event; all members have the same chance of
getting a ticket. What is the probability that exactly 1000 men and
exactly 1000 women get tickets? The answer to the question is quite

obviously
2

2000

1000

4000

2000/
But how large is that? For example, is it more or less than .001? That's
far from obvious. We can rewrite the answer as follows:

2000! \2

((100002) _(20001)*
4000! ~(10001)44000!°
(2000!)2

135
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As we shall soon learn how to find out, 4000! has 12,674 digits. Using
a computer to put the last fraction in lowest terms, we find that
the numerator and denominator have about 1000 digits each. That
doesn’t help us. Since there is no way to express the exact answer
in a form we can comprehend, we should seek an approximation.
In this chapter, we consider several ways of approximating numbers
that appear in the theory of probability.

6.1 The Poisson Distribution

We shall be particularly concerned with a certain very important
situation. This is the case of Bernoulli trials when the number of
trials is large. To put our conclusions in firm mathematical language,
we discuss limits as n “tends to infinity.” Our basic starting point is

the expression
MY % n—k
WE

for the probability of k successes in n Bernoulli trials. We shall let n
tend to infinity. What about p, g, and k? g is determined by p, since
q =1 — p always; thus we need only decide about p and k.

First, suppose we fix p and k and let n tend to infinity. As a matter
of common sense, and as we can easily prove using the Chebyshev
Inequality, the probability of k successes—even the probability of
k or fewer successes—is very small when the number of trials is
large; a large enough number of trials will almost certainly produce
a large number of successes. We can avoid this difficulty by letting
p get smaller as n gets larger.

The obvious way to make p depend on n is to hold the expected
value np fixed. After doing some abstract mathematics, we shall
consider applications. Let a positive number m and a nonnegative
integer k be given. We shall evaluate

n
1i k n—k
(e
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where p = m/nand g =1 — p depend on n. Let

n
An _ (k)pkqn—k.
Then we have

n! m kn_k_n(n—l)---(n—k—i—l)
" k(- k! (Z) - ki

The numerator of the fraction to the right of the last equal sign
contains k factors; thus we may multiply each of these factors by 1/n
and delete the expression (1/n)*. Now we have

V)’lk(l/n)kqn_k.

Ap

1 1 1 1
I mqq

(=)0

1——){(1-2}.. (1-— n

= n n n mk (1 — T) q_k
k! n '

Now let n — oo. Keeping in mind that k and m are fixed, we see that

each of the k — 1 expressions

1 2 k
1——1-—>,...,1——
n n n

Ay =

)

tends to 1 and that

—k
—k m —k
={1—— 17" =1.

It is a standard result of calculus that

n
(1 - T) —e ™
n

[One way to show this is to note

log (1 -2
e
log{l1——} = ——~
n 1/n
and apply L'Hospital’s Rule; the rule is named for G.F.A. de I'Hospital
(1661-1704), but it was devised by Johann Bernoulli.] Using these
results in the last expression for A,, we have
k
m

i An =S¢

—m
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Before illustrating the use of the formula just derived, we discuss
its history. The formula is called the Poisson Approximation after
S.D. Poisson. Poisson was a successor to Laplace in many respects.
There are reports that Laplace treated Poisson like a son. Certainly
Poisson carried on Laplace's work, also ranging over a wide variety
of subjects. Contributing to probability theory formed only a small,
although important, part of what Poisson accomplished. Returning to
the Poisson approximation, we find that DeMoivre, whose work runs
through this whole chapter, was the first to approximate the proba-
bility of no successes in a large number of Bernoulli trials. In 1837,
Poisson generalized DeMoivre's conclusion to an arbitrary number
of successes, obtaining what we are calling the Poisson Approxima-
tion. Poisson also generalized Bernoulli's Law of Large Numbers, and
it was Poisson who invented the name, “Law of Large Numbers.

S.D. Poisson

Simeon-Denis Poisson (French, 1781-1840)

Poisson was the son of a Justice of the Peace. Early in the French
revolution, his father died, leaving the family in poverty. Poisson
was rescued by an uncle, who was a surgeon. Poisson attempted
to study medicine, but his primary education was too weak. Then
he turned to mathematics, with better success. In 1798, Poisson
became a student at the Ecéole Polytechnique in Paris. There he
so impressed Lagrange that the council of the school unanimously
excused Poisson from the final examinations for graduation (Joseph-
Louis Lagrange, 1736-1813). This was probably all to the good
because Poisson’s clumsiness in drawing diagrams would likely have
caused him to fail the examinations. Immediately after completing
his studies there, Poisson secured a junior position at the Ecole Poly-
technique. He was still there, but by then a dean, when he died in
1840.

To give an idea of how the Poisson approximation may be used,
we consider a specific example. Suppose we are interested in how
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many large earthquakes there will be next year. Since, so far, earth-
quakes have proved unpredictable, we may regard them, for present
purposes, as due to chance. To find out how common earthquakes
are, we consult The Cambridge Encyclopedia of Earth Sciences (Cam-
bridge University Press, 1981). In that book, we find the statement,
“Great earthquakes with magnitudes exceeding 8 [on the Richter
scale] occur about once every five to ten years.” For simplicity, we'll
settle for five years. In other words, the average number of “great”
earthquakes per year is 1/5. How many opportunities for earth-
quakes are there worldwide in a year? In other words, what is n? We
don't know, and we don't care. As long as n is large and p is small,
we may use

k
Mmoo m

WC

as an approximation to the probability of just k successes. This for-
mula involves m and k; it does not mention n and p. In the case at
hand, m = .2. The values given by the formula, for certain values of
k, are as shown in the following table.

Probability of k great
k earthquakes in a year
.81873
16374
.01637
.00109
.00005

=W = O

There are many other situations in which the Poisson approxi-
mation is useful. Those that are described in probability books are
often whimsical. A case in point: How many chips are there in a
chocolate chip cookie? We know cookies are made in large batches.
Many chocolate chips are thrown into the dough, and each chip
has a small chance to wind up in the cookie we are going to study.
Thus the Poisson approximation may be used to find the chances
for various numbers of chips. A famous example used data on the
number of Prussian cavalrymen killed by the kick of a horse in each
of 16 corps in each of the years 1875-1894. The data conform to
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the Poisson theory remarkably well. More important examples are
misprints and defective items generally. If we suddenly get an ex-
cess of defective items over the number suggested by the Poisson
approximation, it might be important to find out why. The number
of customers entering a store during each of successive short time
periods could well conform to the Poisson approximation.

In the examples just given, we are concerned only with how
many times something happens. The simplest sample space on
which to study that would be the set of nonnegative integers.
Suppose we choose a positive number m and use the formula

mk
-m
P(k) = o e

to define P(k) for each of k = 0,1, 2,.... Then we may define P(A),
for each event A, by
P(A) =) P(k).
keA
We need to check P(2) = 1. In other words, we must show
2 m?

m
6_m+me_m+7e_m+§e_m+---: 1.

Clearly the sum on the left is equal to

2
e " 1+m+m_+ﬁ+
2! 3! '

We recognize the series in parentheses, and we recall that its sum
is €™; now we have e”™™e™ = 1, as required. Since the points of the
sample space are numbers, it makes sense to consider the random
variable X(k) = k for all k € Q. For this random variable we have

k

P(X =k) = n;—'e_m,

fork=0,1,2,....
Any random variable X for which, for some number m > 0,

k

PX =k = VZ—'e—”‘,

for k =0,1,2,..., is said to have a Poisson distribution. Since the
probabilities just given total 1, P(X = k) is necessarily 0 when k is
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not a nonnegative integer. We now find E(X). [Since we obtained the
Poisson distribution as a certain limit, it is easy to guess E(X). But
here we seek a proof.] We have

EX)=0-PX=0)4+1-PX=1D)+2-PX=2)+"--.
2 3
e o em Y m
= me +22!6 —|—33!6 +

Since n/n! =1/(n — 1)!, we have
m m
EX)=me ™ +mPe™+ —e "4+ —e "+

— m?  md
= me +m+2—!+3—!+"'

= me e

=m.

We shall show in the next chapter that Var(X) is also m.

Exercises

1. Suppose a book of 200 pages contains 100 misprints distributed
among the pages at random. Find the probability that page 72
contains exactly two misprints.

2. Abook of 500 pages contains 750 misprints.

a. What is the probability that a certain page contains no
misprints?

b. Atleast two misprints?

3. Suppose that the number of telephone calls an operator receives
from 9:00 to 9:05 A.M. follows a Poisson distribution with mean
3. Find the probability that the operator will receive:

a. no calls in that interval tomorrow.
b. three or more calls in that interval the day after tomorrow.

4. Suppose raisin bread “averages’ six raisins per slice. What is the
probability that a slice contains at least three raisins?
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10.

11.

. There are an average of 60 traffic accidents per month (30 days)

at a certain very dangerous intersection. Assuming that the

daily number of accidents follows a Poisson distribution, find

the probability that:

a. there will be no accidents next November 15th at this
intersection.

b. there will be three or more accidents next November 20th.

. Find the number of chocolate chips a cookie should contain

on the average if it is desired that the probability of a cookie
containing at least one chocolate chip be .99.

A Shakespearean scholar has stated the printer of Shakespeare's
sonnets made “more than 40” errors in 154 sonnets. Assuming for
convenience that “more than 40” means 44, find the probability
that a certain sonnet contains n errors for each of n =0, 1, 2, 3,
4, 5.

. On the basis of the remark in the last problem, assume that

Shakespeare’s sonnets were first printed with an average of
44/154 = 2/7 errors per sonnet. What is the probability that
at least one sonnet contains at least three errors?

. Ignore, for simplicity, the possibility of being born on February

29th. Assume that a person is just as likely to be born on any one

date as on any other date, excluding February 29th, of course.

Find the probability that exactly two of a group of 365 people

were born on August 16th.

We make the same assumptions as in the last problem. Suppose

253 people are picked at random. (We use 253 since e¢=2%%/365 =

1/2 almost exactly. Use 1/2 in your computations.)

a. What is the probability that no one in the group was born on
January 1st?

b. That at least two people were?

c. What is the expected number of different birthdays of the
group?

d. The expected number of days which are each the birthday of
at least two of the people?

Let X have a Poisson distribution with mean m. Show that the

most likely value for X to assume is [m], with the following
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exception: If m is an integer, X is just as likely to assume the
value m — 1 as to assume the value m.

12. Abatch of 100 chocolate chip cookies is made using 1290 choco-
late chips. What is the most likely number of chips in a randomly
chosen one of the cookies?

13. If the probability that a cookie contains at least one raisin is .995,
what is the most likely number of raisins in that cookie?

14. A book of 500 pages contains 900 misprints. What is the most
likely number of misprints to be found on a randomly chosen

page?

6.2 Stirling’s Formula

In the problem with which we started this chapter, the main diffi-
culty is to find the approximate size of n! when n is large. We shall
now find out how to do that. Let us begin by deciding in detail what
we are looking for. Consider an example. 11! is roughly 40 million. If
we subtract 11! from 40 million, we get 83,200. That might ordinarily
seem to be quite a large number, but 83,200 is small when compared
to either 11! or 40 million. Suppose a, is the approximation we shall
decide on for n!. We don't care if a,, — n! is large for large n, as long
as (a, — n!)/n! is close to 0. But, since

a, —n! a,

- ?

n o on
that means that we need a,/n! to be close to 1.

It is customary to use a certain value for the a, of the last para-
graph. Note that we cannot say more than that. Obviously, since we
are looking for something that is only an approximation, there will
be many possibilities. In deciding among them, in addition to accu-
racy, we must consider simplicity. While it is easy and instructive
to start with n! and actually derive our approximation, the ideas in-
volved in doing that have nothing to do with probability theory, and
therefore we leave the derivation for the Appendix to this chapter.
Here we just announce the customary approximation.
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The statement
n! ~n"e " 2an

is usually called Stirling’s Formula; the sign ~ may be taken as mean-
ing the expression to the right of the sign approximates the one to
the left for large n. More formally, the statement means that

n'e "'/ 2an

lim —— =1.
n—00 n!

It might be better to call this statement Stirling’s approximation,
rather than Stirling’s Formula. (We shall say something about who
Stirling was shortly.) Knowing the value of the limit above is often
helpful in working with theory. But in a practical case, for exam-
ple, when n = 50, we need to have some idea how accurate our
approximation is. We shall see in the Appendix to this chapter that

ne "/ 2nn

< — < 1...
n!
for all n, and
n"e "/ 2nn
99 < L& VA g
n!
forn > 9.

The appearance of the quantity = in the last paragraph raises a
number of questions. One of them, how does 7w get involved here at
all, must be deferred to the Appendix as to details. But we can point
out that 7 appears “all over the place” in mathematics. A more prac-
tical question is why we use = when all we get is an approximation
anyhow. Using the approximation 2.5 for /27, we could have noted
that

919

2.5n%"/n
n!

for all n, and

988 <

2.5n"e¢"/n
— <1
n!

for n > 9. But we agree with DeMoivre, about whom we shall say
more in the last section of this chapter. DeMoivre, like us, wanted
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an approximation to n! to use in probability theory. He obtained the
formula above, except that his version included a constant B that
he could evaluate only approximately. To quote him, “... feeling at
the same time that what I had done answered my purpose tolerably
well, I desisted from proceeding farther, till my worthy and learned
Friend Mr. James Stirling, who had applied himself after me to that
inquiry, found that the Quantity B did denote the Square-root of the
Circumference of a Circle whose Radius is Unity.” DeMoivre goes on
to explain the reason for using @ even though an approximation is
good enough. “But altho’ it be not necessary to know what relation
the number B may have to the Circumference of the Circle, provided
its value be obtained, either by pursuing Logarithmic Series before
mentioned, or any other way; yet I own with pleasure that this dis-
covery, besides that it saved trouble, has spread a singular Elegancy
on the Solution”

James Stirling

(a/k/a Stirling the Venetian),
(Scottish, 1692-1770)

Stirling was born of a distinguished family in Stirlingshire. He ran
into problems because his family were Jacobites, that is, they sup-
ported the claim of James the Old Pretender to the throne. At Oxford,
even though Stirling was acquitted of the charge of “cursing King
George” he was forced to leave, without a degree, after several years
of study. In 1715, Stirling went to Venice, where he taught mathemat-
ics. While in Venice he published mathematical papers in England
by submitting them through Newton. In Venice, Stirling uncovered
some of the trade secrets of the glassblowers. As a result, he fled
Venice in fear for his life in 1725. Aided by Newton, he returned to
England and secured a good position at a school in London. In 1735,
he turned from mathematics to more applied matters, becoming the
manager of the Scots Mining Company. In 1752, the City of Glasgow
decided to spend 10 million pounds to make the city a seaport. The
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first expenditure from this fund was to pay for a silver teakettle to
reward Stirling for surveying the River Clyde.

Now we are ready to give a reasonable answer to the question
with which we started this chapter. We found that

(2000H)*
(10001)44000!

was an exact, but awkward, answer. Let us apply Stirling’s Formula:

4
(200020006_2000«/400031)

1
(1 0001000g—1000,/ 20007‘[) 40004000¢—4000,/80007

20008°00¢=8000(40007)2
10004000g=4000(200077)2 400040005_4000\/m
28000710008 (40007)?
100040001 000400044000(20007)2+/80007

Since 28000 — (22)4000 — 44000 the last quantity reduces to

4000m)? 221
(20007)2+/80007r  +/80007 /5007

With a calculator, we find that 1/4/5007 is approximately .025. Thus
the probability we seek is about 1/40. The event in question is
unlikely, but not really astounding.

Exercises

15. Find the number of digits in 100!. (Actually, find the number
of digits in the Stirling's Formula approximation to 100!. Note:
e'% = 10*43 approximately.)

16. Use Stirling’s Formula to approximate:

(2
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17.

18.

19.

20.

21.

b. )
in
#
[2n)!)?
© @)
Let
2000 - 19981996 -1994-..2
¥~ 1999-1997-1995-1993---1°
a. Show that

(2'°9910001)*
2000!
b. Use Stirling’'s Formula to approximate x.

Use Stirling’s Formula to approximate the probability that a coin
that is tossed 2000 times falls heads exactly 1000 times.

In how many ways can 10 different objects be selected
from among 30 (disregarding the order of selection)? Answer
approximately using Stirling's Formula.
Suppose X has a Poisson distribution with E(X) = 10. Use
Stirling’s Formula to approximate P(X = 10).
In a system of Bernoulli trials with n, p, and g as usual, sup-
pose np is an integer. Use Stirling’s Formula to show that the
probability of exactly np successes is approximately

1

J2mnpq

6.3 The Normal Distribution

Often we want to consider Bernoulli trials where n is large and p is
not small. Our goal here will be just to describe how to approximate
the probabilities involved in this situation. We not only relegate the
proof of the theorem we use to the Appendix to this chapter, but we
also leave the formal statement of the theorem to be given there.
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Let X be the number of successes in n Bernoulli trials. We al-
ready pointed out that the probability of any particular number of
successes is very small. Thus we consider instead the probability
the number of successes falls in a given range. In other words, we
seek to approximate P(a < X < b) under the conditions described
above. While, as we said, no proof will be given here, it may help the
reader to remember what to do if we give some indication of why
the procedure used is plausible. It is not surprising that we want to
see how far a and b are from E(X) = np. It is also reasonable that we
shall compare the deviations of a and b from E(X) to the standard
deviation o of X; we shall express a —np and b — np as so many times
o = \/npq. In short, we should consider

_ h—
c:a P and d= P

N VPq
The approximation to P(a < X < b) we give is completely deter-
mined by ¢ and d. As long as the given data lead to the same ¢ and
the same d, the probability remains approximately the same. We
claim P(a < X < b) is approximately

/ —/2 gy

«/_

Unfortunately, we're not quite done. The indefinite integral of f(x) =
e~/2 cannot be given explicitly in terms of the functions studied in
calculus. That doesn't really matter; we would expect to evaluate the
function with the aid of a table in any case. Most tables, including
the one given just before the exercises, give the value of

F(t) — —X /2

ke

for various positive values of t. We have, regardless of the signs of ¢
and d,

1 d 2 1 ¢ 5
_ _"/zdx=—/ 612 gy — / 12 gy
\/Zﬂ/; ¢ 2m Jo 27 ¢
= F(d) — F(c).

If ¢ is negative, we still have the slight problem of finding F(f) for
negative values of t. But, since x* = (—x)?, for all t we have
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t 0 —t
/ e dx=[ e dx=— / e /% dx.
0 0

—t

It follows that F(t) = —F(—t) for all t. Thus for negative ¢, we find
F(t)y = —F(—t) by looking up —t in the table. [But don't forget the
minus sign in front of “F(—t)" in the last equation; actually picturing
the area under the curve is a good precaution.] The table that is
included here is a very short one, just long enough for our exercises.
Of course, far more extensive tables are readily available. Most such
tables have a title indicating that they are tables of the “Standard
Normal Distribution” The word “distribution” is being used here in a
more general sense than we have been using it. The standard normal
distribution is a continuous distribution and thus falls outside of
our topic of discrete probability. The approximation we have just
introduced is often called the Normal approximation. The theorem
that justifies the use of this approximation is the simplest example
of a class of theorems called central limit theorems.

The method we just described was devised by Abraham
DeMoivre. He describes it in the second edition of his book, The Doc-
trine of Chances, in language as informal as that we used. DeMoivre
suggests power series and the Newton-Cotes formulas as ways to
find approximate values for the definite integrals involved here; of
course, tables of the values of these integrals had yet to be con-
structed. (indexNewton, IsaacNewton refers to the obvious person;
Cotes refers to Roger Cotes, 1682-1716.) It seems appropriate to us to
call the result simply DeMoivre's Theorem, as is often done, rather
than to mention Laplace, as is also often done. In this respect, as
well as others, DeMoivre had by 1738 made very substantial progress
beyond the work of Montmort, about whom we shall say more in
Chapter Eight, and Jakob Bernoulli. Without minimizing the theo-
retical importance of Bernoulli’s Law of Large Numbers, we do point
out that its use is confined to theory. It says certain probabilities are
“small” when the number of trials is “large,” but it does not state how
small or how large. It gives no hint of how to say anything about
probabilities that are not small. DeMoivre gives an approximation,
sufficiently accurate for practical purposes, to the probabilities of
different numbers of successes in a fixed number of Bernoulli trials.
In particular, Bernoulli’'s Theorem is a corollary of DeMoivre'’s.
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Before discussing the life of DeMoivre, we make a few more
comments about his book. The first edition appeared in 1717 and
the very significantly improved second edition in 1738, as we said.
It is like those of Jakob Bernoulli and Montmort in that it begins
with basic principles and goes on to work problems about games of
chance. But DeMoivre, in part building on the work of his prede-
cessors, goes well beyond them. The most important achievements
are DeMoivre's Theorem, which was discussed in the last paragraph,
and the use of generating functions to sum infinite series. The book
includes the first explicitly worked out practical application of prob-
ability theory. (Of course, we do not count gambling as practical.)
Specifically, building on the pioneering work of Edmund Halley
(1656-1742) in devising a mortality table, DeMoivre includes the
first table showing the present value of a life annuity; he also in-
cludes other actuarial tables. (As a matter of interest, we note that
Halley is indeed the man who studied what we call Halley's comet.)

Abraham DeMoivre

(English, 1667-1754)

Abraham DeMoivre was born in France. His father, a surgeon, sent
him away to school in 1673. Abraham was proud throughout his life
that he was able to write a letter to his parents at that time. Like Jakob
Bernoulli, he was forced to try to keep his study of mathematics
secret. At one point, his teacher asked him what the “little rogue
meant to do with all those cyphers” When the Edict of Nantes, which
provided for the toleration of Protestants in France, was revoked
in 1685, DeMoivre fled to England. It appears that he added the
“de” to his name at this time. (We are following the usual practice,
when writing in English, of treating “de” as an integral part of the
name for citizens of English-speaking countries, but not for others.
Thus we say “DeMoivre” and place the name alphabetically under
D. However, for example, we say “Fermat” and place the name under
F.) DeMoivre supported himself by travelling from house to house
doing tutoring. He took with him pages from Newton's Principia,
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which he studied in his spare moments. He met and impressed
Halley, secretary of the Royal Society, who helped him get his work
published and introduced him to Newton. In 1697, DeMoivre became
a fellow of the Royal Society. He never got a professorship, despite
the efforts of Leibniz to get him one at Cambridge. Nevertheless, a
case can be made for his being the leading English mathematician
of his day; Alexander Pope included these lines in his “An Essay on
Man":

“Who made the spider parallels design,
Sure as DeMoivre, without rule or line?”

DeMoivre followed Halley in the study of mortality tables, life
expectancy, and annuities. Late in life, DeMoivre subsisted by an-
swering questions along those lines at a coffee house. Thus he may
be said to be the first professional actuary. Towards the end of his
life, he added membership in the academy in Paris to his many
similar honors. At that time, he was spending more and more time
sleeping, by one account as much as 23 hours a day. Finally, at the
age of 87, there came a time when he failed to wake up at all.

_ L e
1= = [ e

t I 1/2 -1

0 0 5.0-107!

0.1 .0398278 46-107"

0.5 1914625 3.1-107!

0.6744896 .25 2.5-107!

1 .3413447 1.6-107"

1.5 4331928 6.7-1072

2 4772499 2.3-1072

2.5 .4937903 6.2-1073

3 .4986501 131073

4 .4999683 3.2-107°

5 .4999997133 2.9-1077

6 .4999999990 9.9.1071°
8 6.2-1071°
10 7.6-107%

20 2.8.107%
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Exercises

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

4500 dice are thrown. Find the probability of getting between
775 and 800 “sixes.

720 dice are thrown. Find the probability of getting between 100
and 130 “sixes.

Find the probability that, when 1620 dice are thrown, between
255 and 300 of them fall “six”

Find the probability that, when 2880 dice are thrown, between
430 and 450 of them fall “six.

10,000 coins are tossed.

a. What is the probability that between 4950 and 5050 of them
fall heads?

b. Between 4850 and 51507
c. Between 4995 and 50057

By expressing, approximately, the probabilities as definite inte-
grals, determine which is more likely—that a coin that is tossed
2500 times falls heads between 1215 and 1290 times or that a
die that is thrown 720 times turns up “six” between 106 and 132
times.

By expressing, approximately, the probabilities as definite inte-
grals, determine which is more likely—that a coin that is tossed
400 times falls heads between 182 and 214 times or that a die
that is thrown 180 times falls “six” between 24 and 39 times.

The probability that a randomly selected voter will answer “Yes”
to a certain political question is 5/9. 720 voters are chosen at
random, and each is asked the question. What is the probability
that between 380 and 420 answer “Yes”"? More than 360 answer
“Yes"?

Suppose just two-thirds of all voters support a certain proposi-
tion. 800 voters are chosen at random. Find the probability that
a majority of these 800 oppose the proposition.

An examination consists of 100 true-false questions. Find the
probability that a student who answers all questions at random
gets at least 65 right.
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Appendix

We now prove Stirling’s Formula. We begin by fixing our attention on
some one integer n > 3 and trying to estimate n!. The idea behind
our work is that

logn! =logn+ log(n — 1) +log(n — 2) + - -- + log 1.

Towards studying the sum on the right, we consider the graph of
y = logx. A portion of that graph appears in each of the following
three diagrams, the first of which applies for each integer i > 3 and
the second for integers i > 2.

From the first of these diagrams we see, for each integer i > 3,

: 1
/ logxdx > 5[1og(i —1) +logi].
i—1

//

i—1 i i— 172 i i+1/2 n—1/72 n
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If we set, for brevity,
: 1
A= / logxdx — 3 [log(i — 1) + log1]
i-1
foreachi=3,4,5,..., then we have A; > 0. We also set

2 1
A, = / logxdx — Elogz.
1

Now let

B, = Ay

B; = Ay + Aj

By =Ax+ Az + Ay
Clearly, B, < B3 <.... Let us compute By:

By =A;+ -+ Ay
2 3 n 1
:/ logxdx—l—/ logxdx—l—---—i—/ logxdx—zlogz
1 2 n—1

1 1
— E(logz +log3)—---— E[log(n —1) + logn]
n 1
= / logxdx —[log2 +1log3 +--- +log(n — 1)] — Elogn‘
1
Now consider the second diagram. From it we see,

i+1/2
[ logxdx < logi.

-1/2

Thus, for each integer n > 2, we have

n-1/2 5/2 n—1/2
/ logxdx = logxdx+--- + logxdx
3/2 3/2 n—3/2

<log2+1log3+ .- +1log(n—1).

From the third diagram,

n 1
/ logxdx < Elogn.

-1/2
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Adding this in, and adding

3/2
/ logxdx
1

to both sides, we have
n 1 3/2
/ logxdx <log2+---+log(n —1)+ Elogn + / logx dx;
1 1

n 1 3/2
/ logxdx —[log2+ ---+log(n —1)] — Elogns/ logxdx.
1 1

But the left side is just By; thus,
3/2
B, < / log x dx.
1

for all n.

We have shown that B, < Bz < ..., but that B, < a certain
number fixed for all n. Thus the sequence B, B, ... must converge
to some number. Call this number C; then we have, in symbols,
B, — C.

We can actually evaluate the integral that appears in the
expression for B,. We have

n
/ logxdx = (xlogx—x) |{=nlogn—n—(1logl—1) = nlogn—n+1.

1
Also we have

1 1
log2+1log3+---+1log(n—1)+ Elogn =logn! — Elogn.
Thus
1
B, =nlogn—n+1—logn! + Elogn.

Our goal was information about n!. We have

n = e]ogn!

— e—Bn+nlog n—n+1+(1/2)logn

— g~ Bngnlog ne—neelogﬁ

= e Brene/n.
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Hence, since B, — C,
nt/ (n”e‘”ﬁ) — e Ce.
To summarize, we have shown that there is a number k such that

n!

T ——
ne "/n

Looking back at the reasoning above, we can get a pretty good
estimate of the value of k. Clearly

3/2
C§/ logxdx.
1

Since this integral is .1082, we have k = €'~ < 2.4395. (In this
paragraph, the numbers shown to four decimal places are, of course,
approximations accurate to that number of places.) On the other
hand, Bjy < C, the number 10 being somewhat arbitrary. Since
By = .0727, k < 2.5276. Thus, if we use 2.5 in place of k, the error is
less than 3% —good enough for most practical purposes. In fact, it is
clear that the error in using 2.5n"e¢ "y/n for n! is less than 3% for all
n < 10. We are now in the same position DeMoivre was in before he
consulted Stirling; in other words, we are done for practical purposes,
although it is more elegant to actually evaluate k. It will turn out the
evaluation of k is a by-product of the next theorem. Therefore we
proceed immediately to the proof of that theorem while postponing
showing that k = +/27. We shall write /27 in place of k during
the proof, since we are really considering two separate problems; to
stick to what we actually know, each /27 in the next proof should
be replaced by a k.

The most important theorem of this chapter was not even stated,
let alone proved. We now give the statement and a proof.

Theorem Let ¢ and d be numbers with ¢ < d. Let p and q be positive
numbers with p + q = 1. For each positive integer n, let P, be the
probability that in n Bernoulli trials with probability p of success on
each trial the number of successes is between

np + c/npq and np + d./npq.
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Then

1 4
lim P, = —/ e /% dx.
=00 27 J.
Proof We are concerned with getting between np +c,/npq and np +
d,/npq successes. When n is large enough, this range includes only
numbers between 0 and n. More precisely, suppose

2
and n> d_p

q
From the first of these inequalities, we have /np > |cl\/d > —c./q,
and hence np > —c,/npq. It follows that np + c,/npqg > 0. From
n > d*p/q, we see in the same way that ng > d,/npq. Thus we have
np +d/npq < np + ng = n.

Since we are concerned only with a limit as n — o0, we may
set a minimum size for n. From now on, we shall always assume
that » satisfies the conditions of the last paragraph. We also assume
that n is large enough so that there is at least one integer between
np + c/npq and np + d./npq.

Next we make a remark as to notation. The letter n will, of course,
take different values during our discussion. Various other variables,
k t R, S, moao T, Ax, h ki, ... kp x1,...,x, will be introduced and
defined in terms of n. We shall not show the dependence of these
variables on »n in our notation. On the other hand, ¢, d, p, and q are
constant and do not depend on n.

These preliminaries being completed, we now make a computa-
tion relating to a specific number k of successes for each number of
trials. For each n, we choose an integer k such that

np + c/npq < k < np + d/npq.

We seek to study the probability of k successes in n trials, namely,

MY % n—k

We next introduce a very convenient variable t. For all n, let

2
p

[ k—np
npq




158 _ 6. Approximating Probabilities

Then we have

c da
<t< ;
~1Pq npq

hence t — 0 as n — oo. We put the Stirling’s Formula approximation

to
M\ % n—k
(5)7

in terms of t. This approximation is RS, where
nne—n
R=
kke—k(n _ k)n—ke—(n—k

)pkqn—k

and
2mn
27k S27(n — k)

We treat R first. We have

k n—k
np nq
R={— .
(k) k(ﬂ—k)

From k = np + npqt, we have

* + gt
np T
Also n — k =n —np — npqt = ng — npqt, and thus we have
n—k 1t
ng pr:
Thus
R=(14qg)7*Q —pty==P,
Integrating
1 2
——=1—x4+x -,
1+x

we obtain the well-known series for log(1 + x), namely,
2 3
X

X
log(1 =X—— 4+ — =
og(l+x)=x 2+3
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(That the last equation does not hold for all values of x is not
important. We are only concerned with ¢ close to zero.) Thus

@?® @ )

+

logR = —(np + npqt) (qt - 3

2 3
_(nq_nmt)(_pt_@_@_...)

1
= n(—pqt —pg’t + opg’t’
+ terms involving powers of t higher than the 2nd)
22, L . .
+n (pqt —pq”+ Ep qt2 + terms involving powers, etc.)
1
= —5nlpa(p + g’ + terms, etc.]
1
= —En(pqt2 + terms, etc.).

We are concerned with the limit as n — oo, and hence t — 0. R is
thus approximated by

— 2 —(k—np)2
e~ mpat’ /2 _ p=(k=np)*/2npg

Now we turn to S:

2nn

Zn(n -

ﬁ\/ k(n — k)

«/E\/ (np + npqt)(nq — npgt)

- ~/27m\/(p +pqt)(q —pat)

For small ¢, we have approximately

1 1 1

- J2mn p_q - J2anpq’
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Putting everything together, we have just seen that the limit of the
ratio of the probability of k successes in n trials, as described above,
to

1

2mnpg

o~ (k—np)* /2npq

tends to 1 as n — oo.
At this point, some common abbreviations are helpful. Let m =
np and o = npq. Then the approximation in the last paragraph is

1

6—(k—m)2/(202)
o\ 2m

The probability of between m + co and m + do successes in n trials is
the sum of the probabilities of k successes for those integers k within
this range. Denote these integers by ki, ..., k, with k; < .-+ < ky;
note that we obtain entirely different sets of integers for different
values of n. The sum of probabilities just mentioned is, according to
the last paragraph, approximated by

1
o/ 2w i=1

Now turn to the integral

d
/ ™12 dx.
[%

For each positive integer n, define Ax by Ax = 1/0. We approximate
the integral by dividing the interval from ¢ to d into pieces, all but
the last of length Ax. More formally, we approximate the integral
by a Riemann sum. [These sums are named for Bernhard Riemann
(1826-1866), who developed a formal theory of integration well over
100 years after DeMoivre, and many others, used such sums.] Let

e—(kl—m)z/(Zaz).

ki, —m
Xi — )
o

foreachi=1,..., h. Now ky, ..., ky include in order all the integers
between m + co and m+do. Thus, ki — 1 < m+co, kp+1 > m+do,
and k;=k;_y+1foralli=2,..., h Using k; —m < co + 1, we have

kl—m co+1 1
X = < =c+-—=c+ Ax
g

g (o2
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Likewise kn — m > do — 1 yields x;, > d — Ax. Also

ki—-m kii—m ki — krx_1 1
Xi— X1 = — = = — = Ax.
g ag g ag

Finally, note that k; > m + co implies that x; > ¢; similarly x;, < d.
Thus we have

c <X < c+ Ax,
c+ Ax <X < c+ 2A%,

c+ 2Ax < X3 < c+ 3Ax,

c+h—2)Ax <x_1 <c+(h—-1Ax
c+h—-1DAx <ux, <d.

In short,

h .
AxZe"‘?/z +d—c— (h—1)Ax — Ax]e™/?

d
/ e 12 dx.
C

Note that we had a slight problem adjusting the last piece, but, since
we have

is a Riemann sum for

0<d—c—(h—DAx<xp+ Ax—xp_1 = 2Ax
the adjustment tends to zero as »n tends to infinity. Now recall from
the last paragraph that, in our current notation,
1 ko
—=Ax Z e/

N2 i=1

approximates the probability we seek. For large n, this approximate
probability must be arbitrarily close both to the probability and to

o212 gy

=l

This completes the proof. o

However we left a gap in our reasoning earlier in this Appendix.
When we first mentioned /27, we simply announced without ex-
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planation that a certain constant had the value +/27. To stick to what
we really have established, every appearance of /27 in this chapter
so far should be replaced by an unknown constant; call it k. Now we
evaluate k. By choosing t large enough, we can make

1 o
— | e dx
kJ_:

1 > 2
L7 g gy
k/_ooe

Consider a system of Bernoulli trials with usual notation. The Cheby-
shev Inequality tells us that the probability of between np — t,/npq
and np + t,/npq successes is at least 1 — 1/t*, no matter what t and n
we use. Thus, for t large enough, this probability is close to 1 for all
n. Having chosen t very large, we then can use the last theorem to
choose n so large that the probability just mentioned is as close as
we please to

as close as we like to

t
1 e /2 dx.
kJ_

Putting this all together, we see we must have

lfooe_xz/zdx—l
kJ_ N

to make all these arbitrarily close approximations possible. Thus
o0
k= / e /% dx.
-0

Let us sketch the calculus necessary to evaluate the above
improper integral. For every number y we have

oo
ke—y2/2=/ e~ Py /2 gy
—00

It follows that

o0 oo o0
k/ eV gy = / / e~ T2 gy gy,
-0 —00 J =0
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The integral on the left is equal to k. Thus changing to a double
integral over the entire plane P, we have,

12— / / e~ PH2 g8
P

Using polar coordinates, we have
00 plm ; ,
k* = / / re”" 2o dr = —2me™"/? |°= 27.
o Jo

Thus k = +/27, as we announced long ago.






Generating

Functions

CHAPTER

This chapter may be postponed indefinitely.
It is not needed in the rest of the book.

In this short chapter, we introduce a certain method of treating those
random variables that, like most of those we study, take only non-
negative integers as values. This method is useful in more general
circumstances, and it will be easier to understand if we first present
it in its natural setting. What we want to introduce can properly be
called a tool, a trick, a toy, or a technique. A more helpful word is
code. By describing a sequence of numbers in what appears to be a
roundabout way, we often make it easier to work with the sequence.
Let ag, a1, a2, ... be a sequence of numbers. Note that it is con-
venient to denote the first term by ay, not a;. By definition, the
generating function of the sequence is the function f defined by

f(Z):ao+(112+azzz—|—a3zz‘+...r

provided this series converges for at least some nonzero values of z.
The use of the letter z, instead of some other letter, is immaterial.
For any sequence, the series converges for z = 0. If the series also
converges for other values of z, we get a function f that may be
expanded in a Maclaurin Series by the techniques of calculus (Colin

165
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Maclaurin, 1698-1746). (Some readers may be relieved to know that
we're not going to do that; we just want to know that it can be done.)
Thus given f, we can recover the sequence by taking the coefficients
from the Maclaurin Series. To know the generating function is, in
theory, to know the sequence. All the properties of the sequence
are somehow encoded into its generating function. This use of a
function to study a sequence was devised by DeMoivre and further
elaborated by Laplace.

We shall be almost exclusively concerned with a special case. Let
X be a random variable that assumes only nonnegative integers as
values. We consider the sequence, P(X =0), P(X =1), PX = 2),....
Its generating function,

fz) =P(X =0)+ P(X = 1)z+ P(X = 2)7* + - -+,

is called the generating function of X. (Sometimes the term “proba-
bility generating function” is used when other generating functions
are also under discussion.) To be sure that the sequence in fact has
a generating function, we must be sure that the series converges for
a nonzero value of z. But, for z= 1, we have

) =PX=0+PX=1)+PX=2)~+-.

Since we know X assumes no value not included in 0, 1, 2,..., we
know that the series converges to 1. Thus we see that X does have a
generating function and that f(1) = 1.

We continue to suppose f is the generating function of X. In other
words, we still have

fz) =P(X =0)+ P(X = 1)z+ P(X = 2)z* + - --.

In the following discussion, let us just assume for the time being
that all the series involved converge and that E(X) and Var(X) exist.
Let a = P(X = k); then

flz2) =apz+a1z+ az* + - -.
Differentiating, we have

f/(z):al+2azz+3a3zz+...y
f,/(Z):2a2+2'3(13Z—|—3-4a4zz+....
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Thus

'y =ay +2a; +3a; + - --

We also have

"1y =2a,+2-3az3+3-4as+---,

O+ =ar + (1 +1)2a2 + 1+ 2)3as + (1 +3)dag +---
=ay + 2%a, + 3*az + 4%ay + - -
=PX=1)+2’PX=2)+3PX=3)+--
= E(X?).

Thus Var(X) = f”(1) + f'(1) — [f'(D]*.

Now we discuss, without proving anything, a certain technical
point. Let X and f be as above. Since the definitions of E(X) and
Var(X) may involve infinite series, these quantities are not defined
for every X. Correspondingly, f'(1) and f”(1) are not always defined.
It can be shown that E(X) exists if and only if f'(1) exists. Likewise
Var(X) exists if and only if f”(1) exists, and consequently f’(1) also
exists. In short, the formulas,

EX) = f/(D),
Var(X) = f"(1) +f'(D) — [ (D],

may be used to determine the existence of E(X) and Var(X) as well
as their values.

We can use the method of generating functions to find the mean
and variance of many of the random variables we have considered
earlier. Suppose that we are considering the number of Bernoulli
trials necessary to get a success. Let X be this number of trials;
then X has a geometric distribution. We shall find f, the generating
function of X, and use it to find the mean and variance. We have
seen that the probability of the first success occurring on the kth
trial is g*~'p; that is, P(X = k) = g~ 'pfork=1,2,.... Thus we have

flz) = pz+ qpz* + ¢’pz° + ¢’pz* + - - -.
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This is a geometric series with first term pz and ratio gz. It follows

I
f(Z) - 1 _ qzr
f(z) = pl—qz—p2-q9 P
(1 —g2)* (1 — gq2)*
v (=2p __ 2pq
FO= 0 = 0
Now we put in z= 1:
' P p 1
1= ===-,
d 1-9* p* p
1l-9* p* p?
Thus we have
1
EX) = -,
p
2 1 1 2 -1
R e i it
r:- p p p p
sinceg+p=1.

Now we suppose X has a Poisson distribution. That means that
there is a number m > 0 such that

k

P(X:k):%e‘m fork=01,2,....

Thus the generating function of X is given by

2

m
flzy=e ™+ me "z + ?e‘mz2 e

We have

2 3
flz) = e ™ (] + mz + (W;f) (W;Z') 4. ) — g MME — gmz—m

It follows
f(z) = me"=,
]NI(Z) — mzemz—m
fi(1)=m,
(1) =m.

7
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Thus
E(X) =m,
var(X) = m* + m —m* =m.

Before continuing our computations of important generating
functions, we establish a general fact that we shall need. When the
generating functions of independent random variable X and Y are
known, it is very easy to find the generating function of X + Y. We
next derive the appropriate formula. Let X and Y be independent
and have generating functions f and g. Then X + Y obviously has
a generating function, since the sum of nonnegative integers is a
nonnegative integer. To find the generating function of X + Y, we
need to find P(X 4+ Y = n) for each »n. For the event, X + Y = n, to
occur

either (X =0 and Y =n)
or(X=1 and Y=n-1)
or(X=2 and Y=n-2)

or(X=n ;and Y =0)
must occur. Thus we have
PX+Y=n)=PX=0 and Y=n+---+P(X=n and Y =0).
Since X and Y are independent, it follows that
PX+Y=n=PX=0PY=n)++PX = nPY = 0).
Now we can write down the generating function h of X + Y:
h(z) = P(X = 0)P(Y = 0)
+[P(X = 0)P(Y = 1)+ P(X = DP(Y = 0)]z
+[P(X = 0)P(Y = 2) + P(X = )P(Y = 1)
+ P(X = 2)P(Y = 0)]z°
SIS
Similarly for X and Y we have
flz2)=PX=0)4+P(X =1)z+P(X = 2)2* + - --
2@2)=P(Y =0)+P(Y = 1z+ P(Y = 2)z° + - --
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It can be shown that the obvious way to multiply these last two series
gives the correct result, namely, the series given for h(z) above. Thus
the generating function X + Y is fg, the product of the generating
function of X and Y.

Now we consider the generating function for X, the number of
successes in n Bernoulli trials. We first consider the special case
where n = 1; that is, where X has a Bernoulli distribution. Thus we
seek the number of successes in one trial. Then P(X = 1) = p and
P(X = 0) = q. It follows that the generating function of X is

8(2) = q+ pz.

Now consider an arbitrary n. Then X has a binomial distribution. As
usual, we set

o { 1 if the ith trial results in success,
' 0 otherwise.

We have X = X3 + X, + .-+ + X,, and Xy, ..., X, are independent.

Each X; has generating function g(z) = g+ pz; thus X has generating

function

flz) = (g + p2)".

Now we turn to the random variable Y, the number of Bernoulli
trials necessary to get r successes. In other words, suppose Y has a
Pascal distribution. We already know the generating function is

pz
1—gqgz

g(2) =

when r = 1. Reasoning again as we just did, we see that Y has the
generating function
pz \
fx) = ( ) :
1—gqgz

Our conclusions are summarized in the table, “Table of Important
Distributions,” at the end of the book. This table is the one we started
drawing up in Chapter Four. Note that the mean and variance, shown
in the table, for a Pascal distribution can now be obtained either from
the generating function or by expressing the random variable as a
sum, as in the last paragraph.
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We next make an important point by working an example. In
probability theory, as elsewhere, generating functions other than
those of random variables can be very useful. Suppose someone
offers you the following even-money bet: Two decks of cards are
to be shuffled separately. Then the decks are placed next to each
other on a table. The two top cards are compared; then the second
from the top; then the third; and so on through all the cards. Your
opponent wins only if an exact match, both as to face value and as
to suit, is found at some place in the two decks. Otherwise you win.
Should you bet?

Let us change the question into another form and generalize it.
We have n letters, each addressed to someone by name. We also have
an addressed envelope for each of the letters. If, instead of putting
each letter in its own envelope, the letters are placed one in each
envelope at random; what is the probability that just k letters are
placed in the correct envelopes? In case k = 0, we are finding the
probability of getting all the letters in the wrong envelopes. Thus
the case where n = 52 and k = 0 is the card problem of the last
paragraph. We shall denote the probability, for each n, of getting all
n letters wrong by a,. (Before reading further, guess how a, varies
with n. About how big is a, for n = 5, 10, 50, 100, 500, etc.?) We,
somewhat arbitrarily, set ap = 1. Clearly a; = 0; with only one letter
and one envelope, there is no way to go wrong. Ilowever it is easier
to write a; in some of our computations than to justify omitting a
term. We first express the probability of getting k letters right with
n envelopes in terms of the numbers ag, a;, . ..; then we determine
these numbers.

We begin by considering a fixed number »n of letters and en-
velopes. a, denotes the probability all the letters are put in the
wrong envelopes. How about just one right? The probability that the
first letter—we assume the letters are numbered from 1 to n in some
arbitrary order—is in the right envelope is 1/n. Assuming that the
first letter is in the right envelope, the remaining n — 1 letters are
distributed among the corresponding n — 1 envelopes. Thus, still as-
suming the first letter is right, the probability all the other n—1 letters
are wrong is a,_;. Combining these facts, we see that the probability
that the first letter is the only one right is (1/n)a,—;. The probability
the second letter, or any other preselected letter, is the only one
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right is likewise (1/n)a,—;. It follows that the probability that just
one letter is correct, which one not being specified in advance, is
n(l/n)a,—1 = a,—1. Now we make the corresponding computation
for two letters right. The probability the first letter is right is 1/n.
The probability the second letter is right, given that the first one is,
is 1/(n — 1). Given that the first two are right, the probability the
others are all wrong is a,_;. Thus the probability that the first two
letters are the only ones that are right is (1/n)[1/(n — 1)]a,—,. The
same would apply to any other two preselected letters. There are

ny nn-1)
2) 2

ways to select which two letters are to be right. Thus the probability
that exactly two letters are in the correct envelopes is
nn—1) 1 1 an—z

. Ay —
2 nn—l"2 2

The analogous computation for three letters is, of course,

ny1 1 1 Ap_3
_.—.—an_3:_.
3/n n—1 n—2 3!

In general, the probability that just k letters are correct is a,,_x/k! for
k=0,1,...,n Thus, as soon as we find the values of ag, ai, az, ...
we shall have our whole problem solved.

The last paragraph not only reduces our problem to that of
evaluating the a;, but it also gives us a means of completing that eval-
uation. With n letters, the number of letters in the correct envelopes
is some number from 0 to n. Thus the corresponding probabilities
total 1. Thus we have

]

l=a,+an1+ an—2/2'+a,_3/3'+ -+ ag/n!.
This is clearly of the form
Onbo + ay_1b1 4+ an_2by + -+ - + aobn,

which appeared above when we discussed the product of two gener-
ating functions, with by = 1/k!. Let f be the generating function of
aog, a1, dz, ... and gbe thatof 1, 1,1/2!,1/3!,.... Then, from the total
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of the probabilities above being 1, it follows that fg is the generating

function of 1, 1, 1, .... In other words,
flnyg(z)y =1 +z4+22 4224 =1/1 —2).
Since
Z2 23
g(z):1+z+2—!+§+"'=62,
we have f(z)e = 1/(1 — z). We conclude that
E—Z
fiz) = —.
It remains to actually evaluate ag, ay, ... from their generating

function f. We have
flz) — zf(z) = e™".
The left side of the last equation is
(Ao 4+ a1z + arZ2 4 - 2) — oz + a1 Z2 + az® + )
=ap+ (a1 — ap)z+ (az —al)zz+...;

the right side is

. 2 B
€T=1-z4 ot
Thus we have
ap =1,
a, —ay=—1,
a, —a; =1/2,
az —a; = —1/3!,
aqs —az =1/4,
We can read off
ao =1,

a1 = ap+ (a1 — ag) =0,

a; =a, + (ay —ay) = 1/2,

as = dp + (ag —(12) = 1/2' — 1/3',
a;=az+ (as—az)y=1/21—1/31+1/4,
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We conclude
ap=1/20—1/31 4 174! — -+ (=1)"/n!.
We can thus use
1—141/20—1/3!'+1/4! —... =¢"

to approximate a,. The remarkable thing is how little a, varies with
n. The relative error in using 1/e in place of a, is less than 2% for
all n > 4. Assuming we have at least four letters, the probability of
getting them all in the wrong envelopes is .37, to two decimal places,
regardless of how many letters we have.

The problem just solved was first treated by Pierre Montmort.
We shall have more to say about him at the beginning of the next
chapter. Montmort used a different method from ours to find the
probability of no matches. The problem is often referred to by the
French name of rencontre.

Given n objects in a row, we may consider the number of rear-
rangements of the objects, still in a row, that leave no object in its
original place. This number D,, is called the number of derangements
of the objects. Clearly we have D, = nla,. Using the properties of
alternating series studied in calculus, we can see that D, differs from
n!/e by less than 1/2. In short, for all n, D, is the integer closest to
n!/e.

We note in passing an application of generating functions that is
not directly related to probability theory. Suppose we need to find
the sum of the series

1+2+3+4+
39 81

Were it not for the numerators, 2, 3, 4, ..., the problem would be
easy. But since those numbers are there, we replace the problem by
an apparently still harder problem. Evaluate
3
2) =~ + 2o+ TR
flz) = 9 a1

the special case z = 1 is the ongmal problem. If we integrate each
term and set

g(z) = §z+9z +ZZ +8_1Z + -
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then g’'(z) = f(2). Since the series for g(z) is a geometric series, we
have

(1/3)z z
8D =T qa,  3-2
It follows
fo) =g = (?_ Zjﬁ D_ 5 _S’Z)Z.
Thus we have
1 2 3 4 3

answering the original question.
Let us try a somewhat different question. Find the sum of

1 1 1 1

52 116 5t me

Again there are some integers, 3, 4, 5, 6,..., that are in our way.
To remove these integers from the denominators, we shall have to
differentiate, instead of integrating as we did in the last problem. We
put in whatever powers of z will do the job of removing 3, 4, 5,6, ....
Then we have

flz) = Ly L oay
Z Z
3. 4 4.16 5.064

again we need f(1). Now we have

fl(2) = —z+_z+_ iy (1/9z2 2
16 6 1oz 4-2

Integrating, to get back to f(2), is a bit of a chore. We have

=—z—44+ —.
4 —z 4 —z

Thus
flz) = —2*/2 — 4z — 161log(4 — 2) + C.

(Don't forget the constant of integration!) To find C, note that
obviously from its definition f(0) = 0. Thus

0= -16log4 + C;
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hence, C = 16log4. We have then
flz) = —z*/2 — 4z — 161log(4 — z) + 161log 4.
It follows
f(1) = —1/2 — 4+ 161og(4/3) = 161og(4/3) — 9/2,

and that is the answer to the problem we are solving.

We work another example, this one from probability theory. Let
X be the number of Bernoulli trials necessary to get one success. We
know E(X) = 1/p. We now consider E(1/X), the average ratio of the
number of successes, 1, to the number of trials, X. We have

E(l/X):P(X:1)+%P(X:2)+%P(X:3)+---

—p+—ap+ ~gp+
=Pt Sq P :
We sum this series by using generating functions. By analogy with

the last example, we set

1 2 1 2.3
flay =pz+ Sqpz° + a7 pz + -

Then we have

'@ =p+apz+qps+--=

1—gz
flz) = —plog(l —gz)/q + C.
Since f(0) = 0 from the definition of f(z), we find C = 0. Thus we
have
EQ1/X) =f(1) = —(p/q)log(1 — q) = —(p/q) logp.

The difference between E(1/X) and 1/E(X) is not surprising in that
an average of reciprocals is usually not the reciprocal of the average.

Exercises

1. Find the generating function of each of the following sequences:
a. 3,6, 12, 24,...;
b. 1,39 27,..;
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**5.

1,-3,9 —27,81,...;
3,9,27,81,...;
0,1,3,09,27,...
1/4,1/16,1/64,1/256, .. .:
1,1/3,1/9,1/27,...;
2,2,2,2,...;

1,-1/2,1/4, —1/8, ....

& o

5@ om0

e

. Suppose a coin is tossed repeatedly until it falls heads. Let X be

the number of tosses necessary. Find the generating function of
X.

. A coin is tossed repeatedly until either tails appears or heads has

appeared four times, whichever comes first. Find the generating
function of the number of tosses necessary.

. Exactly one of six similar keys is known to open a certain door.

They are tried one after another, and X is the number of tries
necessary to open the door. Find the generating function of X:

a. if a key that doesn’t work is discarded,

b. ifakey that doesn’t work is mixed in with the others and may
be tried again.

Let f be the generating function of the random variable X. In
other words, if we define a, = P(X = n) foreachn=20,1,2, ...,
then f(z) = ap + a1z + a,z* + - --. For each of the following se-
quences by, by, by, ..., write out the first four nonzero terms and
find the generating function g of this sequence.

a. b, =1 for all n.

b, =PX #n)=1—-PX = n).

by=PX =n+1).

by=PX=n-1).

b,=PX <n)=PX <n+1).
by=PX>n=PX>n+1)=1—-PX <n).
b,=PX <n-—1)=PX < n).
bp=PX>n—1)=PX > n).

o

5| om0 a0
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6.

10.

11.

A random variable X has generating function
floy =1/4+ (1/3)z+ (1/6)z° + (1/6)2° + (1/12)2".
Find:
a. P(X = 2);
b. P(X = 0);
c. PO <X < 3);
d. PX > 1).

. Suppose X and Y are independent random variables and each

has a Poisson distribution. Show that X + Y has a Poisson distri-
bution by finding the generating function of X + Y. [Note: E(X)

need not equal E(Y).]

. Let X be the number of spots obtained when a die is thrown. Let

Y be the number of heads obtained when two coins are tossed.

Find the generating function of:

a. X;

7

b. Y;

c. X+Y;
d. 2X.

. A random variable X has the generating function

1
(2—2)%

flz) =

Find:

a. P(X =0);

b. E(X);

c. Var(X).

For the random variable of Exercise 6, find:
a. the mean;

b. the variance.

A random variable X assumes only the values 0, 1, 2, 3, ...

the probabilities that X assumes these values are

7

and
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12.

13.

14.

15.

respectively. Find:

a. E(X);

b. Var(X).

Suppose X is a random variable with generating function

flzey=€¢"—e+2—z

Find:

a. P(X = 3);

b. E(X);

c. Var(X).

A random variable takes only the values 3, 4, 5, 6,..., and the

probabilities that it assumes these values are given by
P(X = k) = 48/4F  fork=3,4,5,....

Find the:

a. mean;

b. variance.

A random variable takes only the values 2, 4, 6, 8,..., and the
probabilities that it assumes these value are given by

PX=k =3/2" fork=24,6,....

Find the:
a. mean;
b. variance.

A random variable X assumes only the values 0, 1, 2, 3 and

the probabilities that X assumes these values are

el 111111
—logl5 = —=, ===, ——,....
812 31393337 314

R

a. E(X);
b. Var(X).
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16.

17.

18.

19.

20.

A random variable X has generating function g(z) = k(e 4+ ¢7%),
where k is a constant. Find:

a. k;

b. E(X);
c. Var(X).
Let

L N

2 24 38 416 532
Let X be a random variable that assumes only the values 1, 2,
3, ... and assumes these values with the probabilities
1 11 11

2L L ——
38

, == L
2724

ey

respectively. Find:

a. E(X) in terms of L;

b. Var(X) in terms of L;

c. Lin “simplest form.

A coin is tossed repeatedly until it falls the same way twice in a
row. Let X be the number of tosses necessary. Find:

a. P(X = k) for each positive integer k;

b. the generating function of X;

c. E(X);
d. Var(X).

A die is thrown repeatedly until it falls “six” If it falls “six” on
or before the tenth throw, no money changes hands. If it takes
11 or more tries to get a “six,” Alan pays Zeb $1 for each toss
beyond the tenth. In this case, Betty pays Zeb $1 for each throw
including the first ten. Let X be the amount Alan pays, Y the
amount Betty pays, and Z the amount Zeb gets. Find E(X), E(Y),
and E(Z).

Let the random variable X have generating function f. Show that
[1+f(—1)]/2 is the probability that X assumes an even value, and
[1 — f{—=1)]/2 is the probability that X assumes an odd value.
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21.

22.

By applying the result of the last problem, determine under
which conditions X is more likely to take an even value than an
odd value, when the distribution of X is:

a. binomial;
b. Pascal;
c. geometric;
d. Poisson.

Use generating functions to find the sum of each of the series:

1+2+3+4+5+

a. -+t -+-+ =+

2 4 8 16

b 344248,

' 3 9 27 '
1+2+3+4+
c. ~t+t-+—+_—-+---.
4 8 16 32

d 1—§+é+i+

' 4 8 16 '

11 11 11 11

22t 3stas st

4+8+16+32






Random Walks

CHAPTER

While this chapter is entitled “Random Walks,” random walks will
be mentioned by name only in a few paragraphs. Superficially, the
chapter seems to be about the story of two characters named Peter
and Paul. Actually, what is involved is an abstract idea that may be
made concrete in two different ways. The idea is most effectively put
into words by discussing Peter and Paul. For this reason, we discuss
Peter and Paul. In thinking about the problems we face, a picture
in which a “particle” is actually “walking” about is often helpful. We
shall explain how to imagine such a picture. A visualization of the
moving particle is helpful; a verbal description of it is not. In any
case, the Peter-and-Paul approach has historical interest.

8.1 The Probability Peter Wins

The history of Peter and Paul, as opponents in games of chance,
starts in France in 1708. (Of course, when two arbitrary names are
needed, those two names have been used for a long, long time.
For an example involving probability, see Exercise 21 of Chapter
Three.) In 1708, Montmort published a book applying probability

183
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theory to games of chance. Montmort gave names to his players;
he assigned the names by taking them from the list, Pierre, Paul,
Jacques, Jean, and Thomas, as he needed them. Thus in the most
common situation where the game had two players, the players
were called Pierre and Paul. Montmort corresponded with other
students of probability theory, and they went along with his choice
of names. Almost every probability book written from that time to
the present has discussed Pierre and Paul. Those books written in
English, have, of course, anglicized the names to Peter and Paul.
Occasionally someone has used different names, but we'll go along
with the overwhelming precedent.

We digress for a moment to discuss Montmort and his book,
Essay d'analyse sur les jeux de hazard. This book was the first book on
probability theory to be published. In the book, Montmort describes,
and computes probabilities for, as many games of chance as he could
find. He even discusses a game played by the people he refers to as
the “savages of Canada’” The second edition of the book, published
in 1713, includes an appendix consisting of a number of letters.
Among these letters is some of the correspondence between Fermat
and Pascal. Montmort wrote for his own amusement and published
his book anonymously. In reproducing his correspondence with the
Bernoullis, he refers to himself as “M. de M. .. We present our brief
biography for Montmort here.

Rémond de Montmort

Pierre Rémond de Montmort
(French, 1678-1719)

(That Montmort called himself Rémond de Montmort is inferred
from the fact that he reproduces the signature on his letters to the
Bernoullis as “R. de M"”) Montmort was born of a noble family and
was destined by his father for the magistrature. “Fatigued” by his
studies of law, he travelled to England and Germany. He returned
to France in 1699. Shortly thereafter his father died, leaving him a
considerable fortune. In 1700 he revisited England and met Newton.
In that he year he also obtained an ecclesiastical position at Notre
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Dame in Paris; specifically, he obtained a canonicat. The nature of
that office may be judged by noting that the French word, canonicat,
is used figuratively to refer to a sinecure. With plenty of money
and no duties, Montmort studied mathematics and philosophy. He
used his wealth to publish books, some of them about mathematics,
that the publishing houses regarded as too risky. He also undertook
works of charity, about which he demanded absolute silence. In
1704, he purchased an estate near the village of Montmort. Paying
his respects to the most distinguished of his new neighbors, the
Duchess of Angouléme, he met her grand-niece, whom he married.
In 1715, he made a third visit to England, this time to witness a
solar eclipse. While in England, he was elected to the Royal Society.
In 1716, he became an associate member of the French academy
of sciences; only an associate member, and only that late, because
full membership required residence in Paris. In 1719, he died of
smallpox, at the age of 41.

Note that Pierre Montmort was hardly neutral between Pierre and
Paul. We still root for Peter and tend to look at things from his point of
view. For example, we shall use the letter p, which we have used for
the probability of success, for the probability that Peter wins a game;
g, corresponding to failure, is the probability Paul wins. Sometimes it
is important to be aware that, notation apart, the roles of the players
are completely interchangeable. There is a basic symmetry in all of
our ideas, if not in our terminology.

Let us explain the words, “random walk” We shall be concerned
here only with random walks on the line, that is, one-dimensional
random walks. Random walks in higher dimensions are also im-
portant. We shall be assuming that Peter and Paul play a series of
games. Suppose they bet a fixed amount on each game. Imagine the
amount of money that Peter possesses to be continuously displayed
graphically on an electric sign. A spot of light moves back and forth
along a line to illustrate how Peter is doing. Each time Peter wins,
the spot moves one unit to the right; when he loses, it moves one
unit to the left. The reader should visualize the sign from time to
time, even though we don't explicitly refer to it again. In fact draw-
ing a diagram showing the line and key points, such as the starting
point, on it can be very helpful. We should note that both physical
and metaphorical random walks occur often in the real world; their
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mathematical theory has many applications. The reasons we study
the present topic here have nothing to do with gambling.

In this chapter we study a certain situation. Throughout the chap-
ter we shall always make the following assumptions. Peter and Paul
are going to play a series of games. The probability of Peter’'s winning
any one game is the same as the probability of his winning any other
game. Call this probability p, and let g be the probability of Paul's
winning any one game. We suppose p = 1 —g; thus one player or the
other must win in each game; there are no ties. The event of Peter’s
winning any one game is independent of the event of his winning
any other games. Peter and Paul keep score by recording the number
of games each has won. To make the situation more vivid, we may
suppose a bet is made on each game. In this case, each player bets a
certain amount—3$1 is simplest, but $1000 is more exciting—on each
game. The loser of each game pays the winner the stated amount.
We make no overall assumption about how many games are played.

Let us begin by considering a specific example. Suppose Paul
is twice as likely to win in any game as Peter is. Thus p = 1/3
and g = 2/3. To encourage Peter to play, Paul agrees that Peter may
decide after each game whether to play another game. Suppose Peter
adopts the strategy of waiting until he is one game ahead and then
ending the series. Does this ensure that Peter and Paul stop playing
with Peter one game ahead? The alternative, in theory at least, is
that they continue playing forever without Peter ever being ahead
at all. Let us try to compute the probability of each of those two
possibilities.

If Peter is to be ahead sooner or later, there must be a first time
he is ahead. And there can be only one first time he is ahead. Let f,,
be the probability that Peter is ahead for the first time immediately
after the nth game. The probability that Peter is ever ahead is

R=fitfotfitoo.

We next try to find fi, f2, ..., one at a time. We begin by noting the
following: The first time Peter is ahead, he is necessarily ahead by
just one game. f is easy. If Peter wins the first game, he is, at that
point, ahead by just one game, obviously for the first time. Thus

fi=1/3.
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f2 is only a little harder. No matter how the first two games
turn out, there is no way for Peter to be ahead by just one game
immediately after the second game. In short, f; = 0.

Now we come to f3. If Peter is to be ahead for the first time after
the third game, he can not be ahead at the end of the first game.
Thus he must lose the first game, and obviously then he must win
the next two games. Thus f3 = (2/3)(1/3)(1/3) = 2/27.

fa must be zero, like f,. We may as well generalize. If Peter is
ahead by one game, he has won one game more than he has lost.
Thus the total number of games must be odd. In short, f;, = 0 for all
even n.

Next we find f5. To be ahead for the first time immediately after
the fifth game, Peter must win the fourth and fifth games. As before,
Peter must lose the first game. Peter must also win just one of the
second and third games. His record, with obvious notation, must
be LWLWW or LLWWW. The probability of each of these cases is
(1/3)3(2/3)%. Thus f5 = 2(1/3)%(2/3)? = 8/243.

We shall not give the details for f; here. There are five possi-
ble patterns of wins for Peter: LLLWWWW, LLWLWWW, LLWWLWW,
LWLLWWW, and LWLWLWW. Taking that as known, we have f; =
5(1/3)*(2/3)% = 40/2187.

Let us summarize where we stand. F,, = 0 for all even n. For odd
n, we have shown:

h=1/3,

fa =(1/3)*(2/3),
fs = 2(1/3)%(2/3)?,
fr =5(1/3)"(2/3)°.

Can we predict what would happen if we continued? for41 is the
probability of Peter’s being ahead for the first time immediately
after the (2k + 1)st game. For this event to happen, Peter must win
k4 1 of the first 2k + 1 games and lose k of them. But not any k + 1
games will do. forg1 is (1/3)¥1(2/3)F multiplied by the number of
ways of selecting the k 4+ 1 games from the 2k + 1 so that Peter is
never ahead before the (2k + 1)st game. The hard part is to find
this number of ways, which we shall denote by wx. We have found
wo =1, w; =1, wy =2, and w3 = 5; and our work is getting rapidly
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harder. Adding a few more terms to the sequence—we're not saying
how we got them—we have 1, 1, 2, 5, 14, 42, 132, 429. No general
pattern is apparent, and we may as well abandon this approach
towards finding h, the probability that Peter is ever ahead.

However, we have accomplished something, besides just getting
practice in working with probabilities. The numbers wy introduced
in the last paragraph obviously do not depend on our choice of p, the
probability that Peter wins for each game. Thus we have seen that
there is a single sequence wy, wi, wz, ... of positive integers such
that for all p we have. ..

h=wop + wip*q + w.pq* + wap'q® + - -+,

where h is the probability that Peter is ever ahead.

Now we try a different approach towards finding h. Recall that
h may also be described as the probability that Peter is ever ahead
by one game. Let t be the probability that Peter is ever ahead by
two games. To be ahead by two, Peter must first be ahead by one.
At this point, assuming it occurs, we may start keeping score all
over again, and again Peter must get to be ahead by one. Thus to
be ahead by two, Peter must get to be ahead by one twice in a row.
Hence, informally at least, we have t = h%. (The formal details can
be supplied; the difficulty is that, in the case where Peter will never
be ahead by one, it takes “forever” to find out that that is the case.)
We use t = h? to determine h.

The method used now, and many time hereafter, is to consider
the outcome of the first game. If Peter wins the first game, he is then
ahead; the probability this happens is p. If Peter loses the first game,
he is then one game behind and must, counting from that point,
make a net gain of two games; the probability that this happens is
gt. Thus we have h = p + gt = p + gh®. The roots of the quadratic
equation h = gh? + p are

po LEVT—4pg
= 2 ,
To simplify, we note 1 —4pgq = 1—4q(1 —q) = 1 —4q+4¢* = (1 —2q9)*.
Thus the roots of the quadratic equation are

14+ Q1 —2g) and 1—(1 —29)
2q 2q



8.1. The Probability Peter Wins 189

For the first of these, we have
1+(1—-2q) 2-2q 1-¢q
29 2  q

@ 3

The second yields

1-(1-2q) 2q

29 2

Thus, either h = p/q or h = 1. While this does not determine h in
general, it certainly narrows things down.

Suppose Peter has a greater chance of winning in each game than
Paul does; then p > ¢, and hence p/q > 1. In this case, p/q is not
the probability of anything, and hence h = 1. If Peter and Paul have
the same chance of winning, then p = g, and hence p/q = 1. Thus 1
is the only possible value for h in this case. To summarize, if Peter
has at least as good a chance in each game as Paul, it is certain that
sooner or later Peter will be ahead.

Before determining the value of h for p < g, we recall a fact
that was established earlier. There is a fixed sequence wy, wy, ... of
positive integers such that

=1.

h = wop+ wip’q+ wop*q* + -

for every value of p and the corresponding values of g and h. In
particular, from the last paragraph with p = g = 1/2, we see

1= wo(1/2) + wi(1/2)° + wa(1/2)° + -+ -.

Now consider some p withp < 1/2, in other words, withp < g. We
compare the two infinite series in the last paragraph. Leta = 1/2—p;
thenpg=pQ1 —p)=QQ/2—-a)(1—-1/24+a)=1/2—a)(1/2+a) =
1/4 — a? < 1/4. Thus we have

p < 1/2
p’q =ppg < (1/2)1/4) = 1/2)3
P*a* =ppg)* < 1/2)(1/4H* = (1/2)°
P'@ =ppg? < (1/2)1/49* = 1/2),
etc.

Looking at the last paragraph, we see that each term of the series for
h is less than the corresponding term of the series for 1. Thus h < 1;
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in particular, i # 1. But we know that either h = p/q or h = 1. Thus
h = p/q. This completes the determination of & in all cases.

We next find, for each positive integer k, the probability that
Peter is ever ahead by k games. For k = 1, this is the probability h
just found. As noted above, the probability that Peter is ever ahead
by two games is h?. Similarly, since to be ahead by k games means
that Peter must succeed in getting one game ahead k times in a
row, h* is the probability of Peter’s ever being k games ahead. We
summarize our results: The probability that Peter is ever ahead by k
games is

{ 1 ifp>gq,
/9~ ifp <gq.

In the discussion just concluded, play continued no matter how
far Peter was behind. Suppose a one-dollar bet is made on each
game. Then we were considering a situation where Paul was willing
to extend Peter unlimited credit. An alternative situation arises when
Peter and Paul each start with only so much money and play stops
when one of them goes broke. We now study this new situation.

It is clear that one or the other of the players must go broke.
Towards seeing why, we first consider the case where p > g. We saw
above that, if play continues long enough, Peter will be one dollar
ahead. If play continues from that point, he will get to be a second
dollar ahead. Thus eventually, Peter will be ahead by any amount
named in advance. Thus Peter will win all Paul’'s money unless play
is stopped by Peter’s going broke. If p < g, we may interchange the
roles of the players and still conclude that one of them must go
broke. We may be satisfied to know just that much, but Peter and
Paul will want to discuss their individual chances.

Before deriving the general formulas, it is instructive to study
some special cases. The method used here is fundamental in this
chapter and the next one. The method may also be employed in
many cases where the precise circumstances necessary for the
formulas to hold do not apply.

In the first problem we work, besides the assumptions already
announced, we suppose that Peter starts with $1 and Paul starts with
$2. We also suppose p = q = 1/2. We are discussing the situation
where each player bets $1 on each game and play continues until
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one of the players goes broke. What is the probability Paul is the one
to go broke? We present two ways to work this problem.

In both solutions, we note that Peter must win the first game in
order to have a chance of bankrupting Paul. One way to proceed
is now to consider the cases, “Peter wins the first two games” and
“Peter wins the first game, but loses the second” For brevity, we
denote these possibilities by WW and WL. If WW, Paul goes broke.
The probability of Paul's going broke because WW occurs is 1/4.
After WL, the players each have the same amount of money as they
started with; thus they each have the same chance of winning as
they did at the outset. Denote the chance that, starting from scratch,
Paul goes broke by x. The probability of WL is 1/4. After WL, x is the
probability that Paul goes broke. Thus the probability that Paul goes
broke with play starting with WL is (1/4)x. Combining all this,

1+1
X= -4+ —x
4 4

It follows x = 1/3; that is, the probability that Paul goes broke is 1/3.

Now consider the second method of solving our problem. Unless
Peter wins the first game, Paul cannot go broke. If Peter does win
the first game, after that game, Peter has $2 and Paul $1—just the
reverse of the amounts they started with. Thus, at this point, after
Peter has won the first game, the probability of Paul's going broke
is equal to what was the probability of Peter’s going broke when
they started. Let x be the probability Paul goes broke, starting from
scratch. Then 1 — x is the probability of Peter’s going broke, also
starting from scratch. Therefore 1 — x is the probability of Paul’s
going broke after the first game has been won by Peter. For Paul to
go broke, we must first have Peter winning the first game, which has
probability 1/2, and then have Paul going broke after that, which has
probability 1 — x. Thus

X—E( — X).

Again x = 1/3, as we found by the other method.

Now we change the conditions a little. We still suppose Peter
begins with $1 and Paul with $2. We now assume p = 2/3 and
q = 1/3. Now what is the probability that Paul goes broke? With
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symmetry destroyed, the second of the two methods we just used no
longer works. The first method gives, by exactly the same reasoning
as before,

4 2
X = 9 + 9x.
Thus x = 4/7 is the probability Paul goes broke.

Now we are ready to work the general problem. We still suppose
each player bets $1 on each game and play continues until one of
the players goes broke. Since the total amount of money Peter and
Paul have between them is fixed throughout our discussion, it is con-
venient to denote this total by t. Of course, we assume t is a positive
integer. If, at any time, Peter has x dollars, then Paul will necessarily
have t — x dollars. Peter’s chance of being the overall winner clearly
depends on how much money he starts with. Let py, p,, ..., pi—1 be
the probabilities that Peter winds up with all the money assuming
he starts with 1, 2,...,t — 1 dollars respectively. Given that there is
a time when Peter has i dollars, p; is the probability that Peter is the
overall winner; what happened, if anything, previous to that time is
obviously irrelevant to how the game will continue. It is convenient
to complete the picture by assigning the values of po = 0 and pr = 1.

The first step towards finding the values of the p; is to see how
they are interrelated. Suppose Peter has i dollars. He either wins the
next game or loses it. If he wins, the probability is then p;;; that he
will go on to be the overall winner. On the other hand, if Peter loses
the next game, the probability is then p;_; that he will be the overall
winner. Thus we have

Pi = PPiv1 +qpia fori=1,...,t—1.

We also know py = 0 and p; = 1. (In formal terms, we have a
difference equation with boundary conditions. We shall proceed,
however, on an ad hoc basis without using the theory of difference
equations.) Since p + g = 1, we have

(p+ Qpi = ppiy1 + qpi-1.
Thus

q(pi — pi-1) = pPiy1 — Po)-
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If we set r = gq/p, the equation

Pi+1 — pi = ¥(pi — pi—1) (%)

may be used to express the other p; in terms of p;. Settingi = 1 in
(x) we have

p2—p1=rp1—0)=1p1.
Now using () with i = 2 we have
p3—p2=1r(pa—p1) =7'p1.

Continuing in this way we see

Ps— Pz = Vgply

pe—pi—1 =7"'p1.

Adding the sum of the first j — 1 of these equations to p1 — po = p1,
we have

B—po = 01 —p)+@2—p)+ B —p1) = P47+ 7,

Since (1 =" (1 +r+7r*4-.. ¥ 1y =1—-+ and py = 0, we have, unless
r=1,

1—7
B=1_,r- ()
Now for j =t this gives us
171
pe=T_ P
But we know p; = 1; thus
s
=

Returning to (#x), we have for all j

1-F1-r 1-7
BT "1
(As noted above, we need r # 1, thatis, p # ¢; if r = 1, the last
equation is meaningless.)
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To summarize: Suppose Peter starts with s dollars and Paul starts
with t — s dollars. Let p* be the probability that Peter wins all the
money. Then
1=
1=
where r = g/p, unless p = g. We state the result for p = g = 1/2
here, even though we shall defer the proof. (It is easy to modify the
reasoning above to cover this case, but an even easier way to derive
the formula will be apparent later.) If p = g = 1/2, then

*

p

?

The situation we have just discussed is often referred to under
the name of Gamblers’ Ruin. The first printed reference to it oc-
curs in the short treatise of Huygens; we mentioned this treatise in
Chapter One. Huygens ends his work with five problems, the last
of which is, except for some unimportant extra complications, the
special case of what we just did with p = 5/14, t = 24, and s = 12.
Huygens does not give any hint as to the method to be used, but
he does give an answer. He states that the ratio of the probability
that Peter is the overall winner to the probability that Paul is the
overall winner is 244140625 to 282429536481. Montmort, in the first
edition of his book, presents a way of working the problem. Un-
fortunately, Montmort, because he was using a French translation
of Huygens's treatise instead of the original Latin, worked a differ-
ent problem from the one Huygens proposed. While the answer
Huygens gives is not the correct answer to this different problem,
Montmort, apparently using methods well-known to many students,
gets the answer “shown in the book” Johann Bernoulli, the brother
of Jakob Bernoulli, for whom Bernoulli trials are named, wrote a
letter to Montmort pointing out what we just said. (See Chapter Five
for biographical data and a table of Bernoullis.) Johann Bernoulli
also noted that Montmort had overlooked the fact that the two big
numbers in Huygens's answer are 5'2 and 9'2. Montmort agreed that
Bernoulli was right on both points. In the second edition of his book,
Montmort works the correct problem. He obtains the same system
of linear equations that we do. (Since there are 23 unknowns and
no subscripts are used, Montmort uses all the letters of the alphabet
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except a, j, and v as unknowns.) Johann Bernoulli concluded his
letter with a postscript indicating he was enclosing some comments
from his nephew.

Nikolaus Bernoulli was the nephew of Jakob and Johann. In
a letter to Montmort, he gave the general formula we give above.
This letter was written almost a year after the letter of Johann
Bernoulli referred to in the last paragraph. The general formula
also appears, with a proof by mathematical induction, in the book of
Jakob Bernoulli. Since this book was published posthumously after
editing by Nikolaus Bernoulli, it is far from clear which Bernoulli
did what.

Exercises

In those exercises below that mention Peter and Paul, we
continue to make our basic assumptions about how those per-
sons gamble. These assumptions are described in the seventh
paragraph of this chapter.

1. Peter and Paul bet one dollar each on each game. Peter starts
with s dollars and Paul with t — s dollars. They play until one
of them is broke. For practice in a certain kind of reasoning,
answer the following questions without using the general for-
mulas. Some parts of the exercise require the use of the result
of a previous part. What is the probability that Peter wins all the
money if:

p =
a. 1/2
b. 1/2
c. 1/2
d. 1/2
e. 1/2
f.
g
h

1/2
. 1/2
. 1/3

= W = N~ N = NS
W oS O O s Th
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i.1/3 2 3
j.1/3 2 4
k.1/3 1 4
1.1/3 3 4

2. Peter and Paul bet one dollar each on each game. For this ex-
ercise only, we modify our basic assumptions as follows: Peter
is nervous on the first game, and the probability of his winning
that game is 1/3. Thereafter, Peter and Paul each have probabil-
ity 1/2 of winning each game. They play until one of them has
a net loss of $2. What is the probability Paul is the one with that
net loss?

3. To obtain a certain job, a student must pass a certain exam. The
exam may be taken many times. If the student passes on the first
try, she gets the job. If not, she still gets the job if at some time
the number of passing attempts exceeds the number of failures
by two. If at any time the number of failures exceeds the number
of passes by two, she is not allowed ever to take the exam again.
The probability of the student passing on each particular try is
1/2. What is the probability she gets the job?

4. David and Carol play a game as follows: David throws a die, and
Carol tosses a coin. If die falls “six,” David wins. If the die does
not fall “six” and the coin does fall heads, Carol wins. If neither
the die falls “six” nor the coin falls heads, the foregoing is to
be repeated as many times as necessary to determine a winner.
What is the probability that David wins?

5. Three persons, A, B, and C, take turns in throwing a die. They
throw in the order A, B, C, A, B, C, A, B, etc., until someone
wins. A wins by throwing a “one” B wins by throwing a “one” or
a “two.” C wins by throwing a “one,” a “two,” or a “three.” Find the
probability that each of the players is the winner.

6. Four persons, A, B, C, and D, take turns in tossing a coin. They
throw in the order A, B, C, D, A, B, C, D, A, B, etc., until someone
gets heads. The one who throws heads wins. Find the probability
that each of the players is the winner.

7. Adam and Eve alternately toss a coin.



Exercises ] 97

a. The first one to throw heads wins. If Adam has the first toss,
what is the probability that he wins?

**b. Eve must throw heads twice to win, but Adam need throw

heads only once to win. If Adam goes first, find the probability
he wins. If Eve goes first, find the probability that Adam wins.

**c. Each player needs two heads to win, and Adam goes first.

8.

10.

11.

12.

13.

14.

15.

Find the probability that Adam wins.

Peter and Paul bet one dollar each on each game. Each is willing
to allow the other unlimited credit. Use a calculator to make a
table showing, to four decimal places, for each of p = 1/10, 1/3,
.49, .499, .501, .51, 2/3, 9/10 the probabilities that Peter is ever
ahead by $10, by $100, and by $1000.

. Suppose Peter and Paul bet $1 on each game and Paul starts with

$5. For each game, the probability that Peter wins is 1/10. If Paul
extends Peter unlimited credit, what is the probability that Peter
will eventually have all of Paul’s $5?

Repeat the last exercise assuming, for each game, the probability
Peter wins is .499.

Peter needs $100 for a special purpose; he will stop gambling
when he gets it. Peter and Paul bet $10 on each game. If p = .48
and Paul extends Peter unlimited credit, what is the probability
that Peter gets the $100?

Peter has probability 2/3 of winning each game. Peter and Paul
bet $1 on each game. If Peter starts with $3 and Paul with $5,
what is the probability Paul goes broke before Peter is broke?

Peter has probability 1/4 of winning each game. Peter and Paul
each bet $100 on each game. They each start with $400 and play
until one of them goes broke. What is the probability that Paul
goes broke?

Peter and Paul each bet $1 on each game, and each player starts
with $10. Peter has probability 1/3 of winning in each game.
What is the probability that Peter is $3 ahead at some time before
he is $7 behind?

Peter and Paul each have probability 1/2 of winning in each
game. They bet $10 each on each game. What is the probability
that Peter is $100 ahead at some time before he is $50 behind?
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16.

17.

18.

19.

20.

21.

22.

23.

**24.

Peter has probability 2/3 of winning in each game. Peter and
Paul each bet $100 on each game. Peter starts with $200 and
Paul with $600. They play until one of them goes broke. What is
the probability that Peter goes broke?

Peter starts with $10,000 and Paul with $1,000. They bet $100
each on each game. In each game, each player has the same
chance of winning. What is the probability that Peter goes broke?

Peter and Paul each start with $32 and p = .6. They bet $1
each on each game. Use a calculator to find the approximate
probability that Peter bankrupts Paul. [Note: If your calculator
does not have a button for raising numbers to arbitrary powers,
you can find the 32nd power of a number by squaring five times
in a row; since we have (x%)? = x*' (¥)? = x® (®*)? = X6,
(x'%)? = x32. More generally, the (2")th power may be found by
squaring n times.]

Do the last exercise modified so that Peter starts with $8 and
Paul with $56.

Do Exercise 18 modified to provide p = .51, Peter starts with $8,
and Paul with $56.

Do Exercise 18 modified to provide p = .501, Peter starts with
$256, and Paul with $768.

Peter starts with $2048 (2048 = 2!') and p = .501. Paul starts
with billions. Use a calculator to find the approximate probability
that Peter bankrupts Paul, assuming each player bets $1 on each
game. (See the note to Exercise 18.)

Show that, for each positive integer k, there is a sequence ay, ai,
az, ... of nonnegative integers such that the probability Peter is
ever k games ahead is

aop* + aip g + ap™ P + asp e + -,

for all values of p.

If wy, wy, ... are the numbers defined in the beginning of this

chapter, show
1 (2n>
Wy = .
n+1\n
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8.2 The Duration of Play

So far we have considered only whether certain things occur if Peter,
Paul, and we all wait long enough. It is often important to have some
idea of how long it is necessary to wait. For example, if play continues
until someone goes broke, we should study the random variable Y,
the number of games until that happens. Alternatively, given k and
p > q, Y can be the number of games before Peter is k games ahead;
we know that will happen sooner or later. On the other hand, if
p < g, it makes no sense to consider how many games it takes for
Peter to be k games ahead, since that may never happen. When
play is sure to end sometime, it is interesting to consider E(Y), the
average number of games to be played. A preliminary question is
whether E(Y) is defined. In other words, does the infinite series that
defines E(Y) converge? We leave that question for the exercises (see
Exercises 51 and 52). We begin our study of how long play continues
by returning to some examples considered earlier.

As before, besides our general assumptions, we suppose Peter
starts with $1 and Paul with $2. We also suppose each player bets
$1 on each game and play continues until someone is broke. How
long does that take, on the average? (As we just said, here we simply
assume that there is a finite average, leaving the proof for exercises.)
First we do the problem with p = g = 1/2. The same two methods
already used to find the probability of Paul's going broke apply again.
We use the same notation, with W and L, as before. For example, WL
means Peter wins the first game and loses the second; the results of
the remaining games are not specified. We describe the two methods
in turn.

In the first method, we distinguish the cases L, WL, WW. Note
that just one of these cases must in fact arise. The probability of L,
Peter losing the first game, is 1/2. In this case, play stops after a
single game. The probability of WW is 1/4; in this case, two games
settle the matter. The probability of WL is 1/4. However, after WL,
more games must be played. We don’t know how many additional
games are necessary before someone goes broke. However, note that
after WL each player has the same number of dollars he started with.
Thus, on the average, after WL as many games remain to be played
as, on the average, were necessary starting from scratch; the two
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games completed have accomplished nothing. Denote the expected
number of games to be played, starting from the beginning, by y; we
are trying to find y. After WL, the expected number of games still to
be played is y, as we just said. Thus, assuming WL, the total number
of games to be played is, on the average, y + 2. The 2 represents the
number of games that were “wasted” by WL; WL took two games to
get back where we started. Formally the following reasoning uses
conditional expectation, but informally it is intuitively obvious. We
combine the conclusions above into an equation, marking the terms
with symbols indicating the situation covered in each of them:
L WW WL
“ ol iy

Y=g iy e YT
Solving for y we have y = 2, our answer.

Now we try the other way of getting this answer. We distinguish
only the cases W and L, according to how Peter fares on the first
game. If L, it’s all over in one game. If W, after one game the players
have just exchanged the amounts of money they have. Thus, in this
case, after the first game, as many games will still be needed, on
the average, to bankrupt one of the players as were needed, on the
average, at the beginning. Adding the one “wasted” game, and using
y as before, y + 1 is the expected number of games to be played if
Peter wins the first game. We have the equation

i lysy
y=5 1+3u+ ).

Again we find the answer y = 2.

Next we modify the conditions and set p = 2/3, ¢ = 1/3. The
second method no longer works since we have lost the symmetry it
needed. The first method, by the same reasoning we just used, gives
us

L WW WL
O T S P
Y¥=3 9 g YT

Thus y = 15/7, and, on the average, it takes 15/7 games for one of
the players to go bankrupt.

As a first step towards deriving a general formula that covers the
example just completed, we consider a much more general situation.
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We suppose that Peter and Paul agree tobet $1 each on each of certain
games. Whether or not a bet is made on a particular game may be
a matter of chance, perhaps depending on the outcome of previous
games. However, whether a bet is made on a game and the outcome
of that game are to be independent events. In other words, given
that a bet is made on a certain game, the conditional probability
that Peter wins that game is p. Let X be the net amount that Peter
wins overall and Y be the number of games on which bets are made.
Whether E(Y) is defined depends on the agreement between Peter
and Paul; the average number of games on which bets will be made
need notbe finite. We shall determine the relationship between E(X)
and E(Y) on the assumption that E(Y) is defined.

We begin by defining, for each of n =1, 2, ..., random variables
X, and Yy, as follows:

X, =1, Y,=1 if Peter bets on and wins the nth game.
Xp,=-1, Y,=1 if Peter bets on and loses the nth game.
X,=0, Y,=0 if no bet is made on the nth game.

Thus X = X;+Xp+---and Y = Y14+ Y2+ - -. Let ¢, be the probability
that a bet is made on the nth game. Then we have

E(Xn) =1-PX,=1)+ (_1)P(X =-1)= Cnp — Cnq = Cn(p - Q)~
E(Y,) =P(Y,=1)=c,

Thus, for all n, we have E(X,,) = E(Y,,)(p —q). Under the assumption
that E(Y) is defined, it can be shown that E(X) = E(X;)+ E(Xp) + - -
and E(Y) = E(Y7) + E(Y2) + -+, even though there are infinitely
many terms in each sum. Hence we can conclude that

EX) =EMp-9.

We make several applications of the formula just derived. Return
to the situation where Peter starts with s dollars, Paul starts with t —s
dollars, and they make one-dollar bets on every game until someone
goes broke. Y is then the number of games it takes before someone
goes broke. We can easily find E(X). Let p* be the probability that
Peter winds up with all of the money; we have a formula for p*
already. Then 1 —p* is the probability that Paul is the overall winner.
If Peter gets all Paul’'s money, Peter finishes t — s dollars ahead.
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Otherwise, Peter loses all his s dollars. Thus
EX) =p*(t—8)+ (1 —p")(—s) =p't—s.

It can be shown, using Exercise 49, that E(Y) is defined in this case.
We have then, assuming p # g,
pit—s
p-q
This formula may be used to find E(Y) when p # q.

We next consider the case p = g. In this case, E(X) = E(Y)(p — q)
becomes simply E(X) = 0. That won't help us find E(Y), but we can
now derive the formula for p*, stated above without proof. [We may
as well at least announce E(Y) = s(t — s), even though we leave
the proof for the Appendix to this chapter.] We have, as in the last
paragraph, 0 = E(X) = p*t — s. Thus, p* = s/t, as claimed.

We pause briefly for an historical sidelight. DeMoivre, whose
biography appears in Chapter Six, found an ingenious way to derive
the formula for p* in the case where p # q. He found a way to use the
same simple method we just used for the case p = q. See Exercise 51
for the details.

Now we return to the situation considered first. We suppose Paul
extends Peter unlimited credit and they continue betting until Peter
is k dollars ahead. To be sure that Peter will eventually be k dollars
ahead, we need p > g. Since play stops when Peter is k dollars ahead,
X = k, no matter how the individual games turn out. For p > ¢, it
can be shown that E(Y) is defined (see Exercise 52). Thus, forp > g,
we have k = E(X) = E(Y)(p — g) and can conclude

E(Y) = L;

p—q
in other words, it takes k/(p — g) games on the average before Peter
is k games ahead. If p = g, the formula E(X) = E(Y)(p — g) yields
k= 0-E(Y) = 0, which is impossible. The formula fails because E(Y)
is not defined. The original definition of expected value, we recall,
sometimes involves an infinite series. When the series diverges, the
expected value is undefined. We have just shown that Y has no
expected value; in other words, we have shown that a certain series
diverges. Informally, if p = ¢, it is certain that Peter will sooner

E(Y) =
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or later be ahead by k games, but on the average it takes “forever”
before he does this. It almost makes sense to claim that the formula

1
E(Y) = —
r—q
works whenever p > g, on the grounds that it gives “infinity” when

p=q.
The following tables summarize the formulas of this chapter:

Unlimited Credit
p<q P=q P>q

k
Probability Peter is ever ahead by k (g) 1 1
Average number of games before

Peter is ahead by k — — A

No Credit

Peter starts with s. Paul starts with ¢t — s.
Play continues until someone is broke.
r=q/p.
P#4q r=q

o 1-7°
Probability Paul goes broke pF= T~ s/t
pit—s
pP—q

Number of games until someone is broke

Exercises

25. Reconsider each of the situations described in Exercise 1. Again
for practice in a certain kind of reasoning, answer the follow-
ing question without using the general formulas. What is the
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26.

27.

28.

29.

**30.

31.

32.

expected number of games before one of the gamblers loses all
his money?

Cain and Abel are gambling on a series of games. Each starts
with $2. They bet one dollar each on each game. The one who
is ahead becomes overconfident and is more likely to lose. More
precisely:

Probability Probability
If Cain is ahead by Cain wins  Abel wins

-1 2/3 1/3
1/2 1/2
1 1/3 2/3

They play until one of them goes broke. What is the expected
value of the number of games they play?

In the situation described in Exercise 2, find the expected
number of games Peter and Paul play.

In the situation of Exercise 3, how many times does the student

take the exam, on the average.

In the situation of Exercise 5, how many times is the die thrown,

on the average.

a. How many tosses are necessary, on the average, to determine
the winner in each of the situations of Exercise 7b?

b. Repeat part a for Exercise 7c.

Peter and Paul bet one dollar each on each game. Paul starts
with $10. Paul extends Peter unlimited credit. If p = 2/3, what
is the expected number of games before Paul goes broke?

Under each of the sets of circumstances of Exercise 8, find the
expected number of games before Peter is ahead by the amount
specified; say “not applicable” where appropriate.

In Exercises 33-42, find the expected number of games Peter and

Paul play in the situation of the indicated exercise.

33
34
35
36

(Instructions above) Exercise 12.
(Instructions above) Exercise 13.
(Instructions above) Exercise 14.

(Instructions above) Exercise 15.
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37.
38.
39.
40.
41.
42.
43.

44,

45.

46.
47.

**48.

(Instructions above) Exercise 16.
(Instructions above) Exercise 17.
(Instructions above) Exercise 18.
(Instructions above) Exercise 19.
(Instructions above) Exercise 20.
(Instructions above) Exercise 21.

If a computer simulates the series of games in Exercise 22 at the
rate of one million games per second, how long will it take to
finish the simulation, assuming “billions” means “two billion"?

Mr. Lucky has $1000 with him. He plans to make a series of
independent bets at even money at a casino. The probability of
Mr. Lucky’s winning any one bet is .49. He plans to continue
until either he is $100 ahead or he loses the $1000. Mr. Lucky'’s
bets will all be the same size, either $1, $5, $10, $50, or $100.
Use a calculator to estimate the following:

a. For each size of bet, find the probability that Mr. Lucky
succeeds in winning the $100.

b. For each size of bet, how long does it take, on the average, to
settle the matter?

A coin is tossed repeatedly until it falls heads twice in a row.
Find the expected number of tosses necessary.

Do the last problem for heads three times in a row.

A die is thrown repeatedly until it falls “six” twice in a row. Find
the expected number of throws necessary.

Fill in the details of DeMoivre’s derivation of the formula for
p* when p # q: DeMoivre assumed that Peter and Paul played
for “counters” of unequal value. In detail, let My, M;, ..., M; be
counters, with M; worth r* dollars. Suppose Peter starts with
M, ..., M and Paul with the other counters. On each game,
Peter bets the most valuable one of his counters while Paul bets
the least valuable one of his. Peter and Paul play until someone
has all the counters. Show that each bet is fair and assume, as
DeMoivre did, that therefore the overall situation is fair. Now
proceed as we did for p = q.
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**49. Consider Peter and Paul with p > 1/2. Assume play continues
until Peter is ahead. Let Y be the number of games until that
happens. Show that, with wq, w1, wo, ... as early in the chapter,

E(Y) = wop + 3wip*q + 5wop’q” + Twap'q® + - -
Show that this series converges by comparing it to
wo(1/2) + wy(1/2)* + wy(1/2)° + w3 (1/2) + - -+

we have already shown that the latter series converges to 1.

**50. Consider Peter and Paul with p > 1/2. Assume play continues
until Peter is k games ahead. Let Y be the number of games until
that happens. Show that E(Y) is finite by combining the ideas of
the last exercise with those of Exercise 23.

Appendix

We now prove the formula s(t — s) announced above. The circum-
stances, besides the general assumptions of this chapter, are as
follows: Peter starts with s dollars and Paul with t — s. They each
bet a dollar on each game, and play continues until someone goes
broke. Also, each player is as likely to win in each game as his oppo-
nent; i.e., p = g = 1/2. We seek to show that it requires an average
of s(t — s) games before one player has all the money.

Barring trivialities, we suppose s > land t—s > 1;ifs=t—s =1,
it obviously takes just one game to bankrupt one of the players. Thus
the formula gives the correct value in this case. We go on to check
the formula for t = 3,4,5,... in turn. (This process of basing the
proof for each value of t on having established the formula for lower
values of't is called mathematical induction.) The proof for t = 3 will
use the formula for t = 2; the proof for t = 4 will use the formula
for t < 3, etc. In other words, we show, for each particular value of
t, that the formula holds on the assumption that it holds whenever
Peter and Paul start with fewer than ¢ dollars between them.

We need to distinguish three cases according to whether s < /2,
s > t/2, or s = t/2. First suppose s < t/2. Then, since Peter starts
with less than half the money, Paul starts with more than half. Thus,
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sooner or later, either Peter will go broke or Paul will have lost all
but s of his dollars. How long does that take?

S ‘ t— 28 | S

We are concerned with either Peter losing s dollars or Paul losing
t — 2s dollars, whichever comes first. Since s + (t — 2s) < t, by our
assumption about what happens when fewer than ¢ dollars are in-
volved, it takes s(t — 2s) games, on the average, for this situation
to arise. If at this point Peter is broke, play is over. If Paul has s
dollars left, additional games are necessary. The probability of Peter
winning t — 2s dollars before Paul wins s dollars is
s s
s+t—2s t—s

Thus that is the probability that additional games are necessary. How
many additional games will be needed? We are discussing reaching
a situation where Paul has s dollars and Peter t — s, just the reverse
of the way they started. Thus as many additional games are needed,
on the average, as were needed, on the average, overall when play
started. Denote this number of games by x. We have

s
x=s(t —28) + —=x.
t—s

Solving for x, we have x = s(t — s) in the case s < t/2.

Now we cover the other cases. The case s > t/2 is the same
as the first case with the roles of the players interchanged. Thus
the formula holds for s > t/2 also. Finally, suppose s = t/2. Then
each player starts with s dollars. After one game, one player has
s — 1 dollars and the other s + 1. At that point, by the cases already
covered, (s — 1)(s + 1) games remain to be played, on the average.
The total expected number of games needed is thus

1+G6-—D6E+D)=14+s"—1=¢"=s(—25),

since t = 2s. This completes the proof.






Markov Chains

CHAPTER

9.1 What Is a Markov Chain?

In this chapter we generalize the situation considered in the last
chapter. Recall that in the last chapter Peter and Paul were gam-
bling. At any time during their play, their finances were in a certain
condition or state. The word state is the one usually used here. Thus
we had a “system” that could be in any one of a number of states. In
fact, it moved from state to state as time went on. The motion was in
discrete steps; each step corresponded to one game. We shall retain
those concepts from the last chapter. We assumed that the amount
bet was fixed at one dollar. Thus at each step Peter either gained
a dollar or lost a dollar. We now want to generalize and allow the
possibility of change in a single step from any state to any state.

Before we actually make the generalization, we want to pick out
a very important feature of the gambling situation; this feature we
shall retain. Suppose that at a certain time we know that Peter and
Paul each have a certain amount of money. The course of their for-
tunes from that time on depends only on how they stand at that time.
What happened earlier—in fact, whether anything at all happened
earlier—is irrelevant except insofar as it determined how Peter and
Paul stand at the time in question. It only matters where they are,
not how they got there.

209
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Now we are ready to describe our basic assumptions for this
chapter. We have something that can be in any one of a number
of “states” The last sentence is intentionally vague. We are trying
to describe a concept that covers a wide variety of examples—some
such examples may be found in the exercises. It would be easy to be
very specific; each exercise does that. But then we would be trading
broad applicability for useless concreteness. On the other hand, we
could be abstract; we could, for example, require each state to be
a positive integer. Instead we simply say that the states are to be
designated E;, Ej,..., E;. Note particularly that, for simplicity in
this elementary treatment, we assume that there are only finitely
many states.

What is it that moves from state to state? The basic idea is that
the whole system we are studying changes from one condition to
another. Sometimes a physical object actually moves, but frequently
that is not the case. We can say, for example, “The system is in state
E3! Or we can say, “We have state E;" Often we involve ourselves
and say, “We are in state E3” All these statements have the same
meaning.

One feature of random walks that we definitely want to retain is
the following: Taking it as known that the conditions are such-and-
such at a given time, what happens next is not affected in any way
by when that time is. We restate this by using, in a rather informal
way, the conditional probability notation P(A|B):

P(system is in E; at a certain time | system was in E; one stage earlier)

is independent of what time is the “certain time. Before saying even
more, let us simplify the language by regarding the “certain time” as
now. In other words, we view the system as having wandered around
in a way of which we have records in the past, as being somewhere
now, and as having an unknown future ahead of it. A certain key
property of the situation we are now studying is called the Markov

property:
P(system is now in E; | system was in E; one step ago)
= P(system is now in E; | system was in E; one step ago

and any additional information about the past).
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The point is that we get the same value for this probability no matter
when “now” is or what the “additional information” is. Of course, the
past may affect the future, but only by acting through the present.
As long as we are where we are, it doesn’t matter how we got there.

At this point, we have described the properties of a Markov chain.
Let us just agree that when we speak of a Markov chain, we are
saying that we are considering a system along the lines described
above. It doesn't really help to select some particular object, such as
the transition matrix to be described shortly, and say that it is the
Markov chain.

In a moment, we'll give the short biography of the Markov for
whom Markov chains are named. However, we should first explicitly
state that Markov did invent Markov chains. Markov chains formed
only a small part of Markov's work on probability. And probability
formed only a part of Markov’s mathematical work.

A.A. Markov

Andrey Andreyevich Markov (Russian,
1856-1922)

Markov was the son of a middle-level civil servant. He used crutches
until he reached the age of ten. As a student, his work was rather
poor except in the area of mathematics. When he reached an ap-
propriate age, he entered the University of St. Petersburg, where he
remained for his entire career. There he was a student of Cheby-
shev, joining the circle of mathematicians whose work grew out of
the work of Chebyshev. As a teacher, Markov presented lectures
that were difficult to understand; he did not bother with the order in
which he wrote equations on the blackboard. In 1905, after 25 years
of teaching, Markov retired in order to make way for younger math-
ematicians. However he continued to teach the probability course.
In political matters, Markov protested against the authorities to an
extent that would not have been tolerated except that he was judged
a harmless academic. When the Czar intervened to prevent the au-
thor Maxim Gorky (1868-1936) from entering the St. Petersburg
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Academy, to which Gorky had just been elected, Markov was partic-
ularly active in protesting. In 1913, when the authorities organized
a celebration of the 300th anniversary of the Romanovs, Markov or-
ganized a celebration of the 200th anniversary of Bernoulli’s Law of
Large Numbers.

Suppose we have a Markov chain. Then obviously we consider
the probability of going from a state E; to a state E;. But we first
must clarify what we are talking about. We mean the conditional
probability, given being in E;, of going from there to E. The start
in E; is taken as given. There still are two possible meanings for
the probability of going from E; to E. We may mean the conditional
probability given being in E; at one stage of being in E at the next
stage; this probability is denoted by p;;. On the other hand, we may
mean the conditional probability given being in E; of being in E
sooner or later thereafter; this probability is denoted by h;;.

The usual way to specify a Markov chain is to give the values of
the p; for all i and j. These numbers are called the transition prob-
abilities. One way to describe them is to list them all in a table. We
now adopt a certain convention as to how we shall arrange such a
table. (Unfortunately, there are two reasonable arrangements pos-
sible. Some people use one and some the other. All we can say is
what we shall do.) In the ith horizontal row of our table we put the
probabilities of going from E; to each of the other states. In the jth
vertical column, we put the probabilities of coming to E from each
of the states. In other words, we put p; in the ith row, jth column.
Before giving an example, we state that the square array of numbers
just described is called the transition matrix of the Markov chain.

The substance of the last paragraph is perhaps best presented by
considering an example. Suppose a Markov chain has the transition
matrix

1/2 1/4 1/6 1/12
1/3 1/3 0 1/3
0o 1 0 0
1/5 1/5 1/5 2/5

The 1/4 in the matrix is in the first row, second column. Thus p;; =
1/4. If we start in, or at any time are in, state E;, then 1/4 is the
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probability of being in E; one step thereafter. Also, 2/5 = paq4 is the
probability that after being in E; at any one stage we shall also be
there one step later. Since p,3 = 0, it is impossible for a visit to E; to
be followed immediately by a visit to E;. Look at the third row. If we
are in E3 at any stage, we necessarily will be in E; at the next stage.
Observe that in the matrix the total of the numbers in each row is
1; from a certain state we go in the next step to just one other state.
On the other hand, the columns have no particular number as total.

A question of some importance is whether it is possible to get
from state E; to state E. We denote by R, the set of those states that
there is a positive probability of reaching sooner or later after being
in E;. Thus, E; € R; means that it is possible to go from E; to E;, but
not necessarily directly. We have E € R; if and only if h; > 0. A
special case requires a little extra care as to language. To say that
E; € R; is to say that it is possible that we find ourselves in E, again
after having been there once.

It is very easy to determine R; for each i. We fix our attention
on one i. First we list, in any order, the states that can be reached
from E; in one step. (Recall that we do not know in advance whether
E; € R;. We treat E; here like any other state.) Then we consider
the first state on our list. We add to the end of the list all states not
already listed that can be reached from this first state in one step.
Then we check off this first state as having been attended to. Now we
consider the next state on the list and treat it just like the first state.
This process of checking off steps one at a time from the beginning
of the list while adding new states at the end is to be repeated until
every state on the list is checked. Eventually all states on the list
will be checked since there are only finitely many states in all. Now
we have a list of states that can be reached from E; in one or more
steps. Every state that can be reached from a listed state is itself on
the list. In short, the states on the list are all of those that can be
reached from E;; in other words, they constitute R;.

Those states E; for which hy; = 1 differ in a very important way
from those for which h; < 1. Suppose hi; = 1 and we do reach E;
at some stage. To say h; = 1 is to say we must necessarily return
to E; at a later stage. Then, having returned, we are in E,;, and thus
we must again return to E; at a still later stage. In fact, we return
to E; again and again forever. Thus, if we reach E; at all, we must
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reach E; infinitely many times. Now suppose, on the other hand,
that h; < 1 and that we reach E; at some stage. Then there is a
positive probability that we shall never be in E; again. If we do get
back, there is again a chance of leaving for good; and so on. It is clear
that we shall eventually pay a last visit to E; and never come back.
Thus E; can be reached only finitely many times. The following true
statement is rather surprising: Assuming a particular state E; will be
reached, whether we shall be in E; finitely many times or infinitely
many times is not a matter of chance. Which alternative occurs is
predetermined by the structure of the Markov chain. We call the
states E; for which hy; = 1 recurvent. If hy; < 1, we call E; transient.

We next give a method for determining whether a state is tran-
sient or recurrent. Suppose E; is the state we seek to classify. There
are two mutually exclusive possibilities:

1. For every E € R;, we have E; € R;.
2. There is an E; € R; such that E; ¢ R;.

Suppose the second possibility occurs. Then from E; it is possible to
get to a state E; from which return to E; is impossible. In this case,
given sufficiently many visits to E;, we would eventually go from
E; to E; and never thereafter return to E;. Thus there would be only
finitely many visits to E;. It follows that E; is transient. Suppose,
on the other hand, condition 1 above holds. We reason somewhat
informally as follows: If we start in E;, we are always in states from
which a return to E; is possible. For each state we can get to, there is
a positive probability of returning to E; in some particular number
of steps. Since there are only finitely many states that we can get
to, we may let p be the smallest of these probabilities and N be the
largest of these numbers of steps. Then, wherever we get starting
from E;, there is always a probability of at least p of getting back to
E; in N or fewer steps. This insures, since we keep making repeated
tries to return, that sooner or later we shall return. Thus, h; = 1 and
E; is recurrent. To summarize: If there is an E € R; with E; ¢ R,
then E; is transient. If for every E; € R; we have E; € R, then E; is
recurrent.

It is impossible to go, in one or more steps, from a recurrent
state to a transient state. We begin proving this last statement by
supposing the contrary; in other words, we suppose E; is recurrent,
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E; is transient, and E € R;. Since E is transient, there is an Ex € R,
such that E cannot be reached from Ex. But we can go from E; to E
and then to Ex. Thus, since E; is recurrent, we can get from Ej to E;.
Then we can go on to E;, thus reaching Ej from Ei. This contradiction
completes the proof.

What happens in the long run? The transient states can occur
only finitely many times each. Thus sooner or later we must reach
a recurrent state. Thereafter we can only be in recurrent states.

An extreme case of a recurrent state deserves special mention. If
pi = 1, we call E; absorbing. If we reach such an E;, we shall be there
at every stage thereafter. Obviously, an absorbing state is recurrent.
We determine which states are absorbing simply by looking at all the
numbers p;; these numbers appear on the diagonal of the transition
matrix.

Exercises

1. A museum owns a certain three paintings by Renoir, two by
Cézanne, and one by Monet. It has room to display only one
of these paintings. Therefore the painting on display is changed
once a month. At that time, the painting on display is replaced by
a randomly chosen one of the other five paintings. Let E; be “A
Renoir is on display,” E; be “A Cézanne is on display,” and E; be
“A Monet is on display” Find the transition matrix for the Markov
chain just described.

2. Do the last problem modified as follows: The next painting to
be displayed is randomly chosen from among those paintings by
different artists from the painting being replaced.

3. Brands A, B, C, and D of detergent are placed in that order on the
supermarket shelf. A customer either buys again the same brand
as last purchased or changes to a brand displayed next to it on the
shelf: if two brands are adjacent to the old brand, and a change
of brands is made, a random choice is made between those two.
The probability of buying Brand A given that Brand A was the one
purchased last is .9; the corresponding probabilities for Brands B,
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C,and D are .9, .8, and .9, respectively. Find the transition matrix
for the Markov chain involved.

4. The floor plan of a portion of a museum is shown in the diagram
below.

EXIT

Mr. Hadd E. Nuff wants to leave the museum, but he has become
flustered. He is wandering from room to room at random; he is
as likely to leave a room by any one door as by any other door.
However, when he reaches Room F, he can see the exit, and thus
he will definitely go that way and not return. Find the transition
matrix for the path taken by Mr. Nuff: use one state for each room
and one for “out of the area”

5. A sales representative divides her time among six cities, located
as shown in the sketch map below. The map also shows which
pairs of these cities have scheduled air service; such pairs are
connected by a line segment marked with the number of flights
per day in each direction. The representative, for reasons that we
do not explain, chooses a flight at random from those going from
the city she is in to one of the other five cities; after completing
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her business in the latter city, she repeats this process. Find the
transition matrix of the Markov chain involved here.

6. There are three slot machines in a row. A man chooses which
machine to play according to the following rule: Whenever a
machine pays him anything, he plays that machine again. Oth-
erwise he changes to another machine adjacent to the one he
was playing; if he was playing the middle machine, he chooses at
random from the other two machines. The machines pay off, in
order from left to right, 10%, 10%, and 5% of the time. Find the
transition matrix.

7. A certain company classifies its credit accounts as “current,” “in-
active,” or “closed.” The status of any account for a calendar month
is determined on the first day of that month. An account that is
current now has probability .8 of still being current a month from
now; otherwise it will be inactive. An account that now is inactive,
but has been current at some time during the past three months,
is as likely to be current as to remain inactive a month from now;
it will not be closed. An account that is now inactive and was last
current four months ago has probability .2 of being current next
month; otherwise it remains inactive. An account that is now in-
active for the fifth consecutive month has probability .1 of being
current next month; otherwise it will be classified as closed next
month. A closed account remains permanently closed. Find the
transition matrix of the Markov chain involved here. (Note: The
hard part is determining what the states are.)
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8. For each of the following transition matrices, determine R; for

all i. Which states are recurrent, which are transient, and which

are absorbing?
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9.2 Where Do We Get and How Often?

The technique used to find the h;; is one we have been using regularly
for some time now—consider what happens at the first step. Starting
in E;, either the first step is to E or it is to somewhere else. If the
first step is to Ex with k # j, the probability of reaching E eventually
is hy;. Thus we have
hi = py + )_ pihs.
ki

Recalling that there are s states, we see there are s different h; and
consequently s* equations of the form just given. In other words, we
have s linear equations in s? unknowns. Fortunately, not every un-
known appears in every equation. Only those h; with one particular
j appear in any one equation. Thus we have in fact s systems each
of s linear equations in s unknowns. Each system may be treated
separately and used to find all hy for a certain j. There is a slight
problem, however: The equations need not have a unique solution;
by themselves they do not always determine the h;. This problem
almost solves itself. We know how to find out which h;; are zero. As
a matter of common sense, it is reasonable to replace by zero any h;
that we already know to be zero. It can be shown that the equations
we have after this is done will always have a unique solution.

Let us carry out the instructions of the last paragraph in an
example. It is a good idea for the reader to try to understand why
each step we take is correct, but it is also possible just to follow
along mechanically. For two reasons, we choose an example where
the transition matrix has lots of zeros. In the first place, since we
shall be solving systems of linear equations by hand, it is important
to keep the computations simple. But also it is important to illustrate
the situations that arise when certain states cannot be reached from
certain other states. Suppose we have a Markov chain with transition
matrix

1/2 1/3 1/6 0 0
2/5 1/5 0 2/5 0

0O 0 1 0 0
O 0 0 2/3 1/3
0 0 0 3/4 1/4

Our goal is to find all the hy;.
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We are instructed to treat all h; with the same last subscript
together. Thus we start by finding hi1, hai1, ha1, ha1, hs1. Since we are
discussing the chances of ever reaching E,, it is not surprising that
we treat the numbers in the first column of the transition matrix
differently from those in the other columns. Starting in E;, there
is a probability of 1/2 of reaching E; again in one step. There is a
probability of 1/3 of reaching E; in the first step and a probability of
h; of going on from there to E; later. Similarly for 1/6, E3, and hs;.
Thus we have

hi1 =1/24 (1/3)hz + (1/6)ha.

Analogous reasoning gives us

hyy = 2/54 (1/5)ha + (2/5)ha,

]’l31 = h317

ha = (2/3)h41 + (1/3)hsy,
hs, = (3/4)ha1 + (1/4)hs:.

We have five equations in five unknowns. But the third equation,
h31 = hay, is useless. And each of the last two equations simplifies to
h4 = hs,. Thus these five equations by themselves are not enough
to determine the h;. However, either by determining the R; or by
inspection, we can find out which h; are zero. In the case at hand,
clearly h3; = 0, since we can never leave Ej3. Likewise from E4 and
Es only E4 and Es can be reached. Thus, hy = hs; = 0. Inserting
these zeros in our equations we have the new system,

hi1=1/24 (1/3)hy,
ha1 = 2/5+ (1/5)har.
We can solve these equations easily finding h;; = 1/2 and then
hy = 2/3.
Next we find hyy, hgy, hsz, haz, hsy. Learning by experience, we

write down at once hzz = haz = hs; = 0. Now we write out only the
useful equations. These are

hiz = (1/2)hi; +1/3,
haa = (2/5)h1z +1/5.

Solving, we find h;; = 2/3 and hy; = 7/15.
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As for those h; with j = 3, the ones that obviously are zero are
h4s and hsz. Our procedure therefore calls for writing the equations,

hiz = (1/2)hi13 4+ (1/3)ha3 + 1/6,
h2z = (2/5)h13 + (1/5)hzs,
haz = 1.

Solving we have hi3 = 1/6, hyz =1/2, haz = 1.
We next do hy with j = 4. Clearly hzs = 0. Our equations thus are

his = (1/2)h14 + (1/3)h24,

h24 = (2/5)h14 + (1/5)h24 + 2/5,

]’l44 = 2/3 + (1/3)h54,
]’l54 = 3/4 + (1/4)h54~

The first two equations yield hyy = 1/2, hyy = 3/4. The last two
equations yield hyy = 1, hsy = 1. (Alternatively, we could have
found hy4 and hsy another way. The abstract principle involved is
the following: If E; is recurrent, then either h; = 0 or h;j = 1; nothing
in between is possible. Because, assuming a start in E;, there will be
infinitely many returns to E,; if it is at all possible to reach Ej, sooner
or later E; will be reached. In the case at hand, E,4 is recurrent, and
thus hgs # 0. Also hsq # 0 since pss4 # 0, and Es is recurrent. It
follows that h44 = h54 = 1.)

Finally we treat the h; with j = 5. Clearly hzs = 0. We have the
equations,

his = (1/2)h1s + (1/3)has,

has = (2/5)his + (1/5)has + (2/5)hus,

has = (2/3)hss +1/3,
]’l55: (3/4)h45+1/4.

The last two equations yield hys = 1 and hss = 1. (The alternative
method of the last paragraph may be used here if we prefer.) Then
the first two equations give us his = 1/2 and hys = 3/4. (That
his = his and hys = hys is not a coincidence. As already noted,
hss = 1 and hsy = 1. Thus, if we reach either of E; and E5, we shall
surely reach the other one later. Thus the probability of reaching E4,
from any starting point, is the same as the probability of reaching Es.)
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When E is transient, there can be only finitely many visits to E
over the course of time. Under these circumstances, and only then,
it is reasonable to consider the expected number of visits to E after
a start in E;. We denote this number by v;. Thus, v; is defined only
when h; < 1. If i = j, the question arises of whether to count the
start in E; as a first visit to E;. In the end, although not immediately,
it turns out to be simpler to say that “after” really means “after” Thus
the start in E; does not count, and v; is the number of returns to E;
after a start there.

Before computing the v; in general, we consider the case with
i = j. First note that v; is defined only when E,; is transient, in other
words, only when h; < 1. We start in E;. Perhaps there is a return
visit to E;j; perhaps not. If there is, we repeat the process. We may
thus consider a system of Bernoulli trials. A success is leaving E;
for good; a failure is a return to E;. In standard notation, we have
p =1 —hy and g = h;. The average number of trials to get one
success is 1/p. Since only the last trial is a success, there are on the
average 1/p — 1 failures before the first success. A failure is a return
to E;. Thus the average number of returns to E; is 1/p— 1. In symbols,

1
v = — — 1.

Thus we have,

Vg —m — = — = .
i P P 1 _ hii

Now we consider v; with i # j. Assuming a start in E;, we have

hy; as the probability of eventually reaching E,. If E is never reached,

the number of visits to E; is zero. If E is reached, we have the first

visit plus, by the last paragraph, an average of h;/(1 — h;) return
visits. Thus

1-h+hy Ry

hy
7 — 1 — hi' . 0 hi 1 = h1~ = .
=) +J(+1—@ R 1—hy

Now we see that the formula

e —
Tl
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holds whenever E; is transient. We verified it for i = j in the next-to-
last paragraph and for i # j in the last paragraph.

It is hardly necessary to give an example illustrating the compu-
tation of the vy; after we have found the hy, we just substitute in a
simple formula. Nevertheless, we do return to the example where
we found the hy. Recall vy is defined only when E is transient. In
the example, that means for j = 1 and j = 2. Furthermore, if hy; is
zero, then vy is zero; that conclusion may be obtained either from
the definition of v; or from the formula. Thus, besides noting which
vy are zero, we need only compute

2/3
1-2/3 7
1/2
1-2/3
2/3
1-7/15
7/15

SR VER— Y
Ve = s

U =

Vg1 = =3/2,

5/4,

V12

Exercises

9. For the transition matrix

1 0 0 0
1/2 1/4 1/4 0

0 1/2 0 1/2|’

o 0 0 1

find:

a. hy.

b. hg,.

c. All of the other hy;.

10. For the transition matrix of the last problem, find all v;;.
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11. For the transition matrix
1 0 0 0 0
1/4 1/4 1/2 0 0
0o 1/2 0 1/2 0 [,
/3
1

0o 0 1/3 1/3 1
o o0 o0 0
find
a. ho.
b. hy.
c. all the other h;;.
12. For the transition matrix of the last problem, find all v;;.
13. For the transition matrix

1 0 0 0
1/4 1/4 1/4 1/4

0 1/4 1/4 1/2]°

o 0 o0 1

find

a. hy.

b. hy.

c. all the other hy;.
14. For the transition matrix of the last problem, find all v;;.
15. For the transition matrix

1 0 0 0 0
1/2 1/2 0 0 0
0 1/4 1/4 1/4 1/4
0 0 0 1 0
0o 0 0 o0 1

?

find

a. hoy.

b. ha,.

c. all the other h;;.

16. For the transition matrix of the last problem, find all v;;.
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17. Find all vy for the transition matrix

1/2 1/2 0 0 0
[1/4 344 0 0 0 w
0 0 1/3 2/3 0
{ 0 0 1/2 1/2 0

0 1/3 1/3 0 1/3

18. Find all vy for the transition matrix

1/2 1/2 0 0
1/2 1/2 0 0
1/2 0 1/4 1/4
0 1/2 0 1/2

19. Find all vy for the transition matrix

1/2 1/2 0
1/2 0 1/2
0 0 1

20. Find all v; for the transition matrix

1 0 0 0
1/3 0 1/3 1/3
0o 0 1 0
0 1/3 1/3 0 1/3
0 0 0 0

— S~ O O O

21. Find all vy for the transition matrix

1/3 1/3 1/3
0 1 0
0 1/2 1/2

9.3 How Long Does It Take?

We have already discussed where we go if we start in a certain state.
We next discuss how long it takes to get there. Suppose h; < 1 and
we start in E;. There is a possibility that we shall never reach E;. Thus
it makes no sense to speak of the average time needed to reach E,.
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Suppose, on the contrary, h; = 1. Then it can be shown, using the
fact that there are only finitely many states in all, that there is a
finite average number of steps needed to reach E; after a start in E;.
We define r;; to be the expected number of steps to reach E; for the
first time after a start in E;. Note particularly that r; is the number of
steps necessary to be in E; again after a start in E;. Thus r; is defined
only when h; = 1, that is, when E; is recurrent.

The method used to evaluate the r;; is quite like the one we used
earlier to find the h;. We fix our attention on a particular r; first.
Since r; is defined, we have hy; = 1. We are finding how long it
takes to get from E; to E. Obviously it takes at least one step. If
the first step is not to E, then, and only then, additional steps are
necessary. In more detail, if the first step is to Ex with k # j, then we
need an average of ri; additional steps. Note the 1y must be defined
in these circumstances: We know in advance that starting in E; we
must eventually reach E;. We also know that it is possible to get from
E; to Ex in one step and that k # j. Thus it must be certain that,
having gotten to Ex, we shall go on to E. In short, if r; is defined,
k # j, and py. > 0; then ry; is defined. We repeat what we were saying.
To get from E; to E takes at least one step. If the first step is to Ejx
with k # j, then r; additional steps are needed. In ad hoc notation
we have

*
ry=1+ Zplkr;q.

By Y_* we mean, “sum over all k for which k # jand p; # 0. Note that
the equations are almost, but not quite, identical to those we used to
find the hy;. As with the hy;, those r; with a particular j are determined
together. The equations of the form just given that involve these r;
always constitute a system of linear equations that can be shown to
have a unique solution.

We give an example of finding the r;;. Suppose our Markov chain
has transition matrix

/2 0 0 1/2
0o 0 1 0
0 1/4 3/4 0
0 1/5 0 4/5



9.3. How Long Does It Take? 2727

The first step is to determine for which i and j there is an r;;. Recall
ry is defined only when h,; = 1. It might appear that we therefore
need to compute all of the hy as a first step towards finding the r;;.
We are prepared to do just that if necessary. In an example as simple
as the one we are working, however, it is clear by inspection which
hi are 1. Since E; cannot be reached from any other state, we have
hy1 = ha1 = hgyy = 0. From E; there is a chance of going to E4, from
which return to E; is impossible; thus h;; < 1. We conclude r; is not
defined for any i if j = 1. Now consider j = 4. It is clear that, from
E;, sooner or later we will go to E4. Thus h14 = 1 and ry4 is defined.
Since E; cannot be reached at all from either E; or E3, we see that
both rz4 and r34 are meaningless. Wherever we start, it is clear that
eventually we shall be wandering between E; and Ej3, reaching each
of them from time to time; thus, h; = 1 for j = 2, 3. Therefore, r;; is
defined provided j = 2 or 3. To summarize, 113, 113, ¥14, Y22, 723, ¥32,
Y33, Y42, 743, are the only r; that make sense.

We next evaluate the r;. We begin with j = 2. In doing that, we
treat the second column of the transition matrix differently from the
other columns. Since p;; = 0, to get from E; to E; we make a first
step and then a number of additional steps, how many additional
steps depending on where we went with the first step. Either by
looking back at the last paragraph, or by thinking it out, we see

2 =1+ 1/2)r1; + (1/2)r4z.
ra2 =1+ 732,
vz =1+ (3/4)r32,
Yap =1+ (4/5)142.

In writing the last two equations, we used the fact that if the first
step is to E,, no additional steps are necessary to reach E,. We find
inturn ra; = 4, r42 = 5, 125 = 5, r12 = 7. The next set of equations,
forj=3, is

i3 =1+ (1/2)r13 + (1/2)r43,
raz =1,

r33 =1+ (1/4)7r23,

rg3 =1+ (1/5)123 + (4/5)743.

Solving we find ry3 = 1, 143 = 6, r13 = 8, 33 = 5/4. The last set of
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equations, for j = 4, consists of just one equation,
ra =14 1/2)r1..

The solution is r14 = 2.

We can apply the method just described to the following problem:
How many Bernoulli trials are necessary, on the average, to get ¢
consecutive successes? It takes a little care to put this problem in
terms of a Markov chain. The key point can be described by an
example. Suppose ¢ = 7, that is, we are trying to get seven successes
in a row. Assume that at some time the last three trials were all
successes. It makes no difference whether these three trials were
immediately preceded by a failure or they were the first three trials.
We do want to distinguish those two possibilities from the situation
where the three successes were immediately preceded by another
success.

Now we're ready to define a Markov chain. In this one example, it
is convenient to number the states from 0 to ¢, contrary to our usual
practice of numbering the states from 1to s. Foreachi=0,...,c¢—1,
we may define the state E; as follows: To be in E; is to just have
completed exactly i successes in a row. Thus we start in Ey and
return to Ey after each failure. Put the other way round, to be in E;
means we have ¢ — i successes to go to complete the ¢ consecutive
successes we are seeking. It makes no difference what happens
after we have obtained the ¢ consecutive successes. We may as well
introduce an absorbing state for the situation “game over”; we call
this state E.. Thus we have a Markov chain with ¢ + 1 states, and we
seek ro;, the average number of steps necessary to reach E, after a
start in Eq.

Towards finding rq,, the first step is to find the transition matrix.
Suppose we are in E; with 0 < i < ¢ — 1. If the next trial results in
success, we move to E, 4, that is, p,;11 = p. (Of course, p and g have
their usual meanings for Bernoulli trials.) If the next trail results
in failure, we go back to Eo, that is, piy = q. Necessarily then, for
0<i<c—1,p;=0ifj#0andj# i+1. Clearly, p; = Ounlessj =c,
but p,, = 1. We write out the equations that we suggested above as
a means of finding the ri;; here we want j = ¢, of course. Using the
values for pj just given, we have

Tie = 1 + prigic + groc,
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provided 0 <i<c¢— 2. Fori=c¢— 1, we have
Yeeie =1+ groc.

For brevity, we setx; = r._; . fori=1,...,¢. Thus we seek to find x,
by using the system of equations:

X] = 1 + qXCr
X =14+px; +gx,
X3 =14+pxs +qgx, (%)

Xe =14 px._1 + gx;.

We can simplify matters by subtracting each equation from its
successor. We have then

Xy — X = px1,
2
X3 — X3 = p(xz — Xx1) = px,

X4 — X3 = p(X3 — X3) = pSXL

Xe — X1 = P(Xem1 — Xe—2) = P71 X,
Adding we have
X —x=xp+p°+ - +ph,
xe=x(1+p+p*+-+pH.
Using the first equation of () again, we have
X = (1 + qxc)(l +p+-- +pc_1)r
axc =1+ aqx)1 —p) A +p+-+p7),
= (1+gx)(1 —p°).
=1+qx. —p° — pqx..

Hence

X, va
That answers our question; (1 — p®)/(p°q) is the average number of
Bernoulli trials necessary to get ¢ successes in a row.

We started this chapter by announcing we were going to gener-
alize the ideas of the last chapter. Recall that in the last chapter one
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question discussed was how long it takes for someone, either Peter
or Paul, to go broke. We answered that question even though we
didn't know which player would go broke. In our present language,
we were finding, for certain Markov chains, how long it takes to be-
fore an absorbing state is reached. In other words, how many of the
steps taken go to transient states?

We may as well generalize by considering an arbitrary Markov
chain. As we have already noted, there will come a time after which
only recurrent states are visited. How long does it take for this sit-
uation to occur? We already have at hand almost all the machinery
needed to answer this question.

Our first chore, however, remains to be described. This chore
consists of replacing the given Markov chain with a new chain. The
transient states are left unchanged. We replace all the recurrent
states by a single state, E*. Since the new states are described in
terms of the old, the transition probabilities are just the already-
known probabilities of going from one state to another. To spell this
out, the probability of going from any transient state to another
remains the same. The new state E* is to be absorbing, since it
is impossible to go from a recurrent state to a transient state. The
probability of going from a transient state E; to E* is the sum of the
probabilities of going from E; to the various recurrent states of the old
chain. At the risk of undue repetition, let us state what is to be done
mechanically. We assume the new state E* is to be considered the
last state corresponding to the bottom row and right-hand column
of the matrix. The first step is to strike out from the given matrix
the rows and columns corresponding to the recurrent states. Then a
new column is inserted at the right; the entries in this new column
are determined by the fact that the total of each row must be one.
Finally a new row, consisting of Os followed by a single 1, is added at
the bottom. Now we are ready to use the method developed earlier
in this section.

At this point, we have completely described a method of find-
ing the answer to the question raised two paragraphs back: Given a
Markov chain, for each transient state, assuming a start in that state,
what is the average number of steps needed to reach a recurrent
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state? First we modify the transition matrix in the manner just de-
scribed. That r; that corresponds to going from the given transient
state to the new state E* is the answer to our question.

Let us consider an example. Suppose a Markov chain has
transition matrix

1 0 0 O
1/2 1/3 0 1/6
0 1/2 1/2 0

0 0 0 2/7 4
Lo 0 0 0 0

0 0]
0 0
0 0
0 0 1/4 3/4 0 0 |
1/7 /7
1_.

E; and Eg4 are absorbing, and hence recurrent. Ez and E,4 are clearly
also recurrent. Now we see that E; and Es are transient. Accord-
ingly we delete the first, third, fourth, and sixth rows and the
corresponding columns. Now we have the matrix

0 1/6
1/7 2/7|
This is not a transition matrix, but we make it into one by inserting
an extra row and column:

0 1/6 5/6
1/7 2/7 4]7
0 0 1

For this last matrix we have

ri3 =14 (1/6)r23,

ro3 =1+ (1/7)r13 + (2/7)723.
From this we find ry3 = 48/29 and ri3 = 37/29. In other words,
returning to the original Markov chain, it takes an average of 48/29

steps to reach a recurrent state if we start in Es, and an average of
37/29 steps if we start in E;.
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Exercises

22. Find all r; for the transition matrix

1/2 1/2 0
1/2 0 1/2
0 0 1

23. Find all r; for the transition matrix

0 1/2 1/2
1 0 0
0 1 0

24. Find all r;; for the transition matrix

1/3 1/3 1/3
0 1 0
0 1/2 1/2

25. Find all ry for the transition matrix

1/2 1/2 0 0
[1/2 1/2 0 0
1/2 0 1/4 1/4
L 0 1/2 1/4 1/2

26. Find all r; for the transition matrix

1/2 0 1/2
0 1/2 1/2
0 1/3 2/3

27. Find all ry for the transition matrix

1 0 0 0
01 0 0

0 0 1/2 1/2
0 0 1/2 1/2
0 1/3 0 1/3

1

0
0
0
0
/

|
!

3
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28.

29.

30.

31.

32.

33.

Find all r;; for the transition matrix

1/2 12
1/3 2/3

Find all r;; for the transition matrix

1/2 1/2 0
3/4 0 1/4
0 1/4 3/4

Show that the formulas of Chapters Four and Nine agree as to
the number of Bernoulli trials needed to get one success.

a. Assuming a coin to be tossed once a second, how long would
it take, on the average, of ¢ = 5, 10, 15, 20, 25, 30, 40, 50 to
get ¢ heads in a row?

b. Assuming a die to be thrown once a second, how long would

it take, on the average, for each of ¢ = 5, 10, 15, 20 to get ¢
“sixes” in a row?

¢. Assuming a die to be thrown once a second, how long would
it take, on the average, for each of ¢ = 5, 10, 25, 50, 75, 100,
125, 150, 175, 200 to get ¢ consecutive throws none of which
is a “six"?

Letters are chosen at random, with replacement, from the word
BANANA

until each of the three different letters B, A, and N has been
drawn at least once. Find the expected number of times a letter
is drawn. (Hint: Assign a state to each of “nothing,” B, A, N, BA,
BN, AN, BAN.)

On the average, how many times must one throw a die to obtain a
“one,” a “two,” and a “three,” in that order, on consecutive throws?
Suggestion: Let E4 be “mission accomplished.” Let E3 be “one”
and “two” just thrown, “three” still needed. Let E; be “one” just
thrown, “two” and “three” still needed. Let E; be nothing useful
yet done. Be careful; note for example: If you are in E3, needing
only a “three” and you throw a “one,” then you go to E, not to E;.
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34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

**45,

**46.

47.

On the average, how many times must one throw a die to obtain
a “one” a “two,” and another “one/” in that order, on consecutive
throws? Suggestion: Modify your solution to the last problem.

On the average, how many times must one throw a die to obtain
a “one,” another “one” and a “two,” in that order, on consecutive
throws?

On the average, how many times must one throw a die to obtain
a “one” a “two, and another “two/” in that order, on consecutive
throws?

On the average, how many times must one throw a die to obtain
three consecutive throws that fall alike?

On the average, how many times must one throw a die to obtain
three consecutive throws no two of which fall alike?

A coin is tossed repeatedly until it falls heads—-tails-heads, in that
order, on three consecutive tosses. Find the expected number of
tosses necessary.

A coin is tossed repeatedly until it falls tails-tails-heads, in that
order, on three consecutive tosses. Find the expected number of
tosses necessary.

A coin is tossed repeatedly until it falls heads-tails-tails, in that
order, on three consecutive tosses. Find the expected number of
tosses necessary.

On the average, how many times must one toss a coin to obtain
three consecutive tosses that fall alike?

On the average, how many times must one toss a coin to obtain
three consecutive tosses that do not fall all alike?

On the average, how many times must one throw a die to get six
consecutive tosses that fall alike?

A die is thrown repeatedly until it falls “one,” “two, “three,
“four” “five” “six in that order, on consecutive throws. Find the
expected number of throws made.

A die is thrown repeatedly until six consecutive throws show six
different numbers. Find the expected number of throws made.

In the situation in Exercise 3, if the customer buys Brand A now,
how long will it take before the customer buys Brand D?
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48.

49.
**50.

**51.

52.

53.

54.

55.

In the situation of Exercise 1, if a painting by Renoir is on display
now, how long will it be, on the average, before a painting by
Cézanne is on display?

Do the last problem for the situation of Exercise 2.

In the situation of Exercise 4, for each possible starting point,
how many of the rooms does Mr. Nuff pass through, on the
average, before he leaves the museum?

In the situation of Exercise 7, if an account is now current, how
long will it be, on the average, before the account is closed?

For each state, assuming a start in that state, how long does it
take, on the average, to reach a recurrent state for the transition
matrix

1 0 0 0
1/4 1/4 1/4 1/4
0 1/4 1/4 12
0o 0 0 1

For each state, assuming a start in that state, how long does it
take, on the average, to reach a recurrent state for the transition
matrix

1 0 0 0

1/2 1/4 1/4 0
0 1/2 0 1/2
0 0 0 1

For each state, assuming a start in that state, how long does it
take, on the average, to reach a recurrent state for the transition
matrix

1 0 0 0 0
1/5 4/5 0 0 0
0 1/3 1/3 1/3 0
0 1/4 0 1/2 1/4
1

0 0 0 0

For each state, assuming a start in that state, how long does it
take, on the average, to reach a recurrent state for the transition
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matrix
1/2 1/2 0 0
1/2 1/2 0 0
1/2 0 1/4 1/4
0 0 1/2 1/2

56. For each state, assuming a start in that state, how long does it
take, on the average, to reach a recurrent state for the transition

matrix
[ 1 0 0 0 0 0]
0 0 1/2 1/2 0 0
o 1/3 0 2/3 0 0
0 1/4 1/2 1/4 0 0 |
1/4 0 0 0 1/2 1/4
| 0 1/2 0 0 1/2 0 |

9.4 What Happens in the Long Run?

Before getting to the main subject matter of this section, which
concerns what happens in a Markov chain after a recurrent state
is reached, we introduce some notation. There is an obvious gen-
eralization of the numbers pj; introduced earlier. Recall pj; is the
conditional probability, given being in E, at some stage, of being in
E; one stage later. We now let p;(n) be the conditional probability,
givenbeing in E; at some stage, of being in E; just n stages later. Thus,
pi(1) means the same as pjy. It is not surprising that the p;(n) can
be computed easily from the py, in other words, from the transition
matrix. We start with the p;(2); in fact, think of just one p;(2). We
seek the probability, assuming we start in E;, of being in E after
two steps. At the first step, we do go somewhere. We find p;;(2) by
summing over all k the probabilities of going from E; to Ex in one
step and then going on to E at the next step. In symbols,

p5(2) = paby.
k

These formulas may be used to find all the p;;(2). There are two
corresponding formulas for the p;(3). To get from E; to E; in three
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steps, we may go from E; to Ex in two steps and then on to E in one
additional step. Summing over all k, we have

pi(3) = > _ px(2)py.
k

Alternatively, we can consider going from E; to Ej in a single step
and then on to E in two additional steps. Thus,

py3) =) papi(2).
k

To find p;;j(4), we may use any one of three different formulas. They
are

ps(4) = pa(3)py,
k

pi(4) =Y p(2)pii(2)
k

pi(4) = papii(3).
k

There is no point in trying to describe all formulas along these lines;
they are really quite obvious. We simply record one fact that we shall
need later; for all », i, and j,

ps(n+1) = pa(mpy.
k

[This paragraph is intended for those readers who happen to
know the definition of matrix multiplication. These readers will
recognize the similarity between that definition and the formulas
above. It is evident that, for each n, the matrix that has p;(n) as the
entry in the ith row, jth column is simply T", the nth power of the
transition matrix T.]

Given a transition matrix, the computation of any particular p;(n)
is easy, though perhaps tedious. It is also an easy task for a computer.
We shall not give exercises that involve making this computation
since our only goal in introducing the notation was to use it in
discussing theory.

Let us fix our attention on all p;(n) with a particular i and n. In
other words, we assume a start in E; and consider what happens n
steps later. The numbers

pia (M), pe(n), ..., pis(n)
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are the probabilities of being in the various states exactly n steps after
a start in E;. Thus, of course, each of these numbers is nonnegative,
and the numbers total 1. We generalize. Any list of s nonnegative
numbers that total 1 will be called a probability vector. (The word
vector is used here simply to indicate that we have alist of numbers.)
To restate the definition, (a1, az, ..., as) is a probability vector if

S
0<g forallj=1,...,s; andZag:l.
=1

Suppose the probability vector (a, ..., as) gives the probabilities
of being in the various states at some time. We mean, of course, that
a; is the probability of being in E; at that time. For convenience, call
the time in question “now.” What is the probability b of being in E
exactly n steps from now? The conditional probability, given being
in E; now, of being in E after n steps is p;(n). Since we must be
somewhere now,

b = Zaipij(n)~

In the special case n = 1, we see that b is the probability of being in
E; one step from now, and

bj = Z aipij.

We next give a definition whose importance will become obvi-
ous in the discussion that follows it. We call a probability vector
(my, ..., ms) fixed if the assumption that the numbers my, ..., ms are
the probabilities of being in the respective states at some time leads
to the conclusion that these same numbers are also the probabilities
of being in those states one step later. In other words, a probability
vector (my, ..., my) is called fixed if

mj = Z mp; for all ;.

Of course, if one step does not change the probabilities, a second
step will not change them either. Thus, if (my,..., ms) is a fixed
probability vector that gives the probability of being in each of the
states at a certain time, it also gives these probabilities at every later
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time. In symbols,
m= ) mipy(n)

for all n.

At present, we do not know which Markov chains have a unique
fixed probability vector, but, given such a chain, finding the fixed
probability vector is easy. We may as well discuss how to do that now,
even though we do not yet know the significance of such vectors. A
fixed probability vector (my, .. ., m,) is simply a solution of the linear
equations

m= mpy
i
Zm,‘ =1.
i

Thus we need merely solve these linear equations in the unknowns
my, ..., M. No harm is done by the fact that we have s unknowns
and s+ 1 equations. (Working by hand, we just ignore some of the
information. If we seek to use a computer program that allows for
only as many equations as unknowns, we simply omit any one
equation except the last. It is easy to see that the omitted equation
will automatically be satisfied by any solution of the others.) Thus,
assuming the equations have a unique solution, we may find this
solution in a routine way.
We give an example. Consider the transition matrix

2/3 1/3 0
1/4 1/2 1/4
0 4/5 1/5

We shall show that there is just one fixed probability vector and find
this vector. Suppose x, y, and z are the probabilities of being in E;, E;,
and Ej at a particular time. Let us compute the probability of being
in E; one stage later. We can get to E; directly from E;; the probability
we are in E; and then stay in E; is x(2/3). Likewise, the probability of
being in E; and then going to E; in a single step is y(1/4). We cannot
get from Ej to E; in a single step. Thus the probability of being in E;
one step after the “particular time” is

(2/3)x+ (1/Dy.
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If (%, y, 2) is to be a fixed probability vector, we must have
x=(2/3)x+ (1/4)y.
Likewise, we need

y=@1/3)x+ (1/2)y+ (4/5)z,
7= (1/4)y + (1/5)z.

These last three equations clearly do not determine (x,y,2); x =y =
z = 0 satisfies all of them but is not the solution we seek. We want
%, Yy, and z with

x+y+z=1.

Now we have four equations. We discard the most complicated, that
is, the second, of them and solve the others. If we feel cautious, we
can check whether the discarded equation is satisfied by our answer,
once we find our answer. From x = (2/3)x + (1/4)y we conclude
x = (3/4)y. From z = (1/4)y+ (1/5)z, we conclude z = (5/16)y. Thus

B/Dy+y+ B/16)y =1.

Thus y = 16/33, and hence x = 4/11 and z = 5/33. Our fixed proba-
bility vector is thus (4/11, 16/33, 5/33). We now return to theory and
discuss, among other things, the significance of a fixed probability
vector.

We are ready now to turn to the main subject of this section,
namely, what happens in a Markov chain after we reach a recurrent
state? We have already noted that sooner or later we definitely will
reach some recurrent state. If this state is absorbing, we just stay
there, and nothing worth mentioning occurs further. However, if we
reach a recurrent state that is not absorbing, we still have something
to study. Of course, one possibility is to start in a recurrent state.
As we already know, starting in a certain state is entirely equivalent
to reaching this state later, as far as what happens next. Therefore,
the discussion that follows does not distinguish between starting in
a recurrent state and reaching that state after a while. Our detailed
work will all be based on the assumption that a particular recurrent
state, which we shall designate E;, is reached. Since, for some chains
and starting points, we do not know in advance which recurrent
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states will be reached, we may have to apply the discussion that fol-
lows to more than one choice of E;. Now we consider what happens
afterwards if we do reach a certain recurrent state E;.

Let a particular recurrent state E; be chosen. There typically will
be states that cannot be reached from E;. Since we are concerned
only with what happens after being in E;, we shall soon discard those
states; they are of no further interest to us. But there is something
we should discuss first. Recall that R; is the set of states that can be
reached from E;. Since E; is recurrent, we can return from any state
in R; to E;. It follows we can get from any state in R; to any state
in R;. On the other hand, it follows from the definition of R; that
one cannot get from a state in R; to a state that is not in R,. Now
we are ready to discard all states outside of R,. In mechanical terms,
we simply delete from the transition matrix the rows and columns
corresponding to all states that cannot be reached from E;. We then
have the transition matrix for a new Markov chain. This new chain
has the property that it is possible to get from any state to any state.
Studying this new chain is equivalent to discussing what happens in
the original chain after we reach E;.

Until further notice, we shall confine our attention to the new
Markov chain introduced in the last paragraph. To say the same thing
another way, for the time being we confine our attention to chains
in which we can get from any state to any state. Clearly in such
a chain all states are recurrent. Over the course of time, wherever
we start, we shall pay infinitely many visits to every state. What
fraction of the time we spend, on the average, in each state is an
obvious question to raise.

The first job to do is to make it clear exactly what we mean by
“fraction of the time” We begin doing that by choosing a positive
integer N and fixing our attention on the first N steps. Later we can
get an overall view by considering the limit as N tends to infinity.

As we just said, let N be a fixed positive integer. Consider certain
states E; and E. We assume a start in E;. We let the random variable
X be the number of steps, among the first N steps, that go to E;.
We evaluate X in the usual way. Let random variables X3, ..., Xy be
defined as follows:

X, — { 1 ifthe n.th step is to E,
0 otherwise.



2472 9. Markov Chains

Then E(X,) = pi(n), and hence E(X) = E(X; + --- + Xy) = E(X1) +
<+ EXN) = piy(1) + - - + py(N). The quantity

[pi(1) + -+ pi(N)]/N

is the fraction of the first N steps that go to E; assuming a start in E;.

Before letting N tend to infinity, we find another expression for
the quantity of the last paragraph. We continue to use the fixed
number N and the fixed states E; and E. Now we introduce some
numbers of little importance in themselves; we obtain the formula
we seek by evaluating these numbers two ways and equating the
results. We note that, starting in E;, over the course of time we will
make infinitely many visits to E. Thus we may let a,, be the average
number of steps until that visit to E; that occurs first when whatever
happens in the first n stages is disregarded. In other words, a, is the
expected number of steps to that first visit to E; that occurs after n+1
or more steps.

We can write down a value for a, immediately. If n = 0, we have
an = rj. For n > 1, a, involves a visit to E; that occurs after more
than » steps. If the first n steps take us to Ey, it will take r more
steps to reach Ej; thus we have

an = n+pa(Mry+ - -+ pis(Mry.

Now we find a,, — a,,—1 directly, without considering the values of a,
and a,_ separately. Each of a, and a,_; is the number of steps until
the first visit to E that occurs after a certain number of steps—after
n+ 1 steps in the first case and after n steps in the second case.
a, — a,—, is the average number of steps between these visits. The
same visit is involved in both cases unless it happens that the nth
step is to E. In this last situation, for a, we must wait an additional
r; steps to get back to Ej, but no wait is necessary for a,_;. Thus we
have

an — an—1 = pi(M1; + [1 — py(M)] - 0 = p(W)r;.
We may write

an = (an — an-1) + (-1 — an—2) + -+ - + (a1 — ao) + ao.
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It follows
an = py(N)T + py(N = D)1z + -+ + py(D)r5 + 7
= 15lpi(N) + py(N — 1) + - - + py(1)] + 7.
As noted above, we also have
an = N+ pa(N)1ri; + -+ + pis(N)7.
Combining the last two equations, we have
Kilpy(N) +py(N =1 + - - -+ py (D] + 15 = N+ pa (N7 + - - -+ pis(N) 7.
From this we find
[P§(N) +p5(N — 1) +--- + p3(1)]/N

_ 1 I:_@ 14 pnNyry 4 - +pis(N)7’s1:| .
N N

Y
Now we are almost ready to let N tend to infinity. All we have to
do first is to note that

0<pa@yryy+ - +pis(Nyrg <rj+--- +rg,
which does not depend on N. Thus
1im [ (N7 + -+ + i (N)g)/N = 0.
Hence, we have

[P5(N) + psi(N = 1) + - - - + p3(D]/N = 1/

The limit just evaluated may reasonably be regarded as the frac-
tion of the time spent in E; after a start in E;. An important fact stares
us in the face: It does not matter where we start; the fraction of the
time spent in E will be the same for any starting point.

We already have one way to evaluate all the r;, and hence to
find 1/7; for all j. After some additional discussion, we shall find that
there is another method to find all 1/7; and that this other method
is a more efficient route to that goal.

We next study the properties of the numbers 1/r11,1/722, ..., 1/%ss.
Clearly each of these numbers is positive. Towards finding out more,
we introduce a temporary abbreviation x,(N) by letting

%(N) = [py(1) + py(2) + - - - + py(N)]/N.
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We just showed
limx(N) = 1/7;.
We have

>N = [ps) + -+ p(N]/N
J j

=Y ps(D/N+ -+ pi(N)/N
j j
=1/N+---+1/N=1.
Thus we conclude

Zl/rjj = Zlim?ﬁ(N) :hmZXj(N) =lim1=1.
j j j

In short, (1/r11,...,1/7s) is a probability vector. Next we consider

Y xaNpy =Y pylpa) + - + pa(ND]/N
k k

= ; pr(Dpy/N + -+ + ; pi(N)pii/N
= [p§(2) + -+ py(N + D]/N
=[py(D) + -+ - + py(N)]/N + [p5(N + 1) — py(D)]/N.
Since [pj(N + 1) —py(D)| <1,
lim[p;(N + 1) — p;(1)]/N = 0.
Thus
hm;Xk(N)pkj =1/%.

Now we have

> A /rwpy = Y [lim M) py = 1im D x(N)py = 1/7.
x k *

By definition then, (1/r11,...,1/7s) is a fixed probability vector.

In the last paragraph we showed there is at least one fixed prob-
ability vector, namely, (1/711,...,1/7s). Now we show that there no
other fixed probability vectors. Consider any fixed probability vector
(my, ..., ms). Then, as noted above, we have

m = Z Mipiy(n) for all n.
k
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From this it follows that
m = [Z Moy (1) + D mpig(2) + -+ + kapkj(N)] /N
k k k
=" mifpr(D) + pi(2) + - + p(N]/N  forall N,
k

Taking the limit, we find
m = limm; = lim Y mypy(1) + pri(2) + - - + p(N)]/N
k

= > milim[py(1) + pi(2) + - - + P (/N
k

=Y m(1/rp) = A/rp) Y e =1/r;.
x x

Thus the arbitrary fixed probability vector (imy, ..., ms) is identical
to (1/111, ..., 1/rs). It follows that (1/r11,...,1/7s) is the only fixed
probability vector. Recall we are working under the hypothesis that
one can get from any state to any state. The fact that, under this
hypothesis, there is a unique fixed probability vector is important in
itself.

It is now clear how to find the values of the 1/7; efficiently.
All we need do is find a fixed probability vector. This vector will
necessarily be (1/r11,...,1/7ss). An example showing how to do this
will be found above.

At this point a warning may be in order. We illustrate what we
were talking about with an example. Consider the Markov chain with

transition matrix:
01
1 0

By direct computation we find that (1/2,1/2) is the only fixed prob-
ability vector. It follows, and it was obvious from the matrix, that
wherever we start we spend half the time in each state. But it does
not follow that, for example,

P12(3456789) = 1/2.

If we start in E;, the probability of being in E, exactly 3,456,789
steps later, or any odd number of steps later, is 1. After an even
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number of steps we would be in E;. We simply alternate between
the two states in a completely predetermined way; chance plays no
role. More complicated examples, which do involve chance, can also
be given; see Exercises 60-63. While it is often the case that when
and where we start makes very little difference after a while, this
need not happen. On the other hand, we take nothing back. In the
example just given, there is a unique fixed probability vector, and
this vector does give, for both possible starting points, the fraction
of the time to be spent in each state.

We now return to a general Markov chain. We discuss briefly the
question of how many fixed probability vectors exist. First we recall
that a transient state can be reached only finitely many times. It
follows that every fixed probability must assign the probability zero
to each transient state. Suppose that every recurrent state can be
reached from each recurrent state. It is clear from the discussion
above that assigning zero to each transient state and 1/r; to each
recurrent state E; gives a fixed probability vector in this case. It is
also clear that this vector is the only fixed probability vector. Now
suppose, on the contrary, that there are two recurrent states E; and
Ej;, such that E; cannot be reached from E;. Then E; cannot be reached
from Ej either. If we assign the probability 1/ru to each state Ex in
R; and zero to all other states, we obtain a fixed probability vector.
On the other hand, if we assign the probability 1/r to each state
Ex in R; and zero to the states that are not in R, we obtain a second
fixed probability vector. Thus in this case there are at least two fixed
probability vectors. (In fact, there are infinitely many such vectors,
as is shown in Exercise 73.) In short, first, every Markov chain has
at least one fixed probability vector. Second, there will be only one
such vector exactly for those chains where we can get from each
recurrent state to every recurrent state.

We summarize the main conclusions of this section. Suppose we
have a Markov chain where every recurrent state can be reached
from each recurrent state. Then there is a unique fixed probability
vector. The entries in this vector are the fractions of the time that,
in the long run, will be spent in each of the states.
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Exercises

57. Find a fixed probability vector for

1/2 1/2 0
3/4 0 1/4
0 1/4 3/4
58. Find a fixed probability vector for
0 1/2 1/2
1 0 0
0 1

59. Find a fixed probability vector for

/2 0 1/2
0 1/2 1/2
0 1/3 2/3

60. Find a fixed probability vector for

01 O 0
0 0 1/3 2/3
1 0 O 0
00 O 0

61. Find a fixed probability vector for

0 0 10
0 0 01
1/2 1/2 0 0
1/3 2/3 0 0

62. Find a fixed probability vector for

0 1/3 0 2/3
1/3 0 2/3 0
0 1/2 0 1/2
1/2 0 1/2 0
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63.

64.

65.

66.

67.

68.

Find a fixed probability vector for
0 1/2 0 1/2
1/2 0 1/2 0
0 1/2 0 1/2
1/3 0 2/3 0

Find a fixed probability vector for

1/2 1/2 0
/2 0 1/2
0 0 1

Consider the Markov chain with transition matrix

1/2 0 1/2 0 0
1/3 1/3 1/3 0 0
0 1/2 1/2 0 0
0o 0 0 1/2 1/2
0o 0 0 1/3 2/3

a. Assuming a start in Es, find the fraction of the time spent in
each of the states.

b. Assuming a start in E,, find the fraction of the time spent in
each of the states.

Consider the Markov chain with transition matrix

/2 0 1/2 0 0 0 07
0 1/3 0 1/3 0 1/3 0
/2 0 1/2 0 0 0 0
o 0o 0 1 0 0 0
12 0 0 0 1/4 0 1/4
0 0 0 1/2 0 1/2 0
o 0 12 0 0 0 1/2

a. Assuming a start in Es, find the fraction of the time spent in
each of the states.

b. Assuming a start in E,, find the fraction of the time spent in
each of the states.

In the situation of Exercise 1, in the long run, what fraction of
the time does each artist have a painting on display?

Do the last problem for the situation of Exercise 2.
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69.

70.

**71.

72.

73.

In the situation of Exercise 3, in the long run, what fraction of
the sales does each of the brands have?

In the situation of Exercise 5, in the long run, what fraction
of the time does the sales representative spend in each of the
cities?

a. How could the answer to the last problem be found with a
minimum of computation?

b. State and prove a proposition about this general situation.

In the situation of Exercise 6, in the long run, what fraction of
the time does the man play each machine?

Suppose both
(a1,...,a5) and (b1, ...,bs)

are fixed probability vectors for a certain Markov chain. Show
that, for every number o with 0 <a <1,

(xan + (1 —a)by, ..., aas+ (1 — a)by)

is also a fixed probability vector.
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Answers

In some cases, the answers below are approximations accurate to
the number of places shown. In those cases, the number of places
shown is somewhat arbitrary.

Chapter One

3a>» 13/32 3b>» 1/16 3c>» 1/4 4a>» 1/36 4b>» 1/6
4c>> 1/2  4d> 1/2 4dex 1/2 4Af> 7/36  4g> 0
dh> 1/2  4i>» 1/36 4> 0 4k>» 17/36 41> 1/4
4m>> 7/12  4n> 1/12 40> 1/4  4p> 1/4  4q> 1/4
4r> 0

Chapter Two

la> 20 1b>» 6 1c>» 24 2a> 40,320 2b>»> 2520
2¢>> 4,989,600 3a> 3,360 3b>» 34,650 3c>» 5.2797-10

253
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3d>»> 3,087,564,480 4> 27,720 5> 3,360 63> 360

7a3 60 7b>» 24 8> 83,080 9a> 8,640 9b>> 518,400
10a>> 24 10b>» 12 11> 2,880 12> 4,838,400 13> 1,440
14> .13333 15a> 1.0218-10%° 15b>>» 9.3667-10'8

16a>> 40,320 16b>> 5,040 16¢c>> 384 16d> 96 16e> 96
17a> 720 17b> 576 17c> 8,640 19> 29 20a> 4,320
20b>> 5,280 2la>> 792 21b>> 252 21c>» 120 21d>> 420
21e> 672 21f> 540 22a> 60,480 22b>> 480

22c>> 28,800 22d> 2,880 23a> 531,441 23b>> 6,400
23c>> 160,000 23d>> 16,000

24> With d = 54145, we have 35673/d, 16215/d, 2162/d, 94/d, 1/d
25> 1/3 26> .22857 27> .494949 28> .00264

29a>> 3,003 29b> 60,060 30a> 756,756 30b>> 126,126
30c>> 6,054,048,000 31> 1/2

32> Withd = 4165, wehave a>» 1/d b> 6/d c¢> 88/d
d> 1760/d e> 198/d

33> 46,376 34> 1,330 35> 426,888 36> 111

37> 207,720 38a> 286 38b>» 816 39> .34985

40> 01157 41> .09722 42> 495 43> 7.97-10M

44> 2.41-10" 45> 3,386,880 46a> .212121

46b>> .0242424 47> 6.9156-10''  48a>> 15 48b> 6

48c> 30 49> 12,870 50> 2,159 51> 12,289

52a> 2.82-10% 52b>» 8,008 53a> .001 53b>> .006

53c>> .003 54a>> .0001 54b>> .0024, .0012, .0006, .0004

55> 3.8719-107% 1.1151-107°, 6.5512- 107 8.3713-107*

56> 5.556-107%, 2.497 1073, 8.512-107>, 1.957 - 1076, 2.275 - 1078

Chapter Three

5> Yes, Yes, No 6> TFFFTTTF 7a>» .125, .25, .3125, .3125
7b>> 1552, .2688, .29952, .27648 8a>»> .015625 8b> .09375
8c> 1875 8d>» .140625 9> 1/6 10a> .056314

10b>> .001953 1la>»> .062500 11b>»> .197531 1lc>»> .135031
12a>> .401878 12b>» .131687 12c¢>» .270190 13> .038580
14> .169753 15> .15625 16> 1/2 17a> .38580
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17b> 51775 17c¢c> .09645 18a>> .92981 18b>» .92981
19> 1/2,1/2,1/2 20a> .6,.6 20b> i/j

21> .66510, .61867, .59735 23> 50, 50&51, 51, 51&52

24> 2,2 ,2,2&3,3,3 25a3> 3 25b> 1 25¢>3» 5 26> 0,0,
0,1 27> 5,4 34a> 1/3 34b>» 1/2 35a> .32810

35b> .51775 36a> .88571 36b>» .42857 36¢>» .02857
36d> .03226 36e> .06667 37> .010526 38> .04082

39> 505263 40> .561404 41> 2/3 42> .13672

43a> 1/5 43b>» 1/2 43c>» 1/70 43d>» 1/16  43e> 1/7
44> 46667 45> .28889 46a>> .42857 46b>> .12245

46¢> 14286 47> 22857 48> .27778 49a> .05263

49b>> .05263 49c>» .89783 50> .75758 51> 1/3

52a> .59737 52b>» .10614 53> .27083 54a> .6

54b> .3 54c> .5 54d>» .6 55a>> .34286 55b>» .77143
55c>> .44444 55d> 4 56> 1/3 57> .81818 58> .97561
59a> .31034 59b> .02200 59c¢>» .00112 60a> .45455
60b> 29412 61> .9 62> .432432, .324324, .243243

63> .16976, .50419, .32604 64> .28205, .25641, .23077, .23077
65> 2/3 66> .51923 67> .6 68a> 3/4 68b>» 3/4
68c>> .84375 68d>»> 3/4,.95107 69a>> .58333 69b>> .80769

Chapter Four

la> $.30 1b>» $30 2> $4 3> $.64,—-.36 4> $20
5> $10 6a>» 0,.5 6b>» 1,55 6¢3» 0,125 6d> 0,.5
6e> 0,.5 6f> 1,0 6g> 1,1 6h> 1,.0099 6i> 1,99
6i> 1,999,999 6k>» 1,1 61> 1,16 6m> 1,1.43

6n> 1,1.75 60> 1,2 7a>» 5/2 7b>» 1/4 10a>» —2.375,
2.7344 10b>» 2.375,2.7344 1la>» 3 11b>» 2 12a> 200
12b> 5,000 13> 7/3,14/9 14> $4.80,9.60 15a> 7
15b> 7 15¢>» 57 15d>» 57 16a> 204 16b> 204
16c> 158,404 16d>> 158,404 16e> 1020 16> 0

19> X+ Y:6&2, XY:9&19 20> 4 22> 2,1 23> 210,175
24a> 3 24b>» 2 24c¢c>» 600 24d>» 400 24e>» 3
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24f> .01 25> 1,250, 625, 1,563,125 263> 13 27> 40
28a> 16/3,4/3 28b> 6 29a> 2,4/3 29b> 30

30> 0,5,000 3la> 7/2 31b>» 4 3lc>» 35/12 31d>» 2
3le> 15/2  31f>» 59/12 31g>» 14 31h>» 77

32> 130, 5,650 if the unitis cents 33> 270, 975 if the unit is
cents 34a>> 40 34b>» 2,600 34c>> 20 34d>> 125,375
34e>> 2,640 34f> 127,995 35> 60 363> 40, 4.89898
37> 2 38> 8 39> 15/8,1.1094

40> Arranged as in question:

4 18 2
2 5 1
6 39 3
8 90 26

4la>> 7/2 41b> 91/6 4lc>x» 7 41d> 49/4 4le> 637/6
41f>> 329/6 41g> 230.028 42a> 2 42b> 5 42¢> 4
42d> 4 42e>» 20 42f> 18 42g> 25 43> 1

44> $6,000.50 & a stop sign  45a>> 19/9  45b>» 2.1912

46a> 5/4 46b> 3.11 46¢» 5/13  46d> 4.44 46e> 13/4
46f> 3.95 46g> 1 46h>» 9.05 47a> 10.6 47b> 21.2
31.8,42.4 48> 13/3 49> $1 50a> $30.30 50b>> $30.60
51> with replacement: 2.3312, without replacement: 53/21

52> 10.5 53> 12 54> 37.62626 55a> 6 55b> 3.5
56> 14/3 57a> 5/3 57b> 23/3

Chapter Five

9> 35 10» 35 11>» 12 12>» 345 13>» 3.3758

14> 19/8 15> 59/30 16> 6.9 17> 283/60 18> 14
19a>> $.26337 19b>» $.70233 20> 16/11 21> $479.60
22a>> 49/24 22b> 26/15 23> 1 24> 21,998,000.25
25a>> .86397 25b> .40462 25c> .32718 25d> .39320
25e>»> 1.86397 25f>» .04874 25g> .70588 25h>»> 1.10385
26> 104/9 27> 10 28> 710/17

29> with replacement: .27430656 (exactly), without replacement:
571/2205 30> 11.25 31> 3.15689 32> 35/12 33> 14/9
34a>> 23/3 34b>» 104/63 35> 3¢ — €* (approx.)
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Chapter Six

1> 075816 2a> .223  2b>> .442 3a> .0498 3b>» .577
4> 938 5a>3 135 5b>» .323 6> 4.6 7> .751,.215,
.0307,.00291, .000209 8> 384 9> .184 10a> .5

10b> .153 10c>» 1825 10d>» 56 12> 12 13» 5

14> 1 15> 158 162> 4"/21 16b>» J2/(7n)

16c>> 2(16/27)%/+/3 17> 56.05 18> .0178 19> 30-10°
20> 126 22> .1359 23> .8186 24> .8186 25> .0606
26a>> .6827 26b>> 9973 26c>> .0797 293> .8664, .9987
30> 7.6-107% 31> .0013

Chapter Seven

la> 3/(1 -2z 1b>» 1/(1—-32) 1c>» 1/(1+ 32)

1d> 3/(1—32) le>» z/(1—32) 1f> 1/(4—2)

12> 3/(3—2) 1h> 2/(1—2) 1i> 2/Q2+2) 2> z/(2—2)
3> z/24+2%/4+23/8+2'/8 4a> (z+z°+---+25/6

4db> z/(6 —52z) 5a> 1,1,1,1;1/(1 —2)

5b> 1—ay,1—a;,1—az1—a31/(0 —2z)—f(z) 5¢> ay, a;, as,
as; [f(2) —aol/z 5> 0, ao, a1, az; zf(z) 5> f(z)/(1 — 2)

5> [1-f2)]/(1—-2) 5> zf(2)/(1 —2) 5h> [1—-2zf(2)]/(1 —2)
6a> 1/6 6b> 1/4 6¢>» 1/2 6d>» 5/12

8a> (1/6)(z+2z>+---+2% 8b>» 1/4+2z/2+2%/4

8c>» z/24 4+ 22/8 4+ (22 + - 4+ 25)/6 + 27 /8 + 28 /24

8d>» (Z2+z'+---+2'%) 9a> 1/4 9b> 2 9c>» 4

10a>> 3/2 10b> 19/12 1lax» 1/2 11b>» 3/4 12a> 1/6
12b>» e—1 12c>» 4e—¢>—2 13a> 10/3 13b> 4/9
14a> 8/3 14b>» 16/9 15a> 1/2 15b> 1/2 16a> .3240
16b>> .7616 16¢> 1.1816 17a>» L 17b>» 2L — L?

17¢> 1/log2  18a>> 0,1/2,1/4,1/8,... 18b> z2/(2 —2)
18c>» 3 18d> 2 19a>» $.97,2.58,3.55 22a> 4

22b> 21/4 22c¢c>» 1 22d> 5/9 22e>» 2log?2

22> 9log1.5—3 22g> 4
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Chapter Eight

2> 5/12 3> 5/8 4> 2/7 53 3/13,5/13,5/13
6> 8/15,4/15,2/15,1/15 7a> 2/3  7b>> 8/9,7/9

7c>
12>
17>
21>
29>
33>
38>
42>

16/27 9> .0000169 10> .9802 11> .449

8784 13> .01220 14> 1241 15> 1/3 16> .2471
1/11 18> .9999977 19> .9610 20> .2968

6517 22> 9997 26> 6 27> 4 28> 25

43/13  30a>»> 8/3,10/3 30b>» 16/3 31> 30

121 34> 7.8 353 17.3 36> 50 37> 12.1

1000 39> 160.0 40> 267.5 41> 549.8

205,665 43> 11 days 14 hrs 44a>> .0183, .4492, .6662,

8686, .8898  44b>> 48,993, 5,058.5, 1,336.0, 44.5, 10.6 453> 6

46>

14 47> 42

Chapter Nine

1>

3>

4>

3/5 1/5 1/5| 2> |3/4 0 1/4

[2/5 2/5 1/5 0 2/3 1/3
3/5 2/5 3/5 2/5 0

[ 9 1
04 .9
0 .1
0 0

f0 1/2 12 0 0 0 0]

0
0 0
05 0

. 1
19

1/4 0 1/4 1/4 1/4 0 0
1/4 1/4 0 1/4 0 1/4 0
0 1/2 1/2 0 0 0 0
0 1/2 0 0 0 1/2 0
o 0 0 0 ©0 0 1
o 0 0 0 0 0 1
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C0 23 1/4 0 0 1/17]
45 0 1/5 0 0 0 e o
14 16 0 1/4 1/3 0 L
> 10 0 13 0 23 o | % 'ff '915 '32
0 0 1/3 12 0 1/6 9o
13 0 0 0 23 0 |
"8 2 0 0 0 0 07
50 50 0 0 0
500 50 0 0
7> 15 0 0 0 5 0 0
200 0 0 8 0
100 00 0 .9
000 0 00 0 1]

8a> Ry = Ry = Rs = {E1, E4, Es}; Ry = {Ey, Ez, Ey, Es}; Rz = {Ez};
Re = {Es}; R7 = {E1, E2, E3, E4, Es}; R : Ey, E3, Ea, Es, Es; T : Ea, E7;
A:E3 Es 8b> Ry =Rs=Ry;={E1 Es, E7}; R, = Re¢ = {E2, Es};
Rz =Rg=all; Ry ={E4}; R : E|,Ey,E4,Es5,Es,E;; T : E3,Eg; A : E,4
8c> Ry = {Ey, E3, E4, Es, Ey}; Ry = Ry = {Eg, Eq};
Rz = Rs = Ry = {E3, Es, E7}; Rs = Rg = {Eg, Eg};
Rg = {E2,E4,E6, Eg}; R: Ez,Eg, E4,E5, EG, E7,E9; T : ELEg; A:none
8d>» Ri = R4 = Rs = Rs = {E1, E4, Es, Es, Eg}; R2 = Rz = {E3, E3};
R7 = {E1, E4, Es, Eg, E7, Eg}; Rg = {Eg} R : Ey, E3, Eg;
T:Ei, Eq Es Es,Er; A:Eg 92> 4/5 9b>> 3/8
1 0 0 0
4/5 3/8 1/3 1/5
2/5 1/2 1/6 3/5
0 0 0 1
10> vi2 =0, vy = 3/5, v32 = 4/5, va2 = 0, v13 = 0, va3 = 2/5,
v3z=1/5v3=0 11a> 3/5 11b>» 7/12
1 0 0 0 0

3/5 7/12 2/3 1/2 2/5
e |2/5 2/3 7/12 3/4 3/5

1/5 1/3 1/2 7/12 4/5

0 0 0 0 1

12> vi2 = vs2 = V13 = V53 = V14 = V54 = 0, vz = 7/5, v3p = 8/5,
Va2 = 4/5, vo3 = 8/5, v33 = 7/5, va3 = 6/5, v2g = 6/5, v34 = 9/5,
v =7/5 13a3> 3/8 13b>» 1/3

9c>
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1 0 o0 o0
3/8 1/3 1/3 5/8
1/8 1/3 1/3 7/8
| 0 0 0 1
14> vip=vp=vi3 =v3 =0, vpp = v3p = V3 = v33 = 1/2
15a> 1 15b>» 1/2
[ 1 0 0 0 0
1 1/2 0 0 0
15¢>» (1/3 1/3 1/4 1/3 1/3
0 0 0 1 0
| O 0 0 0 1
16> vip=vp=v5 =v13 =V =3 =vs3 =0, v =1, vz, = 2/3,
v33:1/3 17> v15 = V25 = V35 = V45 = 0, v55:1/2
18> viz=vp=v3=via=vu=0,v33=1/3, v34 =2/3, vas =1
19>> V11 = 3, Uy = 2, Uzl = 0, V12 = 2, Upp = 1, U3y = 0
20> vi2 = V32 = Usp = V14 = V34 = Usq = 0, v2p = 1/8, v = 3/8,
V24 = 3/8, vgy = 1/8 21> v = 1/2, v21 =0,v31 =0, v13=1,
V3 =0,v33=1 22> rp,=2,1r3=6,13=4,133=1

13¢c>

5/2 3/2 3
23>> 1 5/2 4 24>> 712:5/2, 722:17732:2
2 1 5

25> m=ra=ri2=7r2=2,131=28/3,r32=10/3, rq1 = 4, 7o =2
26>> Vi = 5, Vi3 = 2, Yoy = 5/2, Vo3 = 2, Y3y = 3, Y33 = 5/3

27> ri=rp=1,13=2,73=2,134=2,744=2

28>> i = 5/2, Y231 = 3, Yi2 = 2, VYo = 5/3

7/3 2 12
29 | 8/3 7/2 10
20/3 4 7/2

31a>> 62 seconds, 34 minutes, 18 hours, 24 days, 2.1 years,

68 years, 697 centuries, 71 million years 31b>»> 2.6 hours,

2.3 years, 179 centuries, 139 million years 31c¢>> 8.9 seconds,

31 seconds, 9.4 minutes, 15 hours, 60 days, 16 years, 15 centuries,
1,433 centuries, 14 million years, 1.3 billion years 32> 73/10
33> 216 34> 222 35> 216 36> 216 37> 43 38> 4
39> 10 40> 8 41> 8 42> 7 43> 7/2 44> 9,331
45> 46,656 46> 83.2 47> 80 48> 5/2 49> 5/3

50> counting repetitions: 9.86, 9.43, 8.29, 9.86, 5.71,0; counting
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distinct rooms: 4.38, 4.32, 3.81, 4.38, 2.81, 0 (In each case the start
is excluded.) 51> 775 52> 1,2,2,1 53> 1,2,2,1

54> 1,5,25/4,9/2,1 553 1,1,3,5 56> 1,1,1,1,10/3,8/3
57> (3/7,2/7,2/7) 58> (2/5,2/5,1/5) 59> (0,2/5,3/5)
60> (1/3,1/3,1/9,2/9) 61> (1/5,3/10,1/5, 3/10)

62> (3/14,3/14,2/7,2/7) 63> (5/24,1/4,7/24, 1/4)

64> (0,0,1) 65a> 0,0,0,2/5 3/5 65b> 2/9,1/3,4/9,0, 0
66a>> 1/2,0,1/2,0,0,0,0 66b> 0,0,0,1,0,0,0

67> 1/2,1/3,1/6 68> 9/22,4/11, 5/22

69> 1/5,2/5,1/5,1/5 70> 6/29, 5/29, 6/29, 9/58, 6/29, 3/58
72> 19/75, 38/75, 18/75
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ANB, 6

AUB, 6
absorbing, 215
average value, 78

backslash, 6

bar over letter, 6

Bayes, Thomas, 62, 64, 65

Bayes's Formula, 62

Berkeley, George, 65

Bernoulli, Daniel, 117

Bernoulli, Jakob, 48, 115-117,
119, 149, 150, 195

Bernoulli, Johann, 116, 117,
137, 194, 195

Bernoulli, Nikolaus, 117, 195

Bernoulli distribution, 101-102,
170

Bernoulli family, 184

Bernoulli trials, 47, 48

Bernoulli’s Law of Large
Numbers, 115, 138, 149,
212

Bernoulli’s Theorem, 115, 119,
120, 149

Bienaymeé, Irené-Jules, 112

binomial coefficients, 28

binomial distribution, 49, 101,
102, 131, 170, 181

Binomial Theorem, 28

Bonaparte, Napoleon, 67

C

catalan numbers, see wy, w;

central limit theorems, 149

characteristic function, 128

Chebyshev Inequality, 112-115,
120, 121, 136, 162
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Chebyshev, Pafnuty Lvovich,

112,119, 120, 211
conditional expectation, 123
conditional probability, 56
consecutive successes, 228, 229
Cotes, Roger, 149

D

d’Alembert, Jean, 67

DeMoivre, Abraham, 57, 116,
138, 144, 149-151, 156
160, 166, 202

DeMoivre’s Theorem, 149, 150

DeMorgan, Augustus, 7

derangements, 174

Descartes, Reng, 13, 14

discrete, 5

distribution, 101

Doe, John, 43

duration of play, 199-207

E(X), 78, 95
E(X | A), 123
elementary, 7

event, 4

even and odd, see parity
expectation, 79
expected value, 78, 95

fair game, 81

Fermat, Pierre de, 11-14, 56, 78,
184

fixed probability vector, 238

G

Gamblers’ Ruin, 194

generating function, 165-181

geometric distribution, 101, 102,
167, 181

Gorky, Maxim, 211

H
hy, 212

4

Halley, Edmund, 150, 151

Hsien, Chia, 30

Huygens, Christiaan, 11, 14, 78,
79, 194

hypergeometric distribution,

132

I

independent, 42, 44, 91
indicator, 128
insurance, 120

L

Law of Small Numbers, see
Poisson distribution

1'Hospital, G.F.A. de, 137

I'Hospital’s Rule, 137

Lagrange, Joseph-Louis, 138

Laplace, Pierre Simon, 40, 65,
66, 138, 149, 166

Law of Large Numbers, 115,
119-122, 138

Leibniz, Gottfried, 11, 117, 151

M

Maclaurin, Colin, 165
Maclaurin series, 166
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Markov, Andrey Andreyevich,
211

Markov chains, 209-249

Markov property, 210

mean value, 78

mode of binomial distribution,
49-51

mode of Pascal distribution, 50

mode of Poisson distribution,
136-142

Montmort, Pierre Rémond
de, 116, 149, 150, 174
183-185, 194

mortality table, 150

most probable value, see mode

multinomial coefficients, 28

Multinomial Theorem, 28

mutually exclusive, 7, 9

N

negative binomial distribution,
see Pascal distribution

Newton, Isaac, 2, 51, 145, 150,
151, 184

Normal approximation, 149

Normal Distribution, 149

(0]

odd and even, see parity
Q, 4

P(A | B), 56
P(A), 7

Py, 212
py(n), 236

parity, 40, 51, 180, 181

partition, 61

Pascal, Blaise, 11, 12, 14, 30, 56,
78, 184

Pascal, Etienne, 13

Pascal distribution, 50, 101, 102,
170, 181

Pascal’s Triangle, 30

Pepys, Samuel, 2, 51

Poisson approximation, 138

Poisson distribution, 140, 168,
178, 181

Poisson, Simeon Denis, 138

Pope, Alexander, 151

probability vector, 238

R, 213

random variable, 76

random walks, 183-207

recurrent, 214

rencontre, 174

Richelieu, Cardinal, 13

Riemann, Bernhard, 160

Roberval, Gilles Personne de,
11-14

runs of successes, see successes,
consecutive

S

sample space, 4
Shakespeare, William, 142
standard deviation, 85
Stirling, James, 144, 145, 156
Stirling's Formula, 144
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transient, 214
transition matrix, 212
transition probabilities, 212

vy, 223
Var(X), 84
variance, 84, 96

w

wy, Wy, Wy, ..., 188, 206
wo, W1, ..., 198

with replacement, 19
without replacement, 19

X

Xian, Jia, 30
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