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Preface

During recent years a vast body of knowledge central to the problems
of communication engineering has accumulated piecemeal in the journal
literature. Unfortunately, this work is often couched in advanced mathe-
matical terms, and no over-all synthesis at the level of an introductory
textbook has been available. As a tesult, even at second glance, the dis-
ciplines of coding and modulation often appear to be distinct and the
abstractions of information theory to be only vaguely connected with

the realities of commiunication system design.

We hope that this book will provide a cohesive introduction to much
of this apparently disparate work. We have been motivated by three
related objectives. The first is to establish a sound frame of reference for
further study in communication, random processes, and information
and detection theory. The second is to make the central results and con-
cepts of statistical communication theory accessible and intuitively
meaningful to the practicing engineer. The third is to illuminate the
engineering significance and application of the theory and to provide a

_quantitative basis for the compromises of engineering design.

Book content and scope teflect these objectives. The subject matter
progresses systematically from elements of probability and random
process theory through signal detection and selection, modulation and
coding, demodulation and decoding, and engineering compromises.
Unity is sought through consistent exploitation of the geometric concepts
of Shannon and Kotel'nikov, which place clearly in evidence the inter-
relations among such phenomena as the incidence of threshold with
“twisted” and “sampled and quantized” modulation systems.

The development of the subject matter is almost entirely self-contained
and does not demand mathematics more sophisticated than now en-
countered in an undergraduate electrical engineering curriculum. We
presume that the reader has a thorough grasp of Fourier and linear
systems theory—that he is able not only to write down but also to evaluate
a convolution integral—and that he has been exposed to complex inte-
gration. Prior knowledge of linear algebra and probability theory is
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helpful but not necessary. In those half dozen instances in which theorems
must be invoked whose formal proof exceeds the level of the text an effort
has been made to make their meaning plausible as well as plain. ‘We also
presume that the reader is already well founded in electronic circuits,
which we do not discuss.

Although the mathematical level of the book is intentionally con-
strained, the intellectual level of the subject matter isnot. Indeed, although
the book begins at a quite elementary level, later chapters treat many

topics that lie near the forefront of current communication research and .

incorporate certain results that have not previously been published. The
early chapters are presented in a way that leads naturally into the deeper
material of the later chapters, even though a less general presentation
might suffice if an open-ended treatment were not desired.

To some extent depth of treatment has been facilitated by new and less
formidable derivations of well-known results. To a larger extent, however,
it has required restricting consideration to communication models that are
mathematically tractable. The premise is that complex ideas are best con-
veyed in the simplest possible context, Thus the book is primarily concerned
with Gaussian channel disturbances and performance bounds obtainable
from union arguments. Extension to more general channels and tighter
bounds requires additional technique but little that is new in the way of
concept. ;

The selection and treatment of the subject matter reflects our bias as
well as our objectives. For example, although coding is not an eco-
nomically viable solution in many engineering environments, in certain
others it appears to be the most attractive solution. We feel in consequence
that a communication engineer needs {o appreciate the operating char-
acteristics, capabilities, and limitations of coding. An entire chapter is
therefore devoted to a study of coding and decoding implementation,

The scope of the book is adequate to span a two-semester sequence of
first-year graduate instruction, and the subject matter has been arranged
with such a course in mind. A natural division is to cover Chapters 1
to 5 in the first semester and Chapters 6 to 8 in the second. This progres-
sion provides a unified and extensive treatment of digital communication
before consideration of the mathematical and conceptual issues of con-
tinuous modulation, which are inherently more subtle.

The first five chapters may also be used alone as a self-contained one-
semester introduction to data communication. An alternative one-
semester course comprises Chapters 1 to 4 plus the first half of Chapter 7
and the first two thirds of Chapter 8. The latter sequence has the ad-
vantage of including some continuous modulation theory but forfeits
the central idea that error-free communication is attainable even when a
channel is noisy.
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Either one-semester configuration may be used as a senior honors
course for undergraduates who are seriously interested in communica-
tions; successively revised versions of Chapters 1 to 5 have been taught
at the Massachusetts Institute of Technology to seniors by nine different
faculty members during the four years of manuscript preparation. On
the other hand, Chapter 6 and the last parts of Chapters 7 and § seem
distinctly graduate in character. Most of the problems at the end of
each chapter are relatively deep and many extend the material of the
text. We anticipate that instructors teaching undergraduates will wish
to supplement these problems with others designed for purposes of drill.

No book is written in a vacuum, but we feel a special debt fo our
colleagues. The intellectual mainsprings of this work stem from the .
pioneering research of T. A. Kotel'nikov, C. E. Shannon, R. M. Fano,
and P. Elias. To the last three we are indebted not only for their work
but alse for their inspired. teaching, generous counsel, and constant
encouragement, Several of the recent refinements and extensions of the -
theory are attributable to R. G. Gallager. Valuable suggestions were
received from W. B. Davenport, W. M. Sicbert, B. Reiffen, H. A. Van
Trees, D. A. Sakrison, R. 8. Kennedy, . G. Stiglitz, V. R. Algazi, T. 8.
Huang, A. M. Manders, H. A. Yudkin, and J. E. Savage. In addition,
both of us have benefited immeasurably from our association with the
M. I. T. Lincoln Laboratory, at which the experimental work discussed in
Chapter 6 was performed under the direction of P. Rosen and I. L. Lebow.

Deborah Brunétto, Barbara Johnson, Marilyn Pierce, Elaine Geller,
and Louise Juliano typed and retyped the manuscript through innumerable
revisions. Helen Thomas generously edited and D. G. Forney, Jr.,
carefully proofread the final version. Most of the computations were
programmed by Martha Aitken.

We are grateful to the Department of the Army and to the National
Aeronautics and Space Administration for partial support of the research
reported herein. Manuscript preparation was supported in part by a
grant made to the Massachusetts Institute of Technology by the Ford
Foundation for the purpose of aiding in the improvement of engineering
education. Lastly, to our students and. associates in the Research Labo-
ratory of Electronics and Department of Electrical Engineering at the
Massachusetts Institute of Technology we owe an unrepayable debt for
stimulation and opportunity.

: J. M. WOZENCRAFT

Irwin M. Jacoss
Cambridge, Massachusetts
June 1965
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Introduction

Today the world is spanned by a web of electrical circuits that permits
near-instantaneous communication over vast distances. This book is
concerned with the fundamental principles underlying the engineering of
these communication links. In particular, it provides an introduction to
what communication technology can, and cannot, accomplish.

1.1 HISTORICAL SKETCH

The development of communication technology has proceeded in step
with the development of electrical technology as a whole. Few indeed are
the innovations that have not found almost immediate communication
application. For example, the demonstration of telegraphy by Joseph
Henry in 1832 and by Samuel E. B. Morse in 1838 followed hard on the
discovery of electromagnetism by Oersted and Ampére early in the 1820’s.
Similarly, Hertz’s verification late in the 1880’s of Maxwell’s postulation
(1873) predicting the wireless propagation of electromagnetic energy led
within 10 years to the radio-telegraph experiments of Marconi and Popov.
The invention of the diode by Fleming in 1904 and of the triode amplifier
by de Forest in 1906 made possible the rapid development of long-distance
telephony, both by radio and wire.

In recent times the coin has often been reversed. The instantaneous
success of the telephone, patented by Alexander Graham Bell in 1876,
created an insatiable demand for communication which in turn has
stimulated innumerable fundamental advances in electrical techmology.
For instance, the invention of the wave filter by G. A. Campbell*® in 1917
came in response to the need for transmitting many different conversations
simultaneously over a single telephone line.

Communication technology may be broken conveniently into three
interacting parts: the signal-processing operations performed, the devices
that perform these operations, and the underlying physics. Although itis

io the first of these areas that this book is directed, it is important to realize
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that developments in all three have been mutually reinforcing. Indeed,
one impact of a new device has frequently been the uncovering of new
signal-processing questions. As an example, the development of the wave
filter led naturally into Nyquist’s investigation of the properties of band-
limited waveforms.

Communication Theory

Given that it is possible to perform a sequence of signal-processing
operations, when is it desirable to do so and what are the advantages and
limitations? Such questions and their answers constitute the corpus of
what is called communication theory. This theory has assumed increasing
importance since the advent of digital computers provided opportunities
for signal-processing orders of magnitude subtler and more complex than
ever possible before.

The beginnings of communication theory lie in the work of Nyquist, 5
who in 1924 extended unpublished work by I. R, Carson and concluded
that the number of resolvable (noninterfering) pulses that can be trans-
mitted per second over a bandlimited channel is proportional to the
channel bandwidth. More exactly, Nyquist concluded that the maximum
number of pulses resolvable in a T-sec interval with a channel of band-
width Weps is kTH; here kis a proportionality factor no greater than
2, the exact value of which depends on the pulse waveshape and the
particular definition of “bandwidth,” '

Shoitly thereafter, in 1928, Hartley®! reasoned that Nyquist’s result,
when coupled with a limitation on the accuracy of signal reception,
implied a restriction on the amount of data that can be communicated
reliably over a physical channel. Hartley’s argument may be summarized
as follows. If we assume that (1) the amplitude of a trapsmitted pulse is
confined to the voltage range [— A, A} and (2) the receiver can estimate a
transmitted amplitude reliably only to an accuracy of 3A volts, then, as
illustrated in Fig. 1.1, the maximum number of pulse amplitudes distin-
guishable at the receiver is (1 4 4/A). Tt follows that a sequence of kTW
resolvable pulses, each of which can assume any one of (1 + A4/A) ampli-
tudes, affords a total of

A)M"W (1.1)

M = (1 + I

distinguishable received signals. )
As illustrated in Fig. 1.2, an equal number of distinguishable {rans-
mitter pulse sequences can be constructed and used to communicate one
of M different possible messages reliably in time 7. The procedure, indi-
cated in Fig. 1.3, is to associate each distinguishable transmitter sequence

‘COMMUNICATION THEORY 3

2A

Figure 1.1 Distinguishable receiver amplitudes. Hartley considered received pulse
amplitudes to be distinguishable only if they lie in different zones of width 2A. Thus
pulses a and ¢ are distinguishable but « and b are not.” For the case shown, 4/A =4
and there are five distinguishable zones.

uniquely with one of the M IESSages, say Mg, My, ..., my ., and to
transmit the 4th sequence if and only if the actual transmitter input is 1.
Hartley concluded that if we attempt to increase M above the value
specified in Eq. 1.1 by transmitting more than kTW pulses or by using
pulse amplitude levels less than 2A volts apart, the signaling strategy of
Fig. i.2 will break down. The receiver no longer distinguishes reliably
between all signal sequences, and communication becomes unsatisfactory.

Hartley’s formulation exhibits a simple but somewhat inexact inter-
relation among the time interval 7, the channel bandwidth W, the maxi-
mum signal magnitude 4, the receiver accuracy A, and the allowable
number M of message alternatives. Communication theory is intimately
concerned with the determination of more precise interrelations of this
sort. It js also'concerned with maximizing the distinguishability of the
transmitted message by appropriate signal processing (waveform design)




4 INTRODUCTION

si(t}

+A

4
nafin

o

Figure 1.2 Distinguishable trapsmitter sequences. Two sequences of received pulses
are distinguishable if one or more of their constituent pulse amplitudes are distinguish-
able. The two transmitter sequences s,(+) and s,(¢) illustrated above lead to distinguish-
able receiver sequences whenever each pulse amplitude is altered by less than £A
during propagation and are therefore called distinguishable. We may construct M =
(1 + 4/AY"™ such sequences by allowing each pulse to assume any one of the
(I + A/A) amplitudes indicated by the dashed lines. (For the case shown, Af/A = 4,
kTW = 6, hence M = 15,625.)

RANDOMNESS 5

+Disturbance
Discrete m s(t} t)
message Transmitter Channel ———
source {ril {sit2)}

Figure 1.3 Discrete message transmission. There are M messages {m,}, and M corre~
sponding signal sequences {s:(2)}. The transmiited signal, s(r}, is 5,(r) whenever m is n,

at the transmitter, with processing the. received signal to determine the
transmitted message as accurately as possible (or as accurately as is
justified economically), and with the complexity of implementing the
transmitter and receiver signal processors.

Randomness

The essence of communication is randomness. If a listener knew in
advance exactly what a speaker would say, and with what intonation he
would say it, there would be no need to listen! Thus communication
theory involves the assumption that the transmitter is connected to a
random source, the output of which the receiver cannot with certainty
predict. Otherwise, no communication problem exists.

Although less obvious, it is also true that there is no communication
problem unless the transmitted signal is disturbed during propagation or
reception in a random way. By way of example, consider communicating
the content of a book chosen at random from the Library of Congress
and assume that the alphabet (plus punctuation and numerals) comprises
64 symbols. To each symbol we can assign a six-digit binary number; for

instance,
0 00 0 0 0

00 00 01
00 0 01

a:
b:
e: 0

: 1 1 1 1 I L

The total content of the selected volume can then be written as a single
long sequence of the binary symbols 0, | by allotting the first six digits
of the sequence to the first letter of the volume, the next six digits to the
second letter, and so forth. Finally, we may interpret the resulting binary
sequence as a binary number between zero and one by placing a binary
point at the beginning of the sequence, as shown in Fig. 1.4a.

We now observe that the entire volume can be designated by a single
Nyquist pulse. As indicated in Fig. 1.45, we need only adjust the pulse
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First letter Second Ietter Last letter
s “ - Fammnsteamen
d1011C0C10CG0O010------" 100011
QragEg: v o2 v v e e = e e PR 754
Binary point
Y P (a)
Amplitude
1 —
=N
27N
13
0 1EW
(b)
_ Figure 1.4 (a) A message represented by a binary number. If successive binary
symbols are denoted @1, Oz, - - - » @y, as shown, the value of the number is a;- 27 +

g2 %4 g, 278 Here N is six times the total number of letters constituting
the message. (#) A pulse with amplitude equal to the number representing one of 2
messages.

amplitude to equal the value of the binary number in Fig. 1.4a. Indeed,
if the transmitted amplitude could be precisely determined by a receiver,
not only a single volume but also the contents of the whole Library of
Congress could be communicated in this way by means of a single ampli-
tude value. The procedure however, is clearly preposterous. Small dis-
turbances, called noise, always prechude either transmitting or receiving
with such incredible precision. In Hartley’s result, Eq. 1.1, the precision
limitation implied by noise is incorporated in the accuracy, or quantization,
parameter A. '

Probabilistic Formulation of the Communication Problem

Although it recognizes the importance of noise, Hartley’s conclusion
does not account for the empirical fact that any receiver will occasionally
estimate a transmitted amplitude incorrectly, regardless of how large a
quantization grain A is designed into the communication system. The
next major advance in communication theory occurred in 1942, when
Norbert Wiener® ingeniously circumvented this difficulty by adopting a
totally different point of view. His approach included the situation
illustrated in Fig. 1.5, in which the received signal r(¢) is the sum of a

PROBABILISTIC FORMULATION OF THE COMMUNICATION PROBLEM 7

nft)
Message Opti ~
m(t) r(t) = mit)+n(t) pUmum Rt}
waveform j e
source & lfli?t:?r

Figure 1.5 A communication problem considered by Wiener. The opumum filter
minimizes the average value of the squared error [#{r) — AP, in which #{r) denotes
the receiver’s estimate of m(z).

desired random message waveform m(¢) and an unwanted noise waveform
a(f). Wiener then solved the optimum linear filtering problem; that is,
he determined the linear filter whose output is the best mean-square
approximation to m(t) when r(t) is the filter input.

The use of the word “optimum’ entered the world of communication
engineering primarily in the pioneering work of Wiener. Many problems,
however, remained unresolved. In particular, a message waveform m(t)—
such as speech—is not often transmitted directly; instead, m(z} is used to
modulate (control some parameter of) the actual transmitted signal, say
s(t), as indicated in Fig. [.6. Questions related to optimizing the trans-
formation m(t) — s(¢) and to processing the received signal when this
transformation is nonlinear could not be answered until Rice® developed a
satisfactory representation of the effects of noise, in 1944,

Kotel'nikov®* addressed himself to these questionsin 1947. Hesucceeded
not only in analyzing all modulation systems then in existence but also in
stating certain fundamental and unavoidable performance limitations on
all possible future modulation and receiver systems. A significant portion
of this book is based on Kotel'nikov’s methods and results.

Communication theory reached maturity in the work of Shannon™ in
1948. Previously the intuitively apparent but erroneous concept that noise
placed an inescapable restriction on the accuracy of communication had
been universally accepted. In sharp contradiction Shannen proved that
the transmission effects of noise, constrained bandwidih, and restricted
signal magnitude can be incorporated into a parameter, C, called the

n(t)

| Message m(s) sft} r()
waveform Transmitter Channel [———
source

Figure 1.6 The transmitter transforms m(t) into a s1g11a1 $(?) suitable for propagation
over the channel.




8 INTRODUCTION

channel capacity. The significance of channel capacity is this: provided
the number M of message alternatives grows as a function of the signal
duration T slowly enough so that

M < 207, (1.2a)

then arbitrarily high communication accuracy can be obtained in principle
by choosing T large enough; that is, by using signals that are sufficiently
fong. Conversely, Shannon also showed that reliable communication is
not possible—regardless of the signal-processing schemes adopted at
transmitter and receiver—whenever

M > 2°7, (1.21)

A major [raction of communication research since 1948 and a corre-
sponding fraction of this text have been devoted to extending these results
and determining how they may be approximated in engineering practice.

12 PLAN OF THE BOOK

A second principal resuit of Shannon’s work has been the recognition
that communication is fundamentally a discrete process. By this we mean
that a receiver can meaningfully distinguish between only a finite num-
ber of message alternatives in a finite time. Although proof that the
communication process is discrete—apparently even when the ultimate
transmitter and receiver are human beings—exceeds the scope of an
introductory text, an appreciation of this point of view can be gained
by considering how well an accomplished novelist uses a finite alphabet
to convey not only meaning but emotion. Indeed, the primary difficulty
encountered in extending discrete analysis to voice communication is
simply that no adequate criterion has thus far been discovered for describ-
ing the subjective equivalence to a listener of many quite different speech
waveforms.

Once the fact that a receiver can distingnish meaningfully between only
a finite number of message alternatives has been accepted, it follows that
no significant loss in communication performance is entailed in restricting
the transmitter to sending one of a finite set of signals. The block diagram
of such a communication system is illustrated in Fig. 1.7. As in Fig. 1.3,
the source output s is assumed to be generated at random from a set of
M possible discrete messages, {m,}, i =0, 1,..., M—1. Each message
is associated with a corresponding signal waveform, m,« 5,(f) for all 4,
and the transmitter sends 5,(¢) whenever m is m,. The transmitted signal
then propagates through the channel, and a corrupted version r(f) is
delivered to the receiver input.
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Figure 1.7 Block diagram of a discrete communication system.

The task of the receiver is to produce an estimate, 7, of the message
generated by the source. It does this by comparing r(¢) against cach
member of the set of all M signal alternatives {s,(£)}, replicas of which we
presume are stored in the receiver.

The receiver structure shown in Fig. 1.7 is quite general. The receiver
consists of a linear “front end” that compensates for attenuation during
propagation, a set of M detectors, and a decision element. Each detector
performs one of the comparison operations. In particular, the ith detector
compares the received waveform r(t) with the ith signal waveform s,(¢) and
produces a voltage value, say, u;, that is'a measure of their similarity. The
decision element then determmes # on the basis of these {}, i =0,
1,..., M—1. For certain choices of the {s{z)} a single detector may
suffice, in which case the receiver diagram reduces to that shown in Fig,. 1.8.

The chapters that follow are organized around these block diagrams.
We begin by considering the point labeled ¢ in Fig. 1.8 and by assuming
that the entire communication system, with the exception of the decision
element, has already been designed. In Chapter 2 we introduce the
mathematical tool—probability theory—that is necessary for determining
how best to design this element.

Chapter 3 is devoted to extending the concepts of probability theory to
the study of random waveforms. In Chapter 4 we consider first the point

Receiver
-

N

rd
~
r{t} Front @ Decision m
1 end Detector element [

Figure 1.8 In certain cases the receiver of Figure 1.7 may be reduced to the form
shown above.
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labeled 4 in Fig. 1.7 and exploit the results of Chapters 2 and 3 to deter-
mine the optimum detector and decision operations when transmission is

disturbed by white Gaussian noise. Chapter 4 continues with a discussion-

of signal design (point ¢ in Fig. 1.7) and concludes with an evaluation of
the over-all system when the {s,(f)} are chosen to yield the best possible
performance. _

In Chapter 5 we study the effects introduced by constraints on the
allowable transmitter power and the available channel bandwidth {cor-
responding to point 4 in Fig, 1.7). In particular, bounds are established
on the best attainable performance, and classes of signals that essentially
attain these bounds are described. Questions of transmitter and receiver
implementation are considered in Chapter 6, and the over-all theory is
discussed in relation to a telephone line data communication experiment.

Chapter 7 is concerned with the extension of the preceding results to
bandpass channels, to filtered signals, and to nonwhite noise. Certain
effects of random scattering during propagation are described and
evaluated.

Finaily, in Chapter 8 we consider the case in which the output of the
random source is a continuous waveform, such as speech, rather than one
of a finite set of discrete messages. Conventional modulation systems are
evaluated, and their performance is related to that afforded by discrete
signaling. The chapter concludes with a determination of the fundamental
limitations of continuous modulation and a discussion of the inherent
advantage obtainable in a discrete approach to the communication
problem.

i3 THE ROLE OF COMMUNICATION THEORY

It is interesting that ingenious experimentation has often led historically
to advances in communication technology far antedating real under-
standing of the principles involved. For example, frequency modulation
(abbreviated FM) came into widespread use soon after Armstrong® first
appreciated its noise-suppression capability in 1936, even though to this
day some aspects of FM noise behavior remain puzzling and are the
subject of active research. Moreover, the basic idea of frequency modu-
lation had been devised long before in a misguided attempt to conserve
transmission bandwidth and had lain essentially dormant subsequent to
Carson’s disproof!” of such a characteristic in 1922. In the past the role
of communication theory frequently has been to explain rather than to
foretell.

On the other hand, the basic conceptual aspects of communication are
now on solid ground, and an extensive body of methodology and results
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has been accumulated. Although innumerable strides of invention, both
theoretical and experimental, remain to be taken, it appears increasingly
likely that future advances will germinate within the framework of com-
munication theory. Even when a problem is best approached experi-
menially, appreciation of the principles underlying communication
engineering will provide insight vital to guiding the experiments to be
petformed. ' ' :




2

Probability Theory

In our discussion of communication thus far we have emphasized the
central role played by the concept of “randomness.” If the ultimate
receiver knew in advance the message output from the originating source,
there would be no need to communicate; and if the propagation of electro-
magnetic signals were not disturbed by nature, to communicate the
message would be no problem. The word “random’ means ‘‘unpredict-
able”; on the basis of what we know about the past of a phenomenon, we
are unable to predict its future in detail. A considerable body of mathe-
matics (calculus, for example) has been developed to treat causal phe-
nomena occurring in the real world. Similarly, mathematical models have
been developed that are useful in the study of real-world random phenom-
ena. The objective of Chapters 2 and 3 is to present the mathematical
background essential to our further study of communication.

2.1 RANDOMNESS IN THE REAL WORLD

Our inability to predict the detailed future of a random phenomenon
may arise either from ignorance or laziness: to the limit of our knowledge,
the laws governing a progression of events may be fundamentally random
{as in- quantum physics); or they may be so complicated and involve such
critical dependence on initial conditions (as in coin tossing) that we deem
it unprofitable to undertake a detailed analysis.

A pertinent example of randomness is the transmission of radic waves
through the ionosphere, illustrated in Fig. 2.1. Radio waves at certain
frequencies are refracted as they pass through the ionized gas that con-
stitutes the ionosphere. The degree of refraction depends on the detailed

structure of the ionosphere, which depends, in turn, on the amount of-

ionizing solar radiation, the incidence and velocities of meteors, and on
many other factors.

The veltage at the terminals of the receiving antenna is the resultant
of a number of waves traveling over a variety of different paths. The
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Figure 2.1 Refraction of radio waves by the ionosphere.

attenuation and propagation delay vary from path to path at any given
instant of time and vary with time for any given path. The causes of these
variations are far too complex to be calculable in detail. Thus the re-
ceiving antenna terminal voltage varies in a manner unpredictable in
detail. We say it varies randomly.

Although we cannot predict exactly what the antenna output voltage
will be, we find experimentally that certain average properties do exhibit a
reasonable regularity. The received power averaged over seconds does not
vary greatly over minutes; the received power averaged over a month does
not differ greatly from that averaged over another month characterized by
the same solar activity.

This statistical regularity of averages is an experimentally verifiable
phenomenon in many different situations involving randomly varying
quantities. We are therefore motivated to construct a mathematical model
adequate for the study of such phenomena. This is the domain of the
mathematicai field of probability and statistics,

Random Experiments

To avoid confusion, we introduce the following terminology. By an
experiment in the real world we mean a measurement procedure in which
all conditions are predetermined to the limit of our ability or interest. We
use the word trial to mean the making of the measurement. By a sequerce
of N independent trials of an experiment we mean a set of N measurements,
in the performance of each of which the discernible conditions are the
same.

An experiment is called random when the conditions of the measurement
are not predetermined with sufficient accuracy and completeness to permit
a precise prediction of the result of a trial. Whether an experiment should
be considered random depends on the precision with which we wish to
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distinguish between possible outcomes. If we desire (or are able) to look
closely enough, in some sense any experiment is random.

The discussion above leads us to distingnish in comnection with an
experiment between the terms ourcome and result. By different ourcomes
we mean outcomes that are separately identifiable in an ultimate sense;
in general, the set of outcomes in any real-world experiment is infinite. By
different resuits we mean sets of outcomes between which we choose to
distinguish. Thus the outcomes that are classified into a result share some
common identifiable atiribute. For example, a result in our propagation
experiment might be that the received power at the antenna terminals,
averaged over T sec, is between 10 and 15 uw. Such a result clearly
embraces an infinitum of different possible received waveforms, or

outcomes.

Relative Frequencies

We can now discuss more precisely what we mean by stafistical regu-
larity. Let A denote one of the possible results of some experiment and
consider a sequence of N independent trials. Denote by N(4) the number
of times that result 4 occurs. The fraction

N(4
) = 4 @
is called the relative frequency of the result 4. Clearly,
VEG N (2.2)

In Fig. 2.2 we plot fi(4) versus N for a typical sequence of trials in a
coin-tossing experiment, where 4 denotes the result “Heads.” We observe
that the relative frequency fluctuates wildly for small N but eventually
settles down in the vicinity of 3. This stabilization of the average incidence
of Heads in a large sequence of repeated trials is a simple example of
statistical regularity. In fact, we are so imbued with the notion that this
stability is proper that were it not in evidence we would immediately
suspect either the coin or the tosser. We feel intuitively that statistical
regularity is a fundamental attribute of nature.

We often denote different results of an experiment by different sub-
scripts; for instance A,, A, ..., Ay. Results that cannot happen
simultaneously in a given trial are called murually exclusive. As a trivial
example, in a coin toss the results Heads (say A,) and Tails (say A4.) are
mutually exclusive, For mutually exclusive results it is clear that the
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Figure 2.2 Relative frequency in coin tossing. (N is plotted on a logarithmic scale.}

occurrence of the result “either 4; or 4, satisfies the equality

N(4; or 4;) = N(4,;) + N(4,);
hence
fN(Ai or Ag‘) =fN(A1:) +fN(A:;')' (2.3)

Another example is tossing a die, with 4, denoting the result that the ith
face shows. The result “odd face shows™ is therefore the result *4; or
A, or A; Clearly,

Jul(Ay or Ay or 45) =fr~'|(A1) + fru(ds) + ful(ds).

For a fair die we expect the relative frequency of each 4, to stabilize about
+. Thus we expect the relative frequency of the result “odd face shows”
to stabilize at 2.

© 2.2 MATHEMATICAL MODEL OF PROBABILITY THEORY

Mathematical models prove uscful in predicting the results of experi-
ments in the real world when two conditions are met. First, the pertinent
physical entities and their properties must be reflected in the model.
Second, the properties of the model must be mathematically consistent
and permissive of analysis. -

We have seen that real-world random experiments involve three
pertinent entities:

1. The set of all possible experimental outcomes. ,
2. The grouping of these outcomes into classes, called results, between
which we wish to distinguish.
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3. The relative frequencies with which these classes occur in a long
sequence of independent trials of the experiment.

In the mathematical model of probability theory the corresponding
abstractions are called:

1. The sample space.
2. The set of events.
3. The probability measure defined on these events.

We begin our discussion by defining these three mathematical entities.
We then develop our model by assigning to them mathematically con-
sistent properties that reflect constraints in the real world. We conclude
with a series of examples that develops further the correspondence
between our abstract entities and their real-world correlatives.

Figure 2.3 A sample space. Each graph 4, is associated with the sample point w;,
[=1,2,34. ’

Fundamental Definitions

Sample space: a collection of objects. The collection is gencrally re-
ferred to by the symbol . An object-in £ is called a sample point and
denoted . As examples, Q might consist of

the set of 4 graphs shown in Fig. 2.3,

several points on the real line,

the closed interval [0, 1] of the real line,

all points in a plane,

all time functions f(¢) defined for —eo < ¢ < w0.
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The sample space £ corresponds to the set of all possible outcomes of a
real world experiment; each outcome, in turn, corresponds to a sample
point.

Event: a set of sample points. We usually label events by capital letters,
such as A, B, ..., or Ay, As,.... An event is concisely defined by the
expression

A = {w: some condition on w is satisfied}, 2.4
which is read ““the event 4 is the set of all w such that some condition on w
is satisfied.”t For example, if Q is the 2,y plane and p* L2 %%, a pos-
sibleevent is 4 = {w: p < 1}. Then 4 is the set of all points interior to a
unit circle centered on the origin. Similarly, if (2 is the set of all time func-
tions, a possible event 4 is the subset of all time functions such that

2< f SHD dr € 2.5.

Since the entire sample space is a set of sample points, £ itself is always an

event.
Events in the mathematical model correspond to results in the real

world.

Probability measure: an assignment of real numbers to the events
defined on . The probability of an cvent 4 is denoted P{4]. The con-
ditions that the assignment must satisfy will be discussed subsequently.

Example 1. 1f the sample space Q is the set of 4 graphs shown in Fig. 2.3
and we define the event 4, to be the ith graph (sample point), a possible
probability assignment is

Pl4;] =4,
P[4,] = Pl4:] =4,
P[4} = 0.

Example 2. 1f'Q is the real line segment 0 < @ < 1and we define the
events 4, = {w: 0 < @ <1}, / € 1, a possible probability assignment is
Pl4,] =1L

Example 3. If ) is the set of all time functions { f(t)} and we define
the events A, = {w: 0 < f(0) < «}, a possible probability assignment is

Pld,]=1— e

The probability assigned to an event corresponds to that value at which
we expect the relative fréquency of the associated result to stabilize in a
long sequence of independent real-world experimental trials.

+ Throughout this text, braces are used to denote a set! for example, {4} denotes the
collection of all 4;, i =1,2,....
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Aﬁci}lary Definitions

The definition of a sample space Q and events such as A4, B, . . . implies
the existence of certain other identifiable sets of points.

1. The complement of A, denoted A€, is the event containing all points
in Q but not in 4.

A £ {w: w not in A}. (2.52)

2. The union of A and B, denoted 4 U B, is the event containing all
points either in 4 or B or both.

AUB2& {0 win 4 or Bor both}. (2.5b)

3. The intersection of A and B, denoted 4B, is the event containing all
points in bothr Aand B

AB 2 {»: o in both 4 and B}. (2.5¢)

4. The event containing no sample points is called the null event,
denoted @. Thus Q° = @.

5. Two evenis 4 and B are called digjoint if they contain no common .

point, that is, if AB = &.

The relations between the operations complementation, union, and
intersection are easily visualized geometrically, In Fig. 2.4 the events
Q, A, B, and C are tepresented by sets of points lying within labeled
closed contours. Such drawings are called Venn diagrams. From Fig. 2.4
it is immediately obvious that

AUV A= Q, (2.6a)
A4 = g = O, (2.6by
AQ = A. (2.6
Moreover, further study of Fig. 2.4 reveals that .
(AB)® = 4% U BS (2.72)
(4°V B)® = A°B* (2.7b)
A U B =(AB% U (4B) U (A°B), (2.70)

where the three events on the right-hand side of Eq. 2.7c are disjoint.

+ Intersection is also denoted 4 M B. We use this notation only when necessary
for clarity,

PROPERTIES 19

A
¢/ @@ :
& Q
At ACmC
ta) {5)

The shaded area
represents A (B U C}

(c)

Figure 2.4 Venn diagrams.

A moment’s reflection makes it ¢lear that the union and intersection
operations are commutative, associative, and distributive. That is to say,

AUB=BuUA
AB = B4
o [AU(BUC)=(AUB)UC
associative
’ A(BC)Y = (AB)C
A(B U C)= (4AB) U (4C)
A VU(BC)= (4 v B4 v ).

commutative [

distributive {

Properties

In a long sequence of N independent trials of a random experiment in
the real world the results {4,} and the observed frequencies { fy(4,)} with
which these results occur meet certain conditions:

1. The relative frequency f(4,) of every result satisfies the inequalities
0 < fild) < L. .

2. Every trial of an experiment has an outcome.

3. If two results A and B are mutually exclusive, then f(4 or B) =

In(4) + f(B). ) ’




20 PROBABILITY THEORY

‘Since our objective is to use probability theory to predict the results
of real-world random experiments, it is reasonable that similar con-

ditions should be imposed on corresponding entities in our mathematical -

model. We therefore restrict our assignment of probability measure to
have the following properties. '
I. To every event A, a unique number P[4,] is assigned such that
0L P41 L.
IL. PIQ] = 1.
111. If AB = @, P[4 v B] = P[4] + P[B].

These properties, motivated from real-world considerations, are all that -

we require in our present discussion of the mathematical model. They are
also adequate for a formal, axiomatic development of probability theory
whenever the totality of events on Q—defined to include every complement,
union, and intersection of events—is finite. (When this totality of events is
infinite, it 15 necessary in an axiomatic development to specify carefully the
collection of events defined on  and to extend property IlI. to include
infinite unions of disjoint events. These modifications extend the scope of

the theorems derivable from the axioms.)
Properties I to I1I have several immediate implications. Since A4 =

@, II and 11T imply that
_ P{A] + P[4%] =1

or : P[A°] = 1 — P[4]. (2.8a)
In particular, when 4 = £,
' P[z] =1 — P[Q} = 0.  (2.8b)

Also, since the events (AB), {AB®), and (AB) are disjoint, property ILI

implies that
P P[4] = P[4B] + P[4 B

P[B] = P[4B] + P[4°B];
hence, from Egq. 2.7¢c, we have
P[A U B] = P[4B°] + P[4B] + P[4°B]
= P[A4] + P[B] — P[4B], 2.9
P[4 U B] < P[4] + P[B]. (2.10)

Probability Systems

A sample space, a set of events, and a probability assignment to the
events together constitute a probability system. The probability assign-
ment must be complete, in the sense that if events A and B are assigned
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probabilities a probability must also be assigned to the intersection AB
and (by Eq. 2.9) to the union 4 \J B. We now consider two examples that
illustrate the assignment of probabilities.

Finite sample spaces. A probability system in which  has only a
finite number of points, say &, is especially simple. The maximum number
of distinct events that can be defined on such a sample space is exactly 2%,
since each of the &£ points may or may not be included in any particular
event. For instance, if £} consists of the three points w,, w,, ws, the most
general set of events can be denoted by the binary sequences

Ay=(000) =@ A, = (100)
4, = (001) A; = (101)
A, = (010) Ag = (110)
Ay = (011) A, =(111)=Q;

the convention is to set the ith digit of a k-digit sequence equal to 1 or 0,
the choice depending on whether or not the point w, is included in the
event. '

The most general probability assignment for the 2° possible events can
be obtained by associating with each point @, in £ a non-negative number
P, such that

A

P, =1. (2.11)

i=1

The probability of an event A is then taken to be the sum of the P,’s of the
points it contains., We write

P[A] = ) P, (2.11b)

where I denotes the set of subscripts of sample points constituting A, For
example, the probability of the event A; defined in the preceding para-
graph is Pf4;] = P; + P, Itis evident that probabilities assigned in this
way meet the conditions of properties I-II1.

Real-line sample spaces. In sample spaces that contain an infinite num-
ber of sample points, events and probabilities may be assigned with
considerably more freedom than in finite sample spaces. Consider, for
example, the case in which the sample space is the real-line interval
Q={w:0< w1} A possible probability system, which we have
already briefly encountered, results when events are intervals of this line
segment, plus unions, intersections, and complements of such intervals,
The intervals may include both, one, or either of the end points. A
possible probability assignment is then one in which the probability of an
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event is the sum of the lengths of the disjoint intervals that constitute the
event. For example, if the event A illustrated in Fig, 2.5 is defined as

={wi(m<o<a) or (<o a or

(@ < o < ap) or (@ < w < ag)}
with
0<a € g1 for all i,

then
PlAl = (@, — &) + (@ — ay) -+ (35 — a5) + (g5 — a).

1&&&\%&&—&%\&—@—4—

a7 o
0 3 44 781

Figure 2.5 An event on the sample space Q=1{w: 0 <o <1} Theevent 4 is the
union of the shaded intervals.

A convenient way to describe the probability system considered above
is to write

Pl4] =Jf(w) dw, (2.12a)

I

where the integration is over the intervals constituting the event 4 and

I; 0wt )
flw) = { (2.12b)

0; elsewhere.

For the event 4 defined above and the probability assignment of
Eq. 2.12, P[A] is given by the length of the shaded area in Fig. 2.5. Ttis
clear from the figure that this probability system satisfies properties I, 11,
and IIL. Tt is also clear, in contradistinction to the case of a finite sample
space, that the most general -probability assignment to events is not built
up from probabilities assigned to individual sample points. The proba-
bility assigned to any point w by Eq. 2.12is zero; obviously this conveys no
knowledge about the probability assigned to an interval,

The probability assigned to an interval cannof be an arbitrary function

if properties I to 1iI are to hold. For example, If the probability of an
“nterval A were chosen to be the square of its length, properties I and II
would hold for the unit- mterval sample space, but property III would not.
In particular, if

Aé{w:agwéc},
we would have
P[4] = (¢ — a) _ (2.13)
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Alternatively, however, we can-write
={wag b}u{w <ot

Since the two events on the right-hand side are disjoint, property III states
that

Pld] = (b — a)* + (c — D)%,

which is inconsistent with Eq. 2.13. Using two different methods of
calculation, we get two different answers for P[A], and therefore the
probability assignment is invalid. In assigning probabilities we must be
careful to preclude the possibility of inconsistency.

A general probability assignment to intervals on [—co, o] which is
always valid is

P4} =ff(a>) do, (2.14a)
1
where f(w) can be any integrable non-negative function such that

F Fo)do =1 ' (2.14b)

and [ is the set of sample points constitutiﬁg 4. Equation 2,14a is analo-
£ous to the summation of Eq. 2.11b for finite sample spaces. Examples of
appropriate functions f{w) are shown in Fig. 2.6.

we ™% w >0
0, w=0

flw) =1 ¥l fles) =

B

0 « w
(a} (8)
=1 10=<w=1
fleo) = 0; elsewhere
1
Figure 2.6 Examples of functions
for probability assignment to real-
line sample spaces.
0 1

()
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Relafion of the Model to the Real World

The function of a mathematical model in engineering is to permit the
prediction, by calculation, of observable results in the real world. The
utility of probability theory derives from the fact that it enables us to make
precise mathematical statements that mirror the statistical regularity
observed in nature. Before we can discuss this mirroring in a meaningful
way, however, it is necessary to construct a mathematical model for a
compound experiment; that is, an experiment which jtself consists of a
sequence of N independent trials of a simpler experiment. To do so we
first consider relative frequency in more detail. Qur objective is to
discover how to assign probabilities meaningfully in the mathematical
model of a compound experiment.

Consider the compound experiment that consists of two independent
trials of a simple experiment, one result of which is 4. In the compound
experiment a set of possible results consists of the four sequences of
observations (A4, 4), (4, B), (B, 4), and (B, B), where the first entry
denotes the resuit of the first trial, the second entry denotes the result of
the second, and B = A°. For N = 10 independent repetitions of the
compound experiment, a typical sequence of results might be

Trial Number Result

-

RN SR O N
bydy by o b by A A by b
LR S

“

=Bt~ BN B R RN U

—

v

The relative frequency of a particular compound result, say (4, B), can
be calculated in either of the two following ways. The direct methed is to
count the number of occurrences, N(A4, B) and divide by N.

N(4, B)
N
An indirect methaod is to check (as shown) all results that begin with 4

fN(A: B) =
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and to calculate the fraction of checked results that end with B. We call
this fraction the “conditional relative frequency of B on the second trial,
given A on the first trial,” and denote it £(B | A). For our example

In(B ] Ay =% Then f(4, B) is also given precisely by the alternative
expression

I, BY = f(AD) (B | A), (2.152)

where fi(4) is the relative frequency with which A occurs on the first
trial. In our example f\(4) = %. Both methods of calculation yield
fN(As B) = 1%)-

Although these manipulations appear trivial, the formulation in terms
of conditional relative frequency permits us to exploit the fact that the
trials in each sequence-of-two are independent. Independence implies
that the result of one trial of the simple experiment does not affect the
result of another. Thus, when N is sufficiently large, we usually observe
that both f(B | 4) and f(B) stabilize at the same numerical value. In
a long sequence of independent repetitions of pairs of trials we therefore
expect that the following approximation to Eq. 2.15a will be valid:

SdA, B) %fN(A)fN(B)- (2.15b)

For instance, in coin tossing we anticipate that the over-all frequency of
Tails and the frequency with which Tails follows Heads will both be near
4. Therefore we expect that fi(H, T) will be near } for large V.

Similarly, if a compound experiment consists of M independent trials
of a simple experiment, the relative frequency with which the result is any
particular sequence such as (4, B, B,..., 4) is usually observed to
approximate the M-term product of the relative frequencies of the result’s
constituents:

JNA BB )~ A BV (B) -+ u(4). (2.150)

With this background, we can discuss the problem of determining a
mathematical model to represent a sequence of M trials of a real-world
experiment. Assume that we have already determined a probability system
that adequately represents a single trial of the experiment and that our only
intercsts are in some particular event A having probability P[4} and in
the complementary event 8 = 4%, We now construct a new probability
system appropriate for modeling the sequence of A independent trials.
The sample space of the new system consists of 2% points, each of which
stands for one of the possible sequences of length M constructible from
A and B. For example, if M = 3, there are eight sample points.

We are guided in assigning probabilities to these 2% points by a desire
that probabilities should act as relative frequencies. Accordingly, in our
new system we mirror Eq. 2.15¢ and assign to each sequence (sample point)

- DE I_a
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a probability equal to the product of the probabilities of its constituents.
Thus, if P[4] = p, which implies P[B] = 1 — p, we assign events and
probabilities to sample points as shown in Table 2.1 for M = 3. In order
ultimately to establish a tie between the repeated physical experiment and
our mathematical model we also associate with each sample point a
number m(A4) equal to the fractional number of times A occurs in the
corresponding sequence: o M(4)
md) ===

where M(A4) is the number of 4’s in a sequence.

(2.16a)

Table 2.1 Probability assignment, M =3

Sample Point Event Probability m(A)
Wy . AAA Ps 1
wy AAB Pl —p) 3
g ABA P —p) %
w, BAA Pl —p) 2
g BBA p —p)iE %
g BAB p( —py E
@, ABB p —pi %
g BBE 1 —pp® 0

For this example the probability of the event m(4) = § is

4
Plm(A) = 31 = P[{w, w3, 0}] = Z2P[wi] = 3p(1 — p).
For general M the probability that m(4) = k/M is
k MY ol M, '
P m(A)zl\—/[ = P — ™™ 0 k<M, (2.16b)

k
where

k] T =t

To show this, we first note that probability p*(1 — p)~* is assigned to
each sequence that contains exactly k A’s. [tis well known that there are

(A:) distinct sequences of k A’s and M—k B’s. Since each distinct
M
sequence corresponds to a sample point, there must be ( k) sample

points for which m(4) = k{M, each having probability Pl — pyM-=,
Equation 2.16b then follows immediately from property Iif.

(M) s M | (2.16c) -
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The probability assignment of Eq. 2.16b is called the binomial dis-
M

tribution, and the ( k) are the binomial coefficients. We check that the

binomial probabilities sum to unity (as they must to satisfy propérty 1B
by invoking the binomial theorem

(MY s
(a + b) =k§0 Y G (217)
and obtain

u k
Selm =E]—pra-mr-t
E=0 M
k . S
Plots of P| m(A4) = W are given in Fig. 2.7 for M = 16, 100, 400, and

for p = 0.1 and 0.5. '
Our primary interest is in the probabilistic behavior of m(4) when M
is large. For any small number e, let us consider the event

{o:[m(A) — p| > €}.

Thus
M s
Pim() — o1 > =3 (V)o%a - @as)
where
I= k:ﬁﬁp—s or ﬁ>p—i—e}. {2.18b)
M M

From Fig. 2.7 it is quite clear that, for any ¢, this probability tends to zero
as M becomes large. Indeed, we shall see later that

Plim(a) — > ¢ < =2 (2.199)

and even more strongly that

P[|m(4) — p| > €] < ™™, (2.19b)

“where « is a positive number independent of M.

The number m(A) in the mathematical model of a compound experiment
has been defined in a manner that makes it directly analogous to relative
frequency; we have f(4) 2 NN and m(A4) 2 M(A){M. Equation
2.19 states, in addition, that m(A) exhibits properties that mirror those of
relative frequency in nature: m(A) is close to the number P[4] with high
probability when M is large, just as f,(A4) almost always stabilizes close
to this same number when N is large. Furthermore, the low-probability
cvent that m(A} is very different from P[4] mirrors atypical results in the
reat world such as observing the relative frequency of Heads to be close
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Figure 2.7 Binomial probabilities and behavior of Plm(A4)l. The hea\fy
line segment along the horizontal axis indicates the interval p 4 0.1 in
(a), (b), (c) and the interval p + 0.05 in (&), (&), (/).
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to unity in a long sequence of independent coin tosses. We say that such
sequences are unlikely; the mathematical model says that they are
improbable. We connect the model of probability theory with the real
world by saying that we do not expect to observe a particular experimental
result if it corresponds te an event of low probability. Thus in a long
sequence of independent trials we expect the measured relative frequency

of a result to converge to the probability of the corresponding mathematical

event. As in Newtonian mechanics, probability theory is ultimately

justified by the fact that it predicts—in this case, the relative frequency—
sucecessfully.

Naturally, the success of a mathematical prediction depends not only
on the rufes used in calculating but also on the accuracy of the original
numerical data. For instance, the mass of a mathematical body in
mechanics must approximate the mass of the physical body. Inapplication,
probabilities are usually assigned inmitially to fairly simple events; then
we proceed to calculate the probabilities of other, more complex, events,
Care must be taken that the original assignment is realistic. For example,
one objective of communication theory is the design of communication
systems that operate over noisy channels with a minimum probability of
error. Successful engineering results are obtained only if the mathematical
model of the channel adequately reflects the true nature of the disturbance.

In many cases study of the physics underlying a random phenomenon
leads to a proper initial probability assignment; we shall see that tran-
sistor and vacuum tube noise can be treated in this way. In some cases
symmetry provides the starting point; for instance, it is reasonable to
assign probability 4 to Heads in coin tossing. In other cases we make
recourse to the observation of-relative frequencies: life insurance rates
are based on mortality experience tables. The unavoidable hazard here,
of course, is that the observed frequencies may not be typical. In any
event, the final test of validity is always whether or not predictions based
on the original data are accurate enough to be useful.

Conditional Probability

In dealing with repeated trials of a physical experiment, we have
introduced the concept of conditional relative frequency. It is convenient
to introduce a corresponding concept into the mathematical model.
Given any two events A and B, we define the corditional probability
P[A | B] of an event A as

A P[AB]

P[4]B] = P(E] (2.20)
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whenever P[B] # 0. When P[4] is also nonzero, it follows that

PLAB) = P[4 | B] P[B] = PIB| 4] P[4]. (.21) -

Since the intersection of B with itself is B, |
PiB | Bj=1. (2.22)

iti iliti i ion to a subspace
Conditional probabilities serve to narrow con_snderapon :

B of a sample space Q2. This can easily be visualized with the help of Fig.

2.8, in which we show a sample space Q on which several events {4} are

[
/
Ay
A
Az z
Ag
. le—$2
As Ag
"
7
[
B -<—;'—>—BC

Figure 2.8 Conditioning on an event B,

defined. The shaded area to the left of the dotted line is anothe; event B.
It is useful to think of “conditioning™ as a means of generaling a new
probability system from a given one: :

1. The new sample space, say £, is the original event‘B.
2. The new events, say {4}, are the original intersections {4,B}.

3. The new probabilities, {P[4,]}, are the conditional probabilities

{P4, | BI}.
This probability assignment to £’ satisfies the necessary properties.

I. Since 0 & P[4,B] < P[B], we have 0 < P[4,] < 1.
1. By Eq. 2.22, P[] = P[B| B] = L.

£ b =gt B o momoelopping Joma (2230)
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L If 474, = &, then (4,8) N (4,8) = 2 and

P[4, U 4,1=P[4,B U 4,B| B]
__ P[4,B U 4,B]
- My
_ P[A;B] + P[4,B]
- P
= P[4;] + P[4,"].
Since conditional probabilities can be considered as ordinary probabilities
defined on a new sample space, all statements and theorems about ordinary

probabilities also hold true for conditional probabilities. In particular,
if the set of intersections {4,B} is disjoint"ind if

alz.lli(AiB) =B, (2.23a)

then
P[B] = > P[4,B] = 3 PIB] P[4;] B] (2.23b)

and
1= gﬂ:iP[A,. | B]. (2.24)

Equation 2.23 is called the theorem of total probability. 1t corresponds
to the geometrical axiom that the whole equals the sum of its parts.

Statistical Independence

As interpreted, conditional probability is directly analogous to con-
ditional relative frequency in a physical experiment; in boih cases we

consider only the subset of possibilities that satisfies the condition. In a
long sequence of independent experimental trials we therefore anticipate
that a conditional relative frequency will stabilize at the corresponding
conditional probability.

If the joint probability} of two events 4 and B satisfies

P[4, B] = P[4] P[B], (2.25a)
or equivalently
: P[4 | B] = P[4], . (225w

we call the pair of events statistically independent. Equation 2.25 mirrors
the corresponding approximate relationship for relative frequency with
independent trials given by Eq. 2.15b.

T The prebability of the intersection 48 of two events 4 and B is frequently written
P[A, B}, instead of P[4B), and referred to as the probability of the “joint event 4 and
B.” The notation arises naturally in modeling a sequence of trials, as in Table 2.1,
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A set of & events {4} is defined as statistically independent if and only
i the probability of every intersection of k or fewer events equals the

product of the probabilities of the constituents. Thus three events 4, B,

{a) P[AB}=PlA| P[B]
(b} PIAC] = P[A] PIC]
{c) P[BC]=P[Bi P[C]
(d) PIABC| = P[A] P[B] P[C]

{z) independent events,
a, b, ¢, d are satisfied;

" () dependent events,
a, b, ¢ satisfied, a, b, d satisfied,
d not satisfied; ¢ not satisfied.

(b) pairwise independent events,

Figure 2.9 Independence and dependence of three events.

C are statistically independent when
P[4, B] = P[4] P[B]

P[4, C] = P[4] P[C] (2.26) -

P&, C] = P[B] PIC]
and ‘P[4, B, C] = P[4] P[B] P[C]. 2.27)
No three of these relations necessarity implies the fourth, If only Eq.
2.26 is satisfied, we say that the events are pairwise independent. Pairwise

independence does not imply complete independence. Various possibiiities
are given in Fig. 2.9. '
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An nen problem. The use of conditional probability often simplifies
the assignment of probabilities to the joint occurrence of two events.
Consider the urn problem, for example, in which we draw two balls at
random from an urn containing one black and two red balls. When we
draw two balls without replacement, the only possible cutcome sequences
are (R, R), (R, B), and (B, R). In the mathematical model we employ a
subscript to denote the draw. For the first draw we set P[R,] = £,
P[B,] = }. For the second draw we set

P[R;|R]1=1 PlR|B]I=1
P[B,|R]=1 P[B|B]=0,

where the conditioning is on the result of the first draw. Thus
P[R,, Rs] =P[R P[R, | Ry] = %,
P[R,, By] = P[R] P[B:; | Ri] = %,
P[B,, Ry] = P[B,] P[R, | Byl = 3.

A communication problem. A second, particularly permane, example of
the utility of conditional probability is the following idealized communi-
cation problem. Consider a mathematical model of a discrete communi-
cation channel having A possible input messages {m;}, 0 < i< M — 1,
and J possible output symbols {r;}, 0 < j<J — 1. For purposes of
this example the channel model may be completely described by a set of
MJ conditional probabilities, {P[r; | m,]}, that specifies the probability
of receiving each output conditioned on each input. For small values
of MJF it is convenient to diagram these conditional probabilities (often
called ““transition probabilities” in a communication context) as shown in

_Fig. 2.10.

o Plrojmol

Pr1|mo)

Plryfmy]

ma

Plralmi]

Figure 2.10 Transition probability diagram, M == 2,J = 3.
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" The model introduced above describes an actual communication system
such as that diagrammed in Fig. 1.7 when the entire system from source
output to decision clement input is considered, for purposes of analysis,
to be the “channel.” Specifically, the model results when there is only one
detector (as in Fig. 1.8) and its output (point a) is constrained to assume
one of a set of J discrete values. Under these conditions the design of the
“receiver” amounts to specification of the decision element.

Assume that we know the set of M probabilities {P[mn,]} with which
the input messages occur. These probabilities are called the a priori
message probabilities (meaning the probabilities before reception). Our
problem s to specify a receiver that, on the basis of the symbol r, received,
makes the optimum decision regarding which message m, was transmitted,
We define optimum to mean that the probability of deciding correctly,
denoted P[C], is maximum. In a long sequence of independent trans-
missions we therefore expect the optimum receiver to decide correctly
more often than any nonoptimum receiver.

A single operation of the channel can be described on a sample space
Q comprising MJ sample points w, each labeled with one of the possible
input-output pairs (m;, t;). Probabilities are assigned to these points by
the equation

Plm;, r;] = P[m;] Plr; | m.]. (2.28a)

We can then use Eq. 2.23b to calculate such quantities as

M—-1

P[J"f] = Z Pim,, r_,‘.] ‘ (2.28b)
and - ‘
Pim,| r,) = P—E;?;—;ﬂ (2.28c)

An example of a typical probability system, with M = 2 and J =3, is’

illustrated in Fig. 2.11.

Before a-transmission the a priori probability that any particular input
m, will be transmitted is P[m,). After a transmission, given that r,; is
received, the probability that m, was transmitted is P[m, | r;], which is
called the a posteriori probability. The effect of the transmission is to alter
the probability of each possible input from its a priori to its a posteriori
value.

The specification of a receiver amounts to the specification of a mapping
from the channel output space {r;} onto the message input space {m.}:
each possible received symbol r; must be attributed to one and only one
of the possible inputs. Let 7(j) denote the particular input in the set
{m;} to which a receiver attributes r;. Then the conditional probability

e
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/9

P
{ro|mo] (mouro) Plro|mil
" (ma, ro)
P
{mo, r1) (m1, ) Ll
Plr1|mao) h
(my, r2) Plra|mil
Yy
Plra|mol {mq, rz)
3 -

L—‘— Plmy] ‘>|'<— Plm] %'I

Figure 2,11 Prf)bability system for communication example. The probability of each
input-output pair (s, #;) is represented by its area.

P[C | r;1 of a correct decision, given that r; is received, is just the probability
that (/) was in fact transmitted. We write

P[C | r;] = P} r,). (2.29)
Obviously, P[C | r,] is maximized by choosing (/) to be that member of

{m;} with the largest a posteriori probability,” This maximum a posteriori

probability decision rule, applied independently to each possible received

symbol 7, determines the optimum receiver. If several m, have the same
(maximum) a posteriori probability, r, can be arbitrarily assigned to any

‘one without loss of optimality.

That this decision rule is optimum becomes clear when we use Eq. 2.29
to compute the unconditioned probability of a correct decision, P[C].
J-1

P[C] =J_§0 P[C| 7,1 P[r,]. ' (2.30)

The positive quantities P[r;] are independent of the decision rule, and
therefore the sum on j is maximized if and only if each of the ;erms
PIC| r;] is maximum.

Itis not necessary to compute the probability P[r,] in order to determine
the optimum mapping {#(j)} and the resulting probability of error. From
Eq. 2.28, m, has maximum a posteriori probability,

Pl | r;) > Plm, | r;] forallisk, (2.31a)
hence #i(j) = m, if and only if

Pl ] Plr; | m] > Plm,] Plr; | m;] foralli# k. (2.31b)
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Once the set {M(j)}, j=0,1,...,J — 1, is determined from Eq. 2.31b,
the probability of correct decision, PIC], can be calculated from the

equation
J-1 . .
PIC] = E P, il (2.32a)

where P[#(j), ;] denotes the joint probability that #(j) is transmitted

and r; received. o
Finally, the probability of error, P[6] is given by

P[&] = 1 — P[€C]. (2.32b)

An Example. Tn Fig. 2.12a we show a binary channel with two input

10 , 10
a 02 0 (@0 i1
Pla} = 06 . 08 -
(5,0)
03
(z, 1)
07
028) .
Plol = 04 & 0
b 03 ! 048 817
o] c
0 06 10
“{a) (b}

Figure 2.12 A binary communication channel.

symbols {a, b} and two output symbols {0, 1}. The input probabilities
are

Pla] = 0.6 P[] =0.4.
The channel transition probabilities are
P[0|a] =02 PO|b]=07
P[l]|al=08 P[1]5]=03.

Thus the probabilities of the four possible input-output pairs, as shown in
Fig. 2.12b, are

Pla, 0] = P[a] P[0 | a] = 0.6 x 0.2 = 0.12
Pla, 1] = Pla] P[1 | a] = 0.6 X 0.8 = 048
P[b, 0] = P[] P[0 5] = 0.4 x 0.7 = 0.28
P[b, 1] = P{B] P[L | 5] = 0.4 x 03 = 0.12.
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Since .
" P[b, 0] > Pla, 0]

Pla, 1] > Pib, 1},
the optimum receiver is specified by the mappirig
w0y =5

w(l) = a.
From Eq. 2.32a,
P[C] = P[b, 0] + Pla, 1] = 0.76

and
B[S] =1— P[C] = 024,

The sample points corresponding to error are shaded in Fig. 2.12.

2.3 RANDOM VARIABLES

In many of the applications of probability theory—one is tempted to
say most—real numbers are associated with the points {w} in a sample

- space. For example, in discussing the mathematical model for a sequence

of M independent trials of an experiment, it was natural to assign to each
point e a number m(4), chosen to equal the fractional occurrence of 4
in the event sequence associated with w. Another natural example, when
Q is the real line, is to associate with each point  the distance from w to
the origin. Equally well, of course, we could associate with  the square
of this distance. ' ‘

. The real number associated with a sample point e is denoted z(w).
In the general case, in which Q is an abstract collection of points, 2 )
may be viewed as a function that maps £ into the real line: given any
point o, the function z( ) specifies a finite real number z(w). A simple
example of such mapping is illustrated in Fig. 2.13. When € itself is the

'A

10
xfesg) xwe) weoy)  xlw) xfwy)  wHws)
Figure 2.13 A mapping =( } from Q to the real line.
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real line, examples might be x(w) = o, w(w) = w?, or x(w) = sin @.
Hereafter, in referring to functions we often delete empty parentheses
and simply write x to denote the function #{ ).

Distributicn Functions

Once = has been specified, we may inquire into the probability of

events such as )
- A ={w:a < x(w) < b},

B = {w: o(w) =c}
¢ = {w:z(w) > d},

and so on. The answer to any such question is readily obtained from

Fle)

I

Gilor =

—-

[N AN TN NS N BN B o
-1 ¢ 1 2 3 4 5 &6

Figure 2.14 An example of a probability distribution function.
knowledge of the probability distribution function, F,, defined as

F () £ P[{w: o(w) < «}]. (2.33)

Clearly, F, is a function from the real line into the interval [0, 1]. For
example, if
Q= {wh g, ':U:;}
CP[wJ ~} Plol=4 Pled=t
2(ewy) =0 x(cu? =4 zlwy) =1

fora < 0,
for0 < a<l,
for 1l € u<<4,
for4 <

[

a?
as shown in Fig. 2.14.

|
.\g
E
|
bz
&
i
g
,‘}:‘\;.
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Functions « for which probability distribution functions can be specified
are called random variables.t In this text we do not consider functions x
for which F, does not exist. In an axiomatic treatment of probability
theory care must be taken to avoid the choice of a function x for which
some event {&: z(w} < a} has not been assigned a probability.

The properties of distribution functions listed below follow directly
from the definition of Eq. 2.33.

I Fa) 2 0; for —oo <o < o0,
II. F{—o0) =0.
1. F(4w) =1,
. Ifa>b, F )= F(b)=Pl{ew:d < a(w) < a}l.
V. Ifa>b, FJa) > F(b).

The first three properties follow from the facts that F (e) is a probability
and P[Q2] = 1. Properties IV and V follow from the fact that

{w:z(w) < b} Uiw: b < o{w) € a} = {w: 2{w) < al.

Another property of distribution functions concerns the nature and
significance of discontinuities, such as those illustrated in Fig. 2.14.
Consider any positive number e. Since F_ is defined in such a way that
Fa — ¢) does not include the probability, say P,, of the event {w:
#{w) = a}, whereas F,(a) does include this probability, F,(e) has a
discontinuity of magnitude P, at the point o = ¢ whenever P, > 0.
Furthermore, F (a) is the value of F, at the top of this discontinuity. If
P, =0, the height of the discontinuity is zero; that is, there is no dis-
continuity. The properties of distribution functions are summarized by
remarking that F increases monotonically from 0 to 1, is continuous on
the right, and has a step of size P, at point « if and only if

Pl{w: #(@) = a}] = P,.

‘We are not restricted to assigning only one real number to each point
w in a sample space. In general, we define many different mappings
(functions) from a single sample space £ into the real line. Then we
have a set of coexisting random variables, say [z}, i=1,2,..., k.

1 The nomenclature is somewhat misleading, Actnally, a random variable is a well-
defined function on the points of a sample space. The terminology comes from the use
of randem variables as mathematical models for quantities in the real world such as a
noise voltage measured at some time #,.
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- First consider the case for which & is 2. Once the functions =, and =,
are specified, we may inquire into the probability of jeint events such as

{o: 2{w) < ay, 2(0) < @2} 2 {o: z(0) < @} N {w: z(0) € a5}

In order to answer such questions, it is #ot sufficient to know only the
one-dimensional distributions, F, and F,. All such questions can be

*2

oz

T *

Figure 2.15a8 Fy o (0u, ) is the probability of the set of all & for which the point
(z(0), z{w)) falls into the shaded region.

answered, however, through knowledge of the joint probability distribution
function, F; , ., defined as :

F a1, %) = Pl{w: z(w) < oy, 2(w) < #a}]s =00 <oy, oty < 0.
(2.34)
Thus F, (e, @) is the probability assigned to the set of all points @ in
Q) that are associated with the region of the two-dimensional Euclidean
space which is shaded in Fig. 2.154.
The properties of joint distribution functions listed below follow
directly from the definition of Eq. 2.34.

L F, oo, 0) 2 05 for oo < oy < o0, —00 < oy < 0.
Il F, o (—oc0,0) =F, . (2 —a)=0; for —co<a < o
1. F, (o0, 00} = 1.
IV. Fy (o0, @) = Fy(a).
V. F,, o (@, 00) = Fy (o).
VI If oy, > b, and a, > b,
Fxl,m2(a17 az) > Fa:hmg(ali b2)> le,xz(bl’ bz)-

e S

DISTRIBUTION FUNCTIONS 41

Properties I, II, 111, and VI are self-evident. Properties IV and V are
consequences of the facts that {w:a(w) < w0} = O for any random

o A SR P R

variable and the intersection of any event with LJ 1s the event. 1n summary,
F ot %) is a monotonically increasing function of both arguments,

"

Height equals one

)
Figure 2.156 Example of a two-dimensional distribution function, Fly g0ty 012).

and 0 << F; (e, «) < 1. Anexample of a possible distribution function
F,, o, is shown in Fig. 2.155.

‘When k random variables, @;, @, . . . , %, are defined on Q, it is conven-
ient to adopt a concise notation, Let x denote the k-tuple (2y, 2o, . . . , T
We then define the k-dimensional joint probability distribution function

F(a) as
Fy(o) £ Pl{o: 2(0) < @y, 24(0) € ta, - - ., 70) < 0], (2.35)

A
where & = (&, ¢y, ..., o). We refer to x as a k-dimensional vector of
random variables or, more simply, as a random vector.
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“Two k-dimensional vectors, say

a é (als gy o o ay ak) (2.363)
and
b2 (b ba ..o B (2.36b)
are said to satisfy the relationship
ah (2.36c)

if and only if the.inequality holds for each pair of corresponding
components; that is, if and only if

a, Kby fori=12,...,k (2.36d)

With this notation, we can rewrite Eq. 2.35 more concisely as
F ) £ Pl{w: x(w) < a}l. (2.37)

A vector such as & in Eq. 2.37 may be thought of as designating a
point in a k-dimensional Euclidean geometry, the coordinates of the point
being the components of the vector. Similarly, a random vector X
designates a mapping from the sample space £ into Buclidean k-space;
that is, x assigns a particular point x(w) in Euclidean k-space to each
sample point w in Q. The inequality x < @ defines a region in Euclidean
k-space. The number Fy(a) is the probability of the set of sample points
o mapped into the region x < & by x(w). Distribution functions in
k dimensions evidence properties that are straightforward generalizations
of those already discussed for one or two dimensions.

As an example of the calculation of joint probabilities, consider the
three-dimensional vector

X = (%, 3, T3),
the three functions
#y(w) £ o,

m(w) £ o
xﬂ(a)) é 1- ,
and the probability assignment encountered in Eq. 2.12; that is, consider
Q = {w:0 € o < 1}, and the probability assignment given by
P4} =jf(co) dw =Jldw,
I I

where the integration js over the set of intervals constituting the event A.

T
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0 & 05 10 .
foo: x1(e) = 05, xp(e) < 0.25, x3(w) < 1}

1.

[=)

Sale) )
~ v

0| 02405 10 @

{0 a(w) < 05, xp(e) < 025, xy(w) < 08}

ol 02404 10
{: x1(w) = 05, xa(e) < 0.16, x5(w) < 08}

Figure 2.16 Examples of the evaluation of a joint distribution function.

From Fig. 2.16 we sge that
F{0.5,025 1) =05,
F(0.5,0.25,0.8) = 0.3,
F,{0.8,0.16,0.8) = 0.2.

It is evident that the A-dimensional distribution function always
provides all information necessary for determining the probability of the
set {w} such that x lies in any specified region of k-dimensional Euclidean
space. But.the direct use of Fy is usually inconvenient in computations.
For example, from Fig. 2.17 it is clear that for the probability of a
rectangular region we have

Pl{e: a < m(w) < b, ¢ < z(w) < d]

= F(b, dy — Fb, c) — Fa, d) + F{a, o).
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(@d |4 (b}

—————— Gl

1
Fy
1
1
l

i
I R
1

Figure 2.17 Region of plane for whicha < = < b, ¢ <= < d.

The probability of even this simple event entails an expression with four
terms. In three dimensions the probability of a cubic region entails an
expression with eight terims, and so forth.

Density Functions

The notational inconvenience of the distribution function can be
avoided by introducing a function called the probability density function
which permits probabilities to be written in the familiar form of integrals.
For the single random variable, #, the probability that = lies in a small
interval [a, @ + A] is

Pllwia <2< a+A}]=FJfa+A)~F,a)

INEEELC)

If A is very small and F,(«) is differentiable at o = a, the term in brackets '

is approximately

A dOC a=n
and
Plora<a<<a+ All~ AF (@) (2.38b)

in which the prime denotes the derivative of F,.

Now consider a region, say [, of the real line: any such region may be
thought of as the union of a large number of disjoint intervals, each of
which has length A, as shown in Fig. 2.18. Furthermore, the probability
of a union of disjoint events is the sum of their probabilities. If F(«) is

A A A A LA

I

I Iy Iy Is
T=HUDLULULUI;

Figure 2.18 Decomposition of a region f into & union of small disjoint intervals.
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everywhere differentiable, it follows by taking the limit A —0 that the
probability that = lies in [ is

Pl{w: #(e)in I}] =JFm’(m) dot.

I

Whenever it exists, the derivative of F,, is called the probability density
function of x and given the symbol p,. Thus

Pl{w:a(w) in [}] = f Pole) det, (2.39)
where !
polw) & f%“(—“). (2.402)

In order to calculate the probability of an event, we integrate the
probability density function over the region defining the event. In
particular,

=] ppra. ~ (2400)

The class of distribution functions with which we are concerned may
fail to have a continuous derivative at a point, say o = &, for one of two
reasons:

1. The slope of F,(«) is discontinuous at « = 4.
2. F,(a) has a step discontinuity at « = g, that is,

P[{ew: #(w) = a}] = P, # 0.

In the first case the problem is one of ambiguity, which is easily resolved
by always taking p, to be the derivative on the right of F,, as implied by

Eqg. 2.38a.
In the second case the problem is more fundamental but may be

resolved by extending our definition of the probability density function.
Consider a distribution function. £, which has a single discontinuity of
magnitude P, at the point « = &, as shown in Fig. 2.19. For a region
I = [b, ¢] which includes this point, the contribution to P[{w: z(w) in I}]
from all small subintervalst of [b, ] except the subinterval [@ — ¢, a] is

[Towda+ [ pordn

{ ¥n this section. subintervals such as [§, y] include the right end point (y) but not the
left end point (8).
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Fyla)

Figure 2.19 A discontinuous probability distribution function.

When ¢ is sufficiently small, the contribution to P[] of the interval
[z — e, alis P,, the magnitude of the discontinuity, and

a—€ ¢
PN £ Pl{w: b < (o) < c}] =J ple) dee 4+ P, +j P} do. (2.41)
b a
To reduce Eq. 2.41 to the simple form of Eq. 2.39, we introduce the
Dirac impulse notation.t A unit impulse may be visualized as the limiting

-

1
24

l .

(a— A)j P\(n'v+ A)
Figure 2.20 The square pulse approaches the unit impulse 8(¢ — a) when A approaches
Zero.
form of a positive pulse of unit area as the pulse duration is reduced to
zero, as shown in Fig. 2.20, Operationally, a unit impulse at « = a,
denoted 8(¢ — a), is defined by the equation

jf(oc) 8o — @) dot = {g'(a); if I includes point a
d >

for any function f continuous at 2. If @ is an end point of the interval 7
and ambiguity is possible, it is desirable to indicate explicitly whether a
is in 7. This may be accomplished by using an asterisk if a is not in L.

Thus, e o :
Jlm floy (o — @) do = f fl@) 8(x — a) do = fl@), (242b)

. (2.42a)
otherwise

f " o) 8o — a) do = fm flo) 8o — @) do = 0. (2420)

+ The impulse is discussed in more detail in reference 62, Appendix 2A. .

'

1
3 { ; el DENSITY FUNCTIONS 47
Ca

RS T \
A trivial implication is that 1

f P,d(e — a)do= P,

If, therefore, we introduce into p(«) a term of the form P, d(x — a} for
each point at which F, has a discontinuity, we can again write the
probability that @ lies in 7 in the simple form

Pl{e: 2(w)in I}] =fpm(a) dex, (2.43)
1
For example, the density function for the distribution considered in Fig.
2.14is ¥
Py = 5 0(a) + § 0(x — 1) + § d(a — 4),
which implies

1
Piwr o) < N = F0 = n@d=t+i=4
as it should. -

Since any distribution function F, increases monotonically and
F{+ o) = 1, any density function must satisfy the properties

PAw)y 2 0; alla (2.442)
and

Jm Po(@) da = 1. (2.44b)

Examples. The following continuous probability density functions are
frequently encountered. In each case, the parameter » is a positive
constant, The density functions are illustrated in Fig. 2.21.

1. EXPONENTIAL

1 oen
~e >0,

pl) = (b ¢ " (2.452)
0; & < 0,
0; o <0,

Fole) = i (2.45b)
1— e ™% oz 0.

2. RAYLEIGH

& _atren
- ¢ ; o =0,

) = {b g (2.462)
0; w < 0,

Fole) [0; o < 0,

(o) = 2.46b

1—e®™ 4> ( )
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%e—a/b Ee"a2/2b
b

(@) ®

1
=
®

() o {d)

Figure 2.21 Examples of probabiii_ty
density functions: (@) the exppnentlal
density function; (b} the I'{aylelgh den-
sity function; (¢) the umform. density
function; (&) the Cauchy density func-

o tion; {e)the Gaussian density function.
3. UNIFORM
L. _ <b
pufa) = {2b° beash (2.472)
: elsewhere,
0, o < "_b’
1 - b (2.47b)
= { — (a + b); bgLuag b,
Fo)= {55
1; o> b
4, cauCHY |
B — 0 < o < oo, (2.48a)
pm(m) = b2 + az 3

—o <<l . (2.48b)

?

ol

1.1, _
F(w) = 5 + ;tan t
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5. GAUSSIAN
Do) = .\/21_171) e (2.49a)
Fa)=1~ Q(;—;), (2.49b)
in which we have defined ’
() & \/% f e gy, (2.50)
T Ja )

The function Q(«) is not an elementary integral, but its complement,
1 — Qfw), is well-tabulated.®® It is related to the more familiar error
function

erf(a) & \-/3; fe“‘f dy (2.512)

0(e) = %[1 - erf(\%)]. (2.51b)

As an illustration of the calculation of probabilities by use of density
functions consider the interval 7 = [1,2]. If the random variable z is
exponentially distributed,

P[{w: 2(w) in I}] =fpx(0f) da. =£2 :_:e—m’bda
=I(e*1/b - Ae-?.,"b)'

by the equation

Two-dimensional density functions. The notational convenience of
writing probabilities as integrals is extended to two random variables,

say zy and x,, by defining a joint density function, Pu > D sUCh a way
that for any two-dimensional region 7 we have

Pl{ow: (zy(w), z,(w)) in I ﬁffpm,mz(ocl, otg) doty decs, (2.52)
1

{The arguments «, and «, are associated with 7, and #,, Tespectively.)
To see how Pa, .z, must be defined in order that Eq. 2.52 may be valid, let
us first consider the small rectangular region shown in Fig, 2.22:

lay — A1.< M Kd, @ — Ay <oy < ap]
From Eq. 2.52 we have then
P{o:a — Ay < zy(0) < ay, ay — Ay < 2y(w) K an}]
= ml,wz(ali 612) - le,xz(als a4 — Az) - Fa:l,ma(al - Al: az)
+ o p(@ — Ay ay, — Ay). (2.53a)

faa o 43
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2]

od M

az — Ag

Figure 2.22 A small rectangular region.

The right-hand side of Eq. 2.53a may be rearranged in the form

[Fmpazz(al’ az) _ ~Fw1,mz(al _ Al: ﬂ2)
Ay N
1
_ Fapaol@1 @2 — Bg) — Fou play — Ay ay — Az):|
Ay

If the partial derivative of F, , with respect to o, exists, for small A,
this approaches

A |:6Fm[-x9_('x1= 02) _ aF.’Blrﬁlz(ali ag - Az):|

! aCX.]_ aOC]_ A=ty
a |:Fa:1-322(0£1’ az) - F{B]‘IZ(MIS dyg — Az):l i
o=

= AA, —
12811

A,

Finally, if (0%/0a, Oxa)F, (o, @, exists, for small A, this in turn
approaches
7 y
AA F O (-7 74 | I
v 280(.1 aCCg_k[ Y -( v ag=az

Thus, when both A, and A, are small, we have

Po:ay — &y < zy(w) < a5, an — A; < myfw) < asl

aﬂ
= A1'A2 S o [le,wz(‘xh O12)]:111=al (253b)

Joty, Doy ta—ag

whenever the derivative exists.

Now consider an arbitrary two-dimensional region, say I, in the (e, o)
plane, as shown in Fig. 2.23. The region / may be built up of small dis-
joint rectangular regions, each having area AjA,. From probability
property IlI, the probability that x = (), #,) lies in [ is the sum of the
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e

h

N

.

g
AT

A8
£
I
k

-.-..I_/ 3

oy

Figure 2.23 Building up the region I = I, W I, out of small disjoint rectangular
regions.

probabilities that x lies in these rectangles. Whenever F, , is differen-
tiable, in the limit as both A, and A, go to zero we have

Pi{w: x(0}in I}] =ff3 3; F o ooty o) doty dorg. (2.54)
oey Goty
I

Defining
a P
pa:l,mz(ocls 0‘2) = A A F:t_l,n:g(als OCE), (255)
Doty oty
we can write Eq. 2.54 concisely in vector notation as
Pl{e: z{w)in I}] = fpx(u) dos, (2.56a)
I
where
Pe) 2 pp (o, o), (2.56b)
do £ de, do, (2.56¢)

and the (multiple) integration is over all points « in the two-dimensional
region 1.

Just as in the one-dimensional case, Eq. 2.55 is inadequate to define
the joint probability density function p, at points where F, is discontinuous.
The difficulty is again resolved by using impulses to account for dis-
continnities, as iilustrated in the examples that follow.

Since any joint distribution function le.zg(“ls ®y) is a monotonically
increasing function of both o, and oy, it is clear that any joint density
function p, . must be non-negative at every point (o, 2}

Po a0, %) 205 —w <o <o  —wo<u<o (257
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Figure 2.24

Examples of the two-dimensional Gaussian density function.

R
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Also, since le,mz(oo, 0) equals unity, Px, .o, Must satisfy the equation
f f Py, %15 %g) doty dog = 1. (2.57b)
—00 & —

Examples. An example of a valid joint density function that is every-
where continuous is the two-dimensional Gaussian density functior,

2 _ 2
pml,zz(‘xla 0'12) = "'"'"“-----1=2 exp |:_ (OCI 2Po_clof-z -+ oy )i|,
‘ 21— p 21— pH

—it<p<l, (2.38)
which is illustrated for several values of the parameter p in Fig, 2.24.

@
6 1 2 3 4. 5 &

Figure 2.25 An impulsive two-dimensional density function. The integral through an
impulse—that is, the number by which a unit impulse is multiplied—is called the im-
pulse valwe. An impulse 4 8(w — a),-or a two-dimensional product of impulses such

as A d(o; — a;) 8wz — a;), is plotted as a vertical line whose height is equal to the
value A4.

A purely impulsive example is the joint density function

6 6 1

pm.mz(al’ 0‘-2) = z Z -

i=14=1 36

illustrated in Fig. 2.25. The probability is concentrated at the 36 points

(@7} 1€ig6, 1< j< 6. This density function would be appropriate

as a mathematical model for a dice game.

We may also encounter joint density functions that are impulsive in one

dimension and continuous in the other. An example is

oy — 1) 6oy — ), (2.59)

2

Dol ) = 2 2 8z = 1) ﬁexp [-E=2) 0 e
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As shown in Fig. 2.26, this density function may be visvalized as two .

“fences” of impulses at oy = 1 and oy = 2.
For a simple example of the use of a joint density function to calculate

a probability, consider the event 4 defined by
= {o: 2,}(w) + z%(w) < %}

and the two-dimensional Gaussian density function of Eq. 2.58, with the

Ga

Figure 2.26 Two “fences” of impulses, The value of the one-dimensional impulse at
o, = 1 (or o, = 2) depends on o,.

parameter p specialized to zero:

1 Ly Ptea®
SR Th - T
Py el o) = e R
2m

From Eq. 2.56a we have
P[4] = fpx(a) da
I

_ f f oot 22) ety dty
I

='[f ]_ e*(ala‘f'ﬂzglfz dog dets,
2

where the region [ 1s the mter:or of a circle of radius ¢, centered on the
origin of the (a,, «;) plane. The integration is easily carried out by making
the change of variables

2

A 2 A —1 %2
1r=\/oc1 oy, O=tan  —.

oy
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Since the differential area inn polar coordinates is » dr df, we have

7L e LA
PlAd] = 2—eT rdrdl =] re " *dr
0

0DJ0 27

e¥re ' N
=f e Fdf =1 — P2, (2.61)
0

Elimination of a random variable, 1t often happens in applications that
we know a joint density function, 52Y P, 1, but are interested in the one-
dimensional density p,, which is easily obtained as follows. From
Equation 2.56,

Faelon o = | [* bt 80 apuaps

But it has already been established (property V of jeint distribution
functions) that

Fxl(al) = le',mz(als m):
hence

Folow) = | |7 pewBu 83 d 8,

As usual, we obtain p, by differentiating Fy,+ Since the derivative of a

~ definite integral with respect to the upper limit is given by

5[ i [f wo s~ [ dﬁ}

da A
— lim | A _
= k_r‘r:J |: A :’ = h(w) (2.62)

whenever A(f} is continuous at § = «, we have

e = [ [ et o ate)

pml(“l) = docl

=7 b, B (2.63)

Equation 2.63 is a generalization of the theorem on total probability of
Eq. 2.23b,

It may be helpful to think of a two-dimensional joint probability density
function px(w) as analogous to a mass density distributed over a plane,
where the total mass is unity. The situation can be visualized with the

help of Fig. 2.27. The probability that x lies in a region 7 is identified

with the total mass located over J, since total mass is also obtained by
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Py, xg (01, 0t9)

Figure 2.27 A two-dimensional probability density function.

integrating (mass) density. We extend the analogy by noting that inte-
gration over one axis of the plane, as in Eq. 2.63, determines the (one-
dimensional or “marginal”) mass density along the remaining axis. Thus

b
an integral such as f P, (01} doty corresponds in a two-dimensional

problem to determining the total mass over an infinite strip, parallel to
the az-axis and extending from a < &, < b, as shown in Fig. 2.27.

As an example of the calculation of p, from p, .. consider the two-
dimensional Gaussian density function of Eq. 2.58. Then, for a given
value of p, |p| < 1,

® 1 (o2 = 2petyay + 257
P;.,l(ac) =J‘ ——— X l:_ dete.
Y e a1 — ' 201 — p¥) 2
The integral is readily evaluated by completing the square in the exponent
and letting y = (& — pa)/{1 — p¥)*%:
(0,2 — 2petgaty + 2,2 = (g — par)® + w1 — p%),
- 1 (o0 — P“l)g
RN IR i ST P
' V2w oo \/211'(1 - 21— p%
—a1 /2
e a1 @0 1 .
= — —_e7 "'Zd
\/2’17 f—-oo \/2’17 y
= e - (2.64)

o N/ﬂ. ' .

2
g™ /2

Y
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Thus #, {and also =,) individually are Gaussianly distributed. For this
joint Gaussian case the total probability that x = (z,, %) lies in the infinite
strip in Fig. 2.27 is therefore

b o0 b
f f Popoatt2s 000) ot dety = f Lt gy
f — ) L4 :\/277

= Q(a} — Q(b).
The function Q( ) has been defined in Eq. 2.50.
Multidimensional Density Functions

By_ analogy with the two-dimensional case, the probability density
function of a k-component random vector x = (#, ¥z, ..., %) is defined
in such a way that

P[{e: x(w) in I}] =fpx(ﬂ) B (2.65)

I

for any k-dimensional region 7. In particular, by letting I denote the
region x < o, where
o == (0('1, aza s ak)) (2.663.)

we have
Fye) = Pl{o: x(0) < o}]

=f_w - f_w f_w o8 dfa- - By (2.66D)

Differentiating with respect to the limits, we identify

ak
@) =5 @ (2.66¢)
whenever F,(u) is continnous at the point . At points of discontinuity
impulses are introduced into p, (as in the one- and two-dimensional
cases) in such a way that Eq. 2.65 is valid.

As an aid to visualizing the meaning of joint probability density, it is
convenient to interpret Eq, 2.65 as stating that the. probability that x lies
in a small k-dimensional region of velume AV containing a point o = a ig
approximately p.(a) AV whenever p. (u) is nearly constant over the region.

In the general k-dimensional case, just as for & = 2, unwanted random
variables are eliminated by integration: If

x =2 (@, Ty oy T (2.67a)
(SU]_, Loy v v Tpys xz‘—i—l: B ] xk); (2-67b)

’

X

[
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then
Fo(o) 2 Pl{ow: x < o'}]
=Plo: x' € o, z, < 0} o N I N - < S5 §
where
o = (o, Lo o v s Bygs Ogyass v v s Bp)- {2.67¢)

Differentiating with respect to all a;, j # i, yields

CY =f px(0) doxy, (2.67d)
which generalizes Eq. 2.63. .

Equality of Random Variables

Let 2, and z, denote two random variables defined on a sample space
" Q. Two random variables are said to be equal if and only if the probability
of the set of points « on which they differ has zero probability; that is,
we write
T = 2y (2.68a)
if and only if
Pl{e: z{w) # ()] = 0. (2.68b)

In particular, @, = @, if () = #,(w) for all @ in (2. Since we do not
expect to observe an event of zero probability, we do not make a distinction
between {: #;(w) % #,(w)} = @ and the more general Eq. 2.68b.

Transformation of Variables

Electrical communication involves the generation and processing of
random signals: waveforms are transformed by modulation, detection,
filtering, and so forth. As a consequence, many of the communication
applications of probability theory involve the generation of new random
variables by means of transformations applied to given ones. We now
consider the calculation of the probability density function for new random
variables obtained by certain simple {but important) transformations. We
begin by assuming that the density functions of the original random
varjables do not contain impulses. Impulses are considered separately
at the end of this section.

Assume that we are given a random variable > with density p,. Lety
be a new random variable, obtained from = by a real-valued piecewise-
differentiable transformation

y = f(®). (2.69)
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By Eq. 2.69 we mean that the number ¥{w) associated with each sample
point w is

#(w) = [ ().

One method of obtaining the density function p, from p, and Eq. 2.69 is
first to express in terms of p, the probability of the set of sample points
{o:y(w) < «}. This gives the probability distribution function of v, F,,
from which p, can be obtained by differentiation, ’

Pala) by {ct}

N TN

b bta

Figure 2.28 The effect of the transformation y = = + a,

Transformation by the addition of a constant. Consider as an example
the transformation

y=z-t+a

in which 7 is a constant. The set of sample points {w: y(w) < «} is
identically the set {w: z(w) < « — a}. Thus

Pl{w: y(w) < @] = Plw: (@) < « — a}}
or
EFfo) = F (e — a).

Differentiating with respect to «, we have

Py =pla—a); y=z+a (2.70)

The der}sity function p, is the density p, translated « units to the right, as
shown in Fig. 2.28. For example, if # is Gaussian with density function

—a2/2

1
pw(a) . \/“2*7;_ €
and ¥ = = 4 ¢, then .

p@(m) = p.’c(a“ a) = L_ e—(ﬂ—ﬂlz."z.

\/271'
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- More generally, if x is 2 random vector and y = x + a, where a ES
(ay, @y, . . ., &) Is a constant vector, then
Floy=Plw:x +a< a}]

=Pl{lw:x € a—a}] = Flo—a)
and

y=Xx-+a.
(2.71) .

ak
py(a) = Fx(u - a) = Px(c" - a);

Qo oy - = - Doy,

Transformation by multiplication by a constant. A slightly more in- -
volved transformation is
y = bz,

When b is a positive constant, we have

P[{w: y(@ <ojl= P[{“’: () < %H

or
71
F’y(a‘) = Fw(g):
and thus
ple) =+ %pw(%); y = bz, b > 0. (2.722)

On the other hand, when & is negative, we have

Pl{w: y(w) < «}] = P[[w: #(w) > %ﬂ

or

Ffo)=1— FI(E), :
- o) )
and thus
¥y = bx, b <0. (2.72b)

o= inld

Equations 2.72a and b can be combined into the single exXpression
1 (o:) '
“ple) = —p. A} y = bx. (2.73)
P 017\
For example, if « is a Gaussian random variable with density

—al/2

Pal) = \—/lzzw ¢

TRANSFORMATION OF VARIABLES 61
and ¥y = bz, b £ 0, then
() = I—Pm(z) = =

[b] \b N 2mh?

More general transformations. Ydentical reasoning is also applicable to
transformations that are not one-to-one. Consider, first, the half-wave
linear rectifier transformation ’

x; 20

y = (2.74a)
0; 2<0
¥

|
I
I
|
|
1

Figure 2.29 The half-wave rectifier transformation.
illustrated in Fig. 2.29. In terms of the input density function p,, we have
Pl{w: y(@) <O} =0,
Pifo: sy =0 =] ppapLn,

Pl{w: 0 < y(0) < a}] = f "palB) dp.

For the half-wave linear rectifier it follbws that

Py = Py 8{e) + u_y(e) pler), (2.74b)
where u_;(«) is the unit step function
1; o= 0
(o) = (2.74¢)
0; o < 0.

A second example is the full-wave quadratic rectifier transformation
y = x?, Clearly,

{r+va . —

\ [ nrdp = F.() = Fut—

Fo) = Pl{w: glw) € «}] = {“—V« >0
' ' 0;  «<0
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Tt follows that

4 ~ '
—= (V@) + P~V @ >0
(o) = | 2V ! (2.75)
0; « < 0.
For instance, if = is a Rayleigh random variable with density
0; a <0
pele) = %e‘“z"z"; x>0

(where & is a positive constant) and y = %, then

() = \/ — [P + P~ x>0

\/OC —a.’2b+ 0) o > 0

2\/ Ot(
L o B a0
0; a0,
We observe that y is an exponentially distributed random variable.

Itevated transformations. Tt is sometimes convenient with complicated
transformations to apply the above-mentioned techniques in sequence.
We illustrate this by the simple example

y =bx + a (2.76a)
Define the new random variable z = bz, Then y =2 + a and
i)
Pz(‘x) (] — P2 b
1 o — a)
= —ad) = — p, . 2.76b)
P == ) = (%5 (

For instance, if » is Gaussian with density function

-

i
= ———2=¢ .
Palo) N
we have

p,(%) = \/51..? o lamar 2 Q7
27
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Calculation by change of variables. A more complicated transformation
that might be handied by the iterative technique but is more easily carried
out by change of variables is given by

y = a2 + 22 (2.78a)
Here we may determine p, from p, as follows:

re= || edoosrasas.

2 2 2
A1 483" <=

Making a change of variables to polar coordinates

r=vVBi+ AL 0<r<w

8=tan‘1é; 08 <2n
B
§0 that
By =rcosf,
B =rsinf,
df, df, = r dr d8,
we have
e« {*27
Arcost, rsinf) rdrdd; >0
Fo) = .[).L Pl e )r r >
d o - %<0
an e
2
0, o sin 0) d0;
o) = L ap (e cos 0, « sin 0) d0; o> 0 (278b)
0; o << 0.
For example, if
=t +ﬁ22112b
p(B) = P bz

then, for ¥y = v %2 + 32,

B 1 F
JXCY) =f a—— g w20

0 h?

% —atim®,
e H OC>0

0; o < 0.
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. The resulting random variable ¥ is Rayleigh. This method is further -

elaborated in Appendix 2A.

Impulsive densities. When y = f(z) and p, contains impulses, we

determine p, in two parts. The first, resulting from the nonimpulsive com- .

ponent of p,, is obtained as before; the second, resulting from impulses
in p,, is obtained by the following means. If p, contains an impulse

paler)
3
4
1 1
g Kl
-2 0 2 @
(a)
pyla)
3
)
1
2
- 1
B
¢ 2 «
(b}

Figure 2.30 A transformation with impulsive densities.

P, 6(x — @), then an impulse of value P, is added to p, at the point’
o = f(a).

As an example, consider the half-wave rectifier transformation of .

Fig. 2.29 and the density function of Fig. 2.30q,

- palw) = (e — D) + da + 2)] + g2

From Eq. 2.74b the continuous part of p, contributes to g, the terms

38(2) + Fua(o)e oL
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The impulse $(8 — 2} in p, contributes to p, the impulse % 6(x — 2). The
impulse % 8(« + 2) in p, contributes to p, the impulse ¥ (). Thus, as
shown in Fig. 2.305,

() = 3 8() + 3 8(e — 2) + Fus(w)e™

Conditional Probability Density

Given an event B of nonzero probability, the conditional probability of
an event A has been defined as
P[4, B]

P[B]
Often events A and B are defined in terms of random variables. For

example, let 7 and ¥ be two random variables defined on a sample space
Q and define the events

A ={w:a < mnw) < b} | (2.79a)
B = {w:a, < myw) < b} {2.79b)

Pld|B] =

Then, whenever the denominator is nonzero,

b2 By

[ poneon o ap
da a1

ba -
[petoras

a2

P[4 |B] = (2.79¢)

If b, = a,, however, and p,(#) is not impulsive at B = a,, the denomi--

nator in Eq. 2.79¢ is zero and the meaning of P[4 | B] is not immediately
clear.

Before proceeding with the mathematical treatment of this issue, let us
consider in more detail the role played by random variables in modeling
the real world. A random variable with a continuous density function is
an appropriate model for a real-world experiment whenever the outcome
may be any real number. The measurement of a noise voltage at some
time ¢, furnishes an example. In such a physical experiment there is 2
fundamental limitation to the accuracy of measurement; we cannot read
a voltmeter with infinite precision. Thus “a measured voltage « equals
actually means that the result of the experiment is a voltage lying in some
intervaly — A < # < v + A, where A is a small positive number reficcting
the precision of the voltmeter. :

This distinction becomes important when we wish to use the result of
such a measurement as a conditioning statement. In order to retain
physical verisimilitude, we should introduce inte our mathematical
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formulations a quantity such as A. Thus event B in Eq. 2.79 might be
fwiv — A <aw) v+ A}

whicl in general is an event of nonzero probability. Equation 2.79¢

then becomes b PoA
L bt i

A
f pe(6) dB
p—A

From a mathematical viewpoint it is inconvenient to carry along the
parameter A, Whenever the ratio on the right-hand side of Eq. 2.80 is
insensitive to the precise value of the (smalil) quantity A, it is simpler to
consider the limit as A — 0, even though P[B] may then approach zero.
Thus we define the conditional probability of 4, given x, = v, to be this
limit and writet

P{4| B = (2.80)

by PoEA
f Pml.mg(ms 16) dﬁ du

PlAd]|z,=1] = Eflo e . (2.81a)
(e as

Interchanging the order in Eq. 2.81a, we have

[

vA
f APm,m(a, Bydsg

PlA | 2 = 0] =f ’ de lim (2.81b)

S O VRCY

We note in Eq. 2.81b that the conditional probability that #; will lie in
the interval [a,, ;] is obtained by integrating a non-negative quantity over
the interval. Moreover, by Egs. 2.63 and 2.81a, the integral of this quantity
over the entire real line is unity, so that it meets all the requirements of
a probability density. Accordingly, we define

[ purte sy a8

Poloc| 2y =v) & lim 22— (2.82)

A-D v+A
f RECY

and call p, (= | 3 = v) the conditional probability density of z,, given
@, = v. Equation 2.81b can then be rewritien

PIA | 24 = 0] =f Pl 7 = 0) de. o (283)

fy

1 Whenever the meaning is unambiguous, we shall henceforth denote evenis such as
{w: z{w} = v} by the simpler expression x, = v.
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When the density functions in Eq. 2.82 are continuous at § = v, the
defining equation for the conditional density function simplifies to

Pofet| my = ) = Peyay (% ) (2.84a)
Ps,(2)
or
pm,mz(‘x9 U) = pwx(m I xZ = U)pa?z(u)‘ (284b)

Equation 2.83 can still be used when the density functions contain impulses
at # = v; that is, even when there is a finite probability that z, = v. We
then interpret the right-hand side of Eq. 2.84a to be the ratio of the values
of corresponding impulses in numerator and denominator. It is evident
from Eq. 2.83 that conditional probability density is completely analogous
to ordinary one-dimensional density.

Py, y (e B)

Figure 231 A plot of p, (e, f) iilustrating the dependence on » of the shape of
Pl [ ¥ = ©). There is no dependence only in the special case py, (e, §) = p.() pul£);
see, for example, Fig. 2.27.

The refationships between two-dimensional density functions on the one
hand and conditional density functions on the other can be easily visualized
graphically. Consider the continuous joint density function shown in
Fig. 2.31. The shape as a function of = of the conditional density function
Pofo | 2, = v) is given by tracing the intersection of the surface p,, . (=, £)
with a vertical plane erected on the line § = v. In general, the shape is
different for different values of v. Division by p, (v) normalizes the total
area under the trace to unity. Given x; = », the conditional distribution
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function of z,, denoted le(“ | @, = v), is the area under the normalized
trace from — o0 to o '

As an example of the definitions, consider the random variables #; and -

w, with the Gaussian density function

2 2
%1 '"'"2P°51°52+052:|.‘
exp | — ; 1.
p [ 21 — o9 lel <

1
iy, ap) = ———
v 277\/1—,02

We have determined in Eq. 2.64 that

1 —1’/2

Pay(o1) =f Pl op) doy = —= ¢ R
% \/277

hence, by symmetry, that
i
PR oL = —
Do) J o

2
g2

Thus
Pay,zal%s U). Ol\—-,A J‘L‘-—? v

o] 7= ) =
pafelza = v Par(2)

_ [ = 2pew ot o
sz(1_pz)exp{ [ 21— % 2}}

2
Elayc—————— i} § |:— (m—_ﬂ—!ﬂ&‘:l. (2.85)
V2m(l — p%) 2(1 — p%
Given z, = v, the conditional density function of z; has the form of
Eq. 2.77 with g = prand * = 1 — p2
When |p| approaches unity, the conditional density function of x,
given #, = v, becomes very large for « =« pv and very small elsewhere, as
shown in Fig. 2.32. Since the integral under pxl(oc | 2, = v) is always
unity, we observe that the conditional density function approaches a unit
impulse centered on +v as p — *1.

Applications. The usefulness of the concept of conditional probability
density can be demonstrated by two examples. For the first example con-
sider two random variables x and y and the transformation

g=m ey,

We desire the probability density function of the random variable =.
We have already considered a transformation of the form z =z +
when f is a constant and found (Eq. 2.70, with a change of notation)

P:(¥) = ply — B). | (2.86a)
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1 (o= pu®
Pxy (ex|xg = v} =m exXp —W

Figure 2.32 The conditional Gaussian density function, p.,{« | z. = #) as a function
of p.

This result can be applied to the present problem by use of conditional
probability density. Focus attention on that part of the sample space for
which #(») equals 8. Over this region » + y is = + f4, and Eq. 2.86a is
valid, with the important proviso that we state the condition explicitly.
We have

plyly=8=ply —Bly=86. (2.86b)

The joint density of z and y is obtained by first multiplying both sides of
Eq. 2.86b by p,(f),

P B =p.v | v = B p(B)
=ply — By =B pB)
= P:c.y(y - ﬁ’ -8):

and then integrating out the unwanted variable in accord with Eq. 2.63:

b =[ puly =Bl =z QAD
As a second example, consider the product transformation

z = ZY.
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For z = fx, where f3 is constant, we have found (Eq. 2.73)

yd
py) = — pm( ) (2.88a)
1Bl \B
Restricting attention to the region of Q for which y(w) = B, we have
4
nirly =0 =L (t]y=5). (2.88)
’ B17°\8

Again it is important that the condition be stated explicitly. Multiplying
both sides of Eq. 2.88b by p,() and integrating over § yields

pAy) = f |l8|Pa:u(lB ﬁ) ag; ===y (2.89)

These results, of course, can also be derived by the method of trans-
formation of variables. For z = « + y the condition z <  is met by all

¥

Figure 2.33 The region for which 2 + v £

points in the #, y plane below the line < y = y, as shown in Fig. 2.33.
The probability that the point (=, y) will fall in this region is

w0 8
r =] ap[ st
and thus
v = potr—BpAE =vte

Statistical Independence

In the case of random variables the definition of statistical independence
is somewhat simpler than in the case of events (see Eqs. 2.26 and 2.27).
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We call k random variables z,, mz, vy Xy Statistically mdependenz if and
only if the joint density function px factors into the product H Pa,> that
is, if and only if =1

P) = py (@) po (93} * * P () forall en. (2.90)

Let x denote a set of & statistically independent random variables and
consider the random vector
X =@ Ty s Ty By e e s T) (2.91a)

obtained by omitting ;. The joint density function p,. is given by

pe@) = | e du = TT puse (91)
(w&l)
We conclude that the components of x’ are also statistically independent.
It is readily induced that the statistical independence of a set of random
variables guarantees the independence of any subset of them.

If we have a set of k events, say 4;, Ag, . . ., 4, such that each event 4,
is defined in terms of a single corresponding random variable =;,
= {w:x;in I }; i=1,2,...,k, (2.92a)

then from Eq. 2.90

PlAy, As . -, 44l =f f : 'Jpx(u) doty dog * » + dotg,

Iy Is I
k k
=1I fpcci(ai) do; = [] Pl4,] (2.92b)
i=1 =1 .

I
whenever the {2;} are statistically independent.
Similarly, the probability of the intersection of any subset of these events -
factors into the product of the probabilities of the individual events. Thus
the statistical independence of the {x;} implies that the set of evenis

{Ay, 4, . .., A} is also statistically independent.

An interesting example of statistical independence occurs when each of
k random variables is Gaussian:

Poet) = —= \/2 I i=1,2,.. .,k (2.93)

Then
px(a) pr,( ) = e )m exp (— MZaf). (2.93b)
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If in the two-dimensional Gaussian density function of Eq. 2.58 the param=

eter p is set equal to zero, then

1
pa:[,a;z(ml’ “2) = 277 CXp {_%(0512 + c’-'1.2)]

= (\_/12_; eﬂfﬂ) (ﬁ e—ﬂﬂzfz). (2.93¢) -

Thus the condition p = 0 implies statistical independence. Conversely,

for p 7 0 the joint density function does not factor and therefore =, and
%, are not independent.

Sums of independent vandom variables. When random variables are

statistically independent, the form of the probability density function of

their sum is simplified. For z = # 4 y we have already obtained the
result ’

i) = f_ " by — 8.8 8.

Substituting p,p, for p, , in this equation, we have

2 =] bty = 0 0B 8. (2.94)

Equation 2.94 is the convolution of p, and p,. Using the symbol * to
denote convolution, we can write, for statistically independent random
variables,

Py = Py * Py: B=z 4y,
By induction,

pz=pﬂ:1*pmg*..-*p$k; z=

Vi

&
xi’ Px = ]:_]I; ng' (295)

1.

[

1

As in the familiar case of signal analysis, it is often easier to calculate
a k-fold convolution by means of Fourier transforms. We define the
characteristic function, denoted by M,(v}, of a random variable 2 to be the
Fourier transform of its density function:

M () £ f p(c)e™ da, (2.96)
Since o

" oo

[" =1 and J Py do= 1,

MIXED PROBABILITY EXPRESSIONS 73

1M, (»)| €1 and the characteristic function always exists. The density
function is regained by the inverse Fourier transformt

1 « —ijva
Pl = P f_wM HAe " dy, (2.97)

It is well known that when functions are convolved their Fourier trans-
forms multiply. This can be shown by evaluating M (») with the use of
Eq. 2.94: '

M (%) éf

o

& ppdy =| iy [ o~ B0

=[" e pipyap[” 9 6y — pyay

= M,(») M (»).

It follows by induction that for % statistically independent random
variables

MO =IIM0:  2=35 o=1Tr0 299

i=1

from which p, can be calculated by the inverse transformation of Eq. 2.97.

Mixed Probability Expressions

In communication problems we frequently consider a sample space Q
on which some events are defined in terms of random variables or vectors
and some are not. We now develop notation for dealing conveniently
with such probability systems. Consider two k-dimensional random
vectors, x and y, and arbitrary events B and C defined as

B = {w: x(w)in I}
C = {w: y(w)in L},

where I; and I, are regions of k-dimensional space. The following dis-
cussion is general and includes the special case & = 1. Interms of notation

+ When p, is impulsive we use the transform pair

=0

@ ) 1=
f d(w) e de =1, —j e dy = de).
27 )
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previously developed we have

18] = [ (e do,

I,

PC] = | p(B) 4B,

Iy

PI5C) = [ byt B) e g,
Ol
The new notation introduced below is a consistent extension of that
already encountered. Let 4 be an event of nonzero probability.

1. p( | 4): Theconditional probability of the event B, given the event
A, is conveniently written ’

P{B | 4] =fpx(ot | 4) dex. (2.99)

I

The function p,( | A) is called the conditional density function of x,

given A.

In common with all quantities conditioned on an event of nonzero prob-
ability, p, (| 4) may be regarded as the density function of the random
vector x under the condition that attention is restricted to those sample
points that constitute the event 4. In effect, 4 becomes a new sample
space: all theorems and results valid over £ are also valid over 4 when-
ever all quantities involved are conditioned on 4. Thus conditioning
density functions on an event of nonzero probability involves no new
ideas, but only augmented notation. For example,

P[B, C| 4] =ﬂpx.,(a, B 4)d@ de.

A

2. p.( , A): The probability of the joint event AB is conveniently
written n

P[AB] =Jpx(t1, A} dex.

Iy

The function p,( , 4} is called the joint density function of the random

variable x and the event A. '

Since
P[AB] = P[A] P[B| 4]

= [P[A] pa | 4) do,

I
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we have the relation
2( A =PlAlp( |4). (2.100)

3. P[4 |x =a]: The conditional probability of an event A, con-
ditioned on the event x = a, is defined analogously to the corresponding
one-dimensional definition of Eq. 2.81a:

fpx(u, A) da
P[A|x=a] & lim2— (2.101)
A fpx(a) dot

Ta
where
Li=fata—A<agat A}

A=(AA,...,A).

If the density functions are continuous at x = a, the limit can be evaluated
by noting that as A becomes smaller and smaller both the numerator and
denominator are given to a better and better approximation by the product
of the appropriate density function, evaluated at x = a, and the volume
of I,. Cancelling this volume in numerator and denominator, we obtain
in the limit

PlAd|x=a]= pfa A) (2.102a)
px(a)
or .
Pi4 | x = alp(a) = pa, 4). (2.102b)

Bayes rale. Both Eqs. 2.102b and 2.100 provide expressions for
Px(a, 4). Equating these two expressions yields the useful result

Pa| A)P[A] = P[4 | x = a] p,(a). (2.103a)

Equation 2.103a is called the “mixed form” of Bayes rule; “‘mixed”
refers to the fact that the probability expressions involve both random
variables and events. The two unmixed forms of Bayes rule, from Egs.
2.21 and 2.84b, are

P[B f Al P[A] = P[4 | B] P[B] (2.103b)
and
pdaly =b)pb) = plb|x = a)pa). (2.1030)
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. Factoring probability expressions. The use of conditional notation

permits us to factor joint probability expressions with considerable free-

dom. For example, with three random vectors X, y, and z, we can write
Prrdt, B Y)Y =@ p,B | x =) ply[x =,y =B)
=B Y|y =B pla|y=Bz=17),

and so forth. Similarly, mixed expressions can be factored in many

different ways such as
Pey(e, B, A, B) = P[B] plec | BYP[A | x = &, Bl p(B | x = @, 4, B).

Statistical independence. We have already considered the statistical
independence of events and the statistical independence of random
variables. The definitions can be extended in an obvious way to more
general probability situations.

1. Two random vectors x and y are defined to be statistically independ-

ent if and only if
Pry = Px Py (2.104a)

An event B defined exclusively in terms of x and an event C defined
exclusively in terms of y are statistically independent,

_ P[BC] = P[B] P[C],

whenever x and y are statistically independent. An alternative expression
for the independence of x and y is

. |y=B=p( ) foralf, (2.104b)
which we also write in the shortened form, but with identical meaning,
Pxy = Pxe (2.104c)

‘We observe that specification of y does not affect the density function of
x when x and y are independent.

2. A random vector x and an event 4 are defined as statistically inde-
pendent if and only if
2L A) = PlAIpL ). (2.105)

Then any event B defined only in terms of x is statistically independent
of 4:
P[BA] = P[B] P[4].

3. Two random vectors X and y are defined as statistically independent
when conditioned on an event 4 if and only if
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Then any event B defined exclusively in terms of x and any event C
defined exclusively in terms of y satisfy

P[BC | A] = P[B | 4] P[C | 4].

One important implication of statistical independence is the following:
consider the transformations

n=g%); =g, (2.107a)

where gy, and g, are any two functions mapping the random vectors x
and y into random variables z, and z,. (As a special case, g; and g, might
be the same function.) We now prove that whenever x and y are
statistically independent so also are z; and z,. The statement follows from
first noting that the evenis

B2 (o gy(x(0)) < a}
and

C £ {o: gf¥(®) < B}

are statistically independent, since B is defined exclusively in terms of x
and C is defined exclusively in terms of y. But

F,, .{(% ) = P[B, C] = P[B] P[C] = F,(«) F,(8) (2.107b)
for any values « and . Thus the joint density function of the random
variables (z,, z,), obtained by differentiating ¥, ., in Eq. 2.107b, can be

factored and the variables are independent. We summarize this result by
stating that _functions of statistically independent random vectors {or

variables) are statistically independent.

A Communication Example

The concepts and notation of conditional probability, which we have
seen to be fundamentally the same whether we are dealing with random
variables or random vectors, are basic to the formulation of communi-
cation theory. We now illustrate many of the essential ideas by considering
the idealized one-dimensional communication example illusirated in
Fig, 2.34. First suppose that there are two possible messages, that is,
M = 2. One of these two messages, say m, or m,, is presented to the trans-
mitter input, with a priori probabilities P[m,] and P[m,]. The transmitter
maps the abstract input symbol into a voltage s, say m, — s, and m, — 8y,
which is then applied to the channel input. The channel corrupts the
transmitted voltage s by the addition of a statistically independent voltage
n, which has a density function p,. Thus the received signal at the channel
output is the sum, r, of the random variables s and ».

We wish to find a decision rule for the receiver, that is, a rule for
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determining whether the receiver output is to be m, or m;, given any value

of the received voltage, In particular, we seek the (optimum) decision rule .
that minimizes the probability of error. The mathematical problem again

corresponds to observing the detector output at point a of Fig. 1.3. "In
contrast to the discrete communication model considered earlier, how-
ever, r is now allowed to be any real number rather than being constrained
to a discrete set of values.

Suppose the random voltage r equals p. As in the discrete communi-
cation example on p. 33, the probability of correct decision is maximized

by mapping p into that message 1, for which the a posteriori probability

r=s+n

e TR .

Figure 2.34 A simple communication model. The transmitter input m is one of the
set of M messages {m;}. The transmitter output s is the corresponding member of the
set of M voltages {5;}. The receiver output # is one of the input set {m;}.

Transmitter

is maximum; thatis, on observing r = p, we set the receiver output, say
#i(p), equal to m, if and only if
Plm, | r = p] > P{m, | r = pl. (2.108)

We next place Eq. 2.108 in a more convenient form by use of the mixed
Bayes rule of Eq. 2.103a. Thus #(p) = m, if and only if

pr(P | mﬂ) P[mo] Pr(P | ml)P[ml]
rAp) Pp)

or, since the denominator is common to both sides of the inequality, if
and only if :

- pp | mo) Plmg] > p,(p | ) Plmal. (2.109)

We may proceed by noting that r = s; + » when the transmitted
message is m;. Thus, conditional on the event that m, is the message input,
r is obtained from » by the addition of the (known) constant 5, Under
this condition » = p if and only if n == p — 5,. Thus, from the section on
transformations,

plp | m) = pap — ;| my. (2.1102)

Moreover, since the noise is assumed to be independent of the transmitted
signal, hence of the message,

Palp — 5| m) = p.lp — 5. (2.110b)
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It follows that the optimum receiver sets #i(p) = m, if and only if-

Palp — 50} Plmg] > pp — 59) Plmy]. (2.111)

The decision rule of Eq. 2.111 may be immediately generalized to
include the case M > 2. If the possible input messages are my, my, .. .,
mpyy, With corresponding transmitter voltages s, 8;,..., S3r 4 and a
priori probabilities {P[m,]}, the optimum receiver again assigns #(p) as
the message with maximum a posteriori probability. It follows immedi-
ately from Eq. 2.111 that #(p) = m, if and only if

2olp — 5 Plm] > pfp — 5,) Plm]; )
J=0,1,..., M=1, j£i (2112)
If two or more messages have the same a posteriori probability, p may be
assigned arbitrarily to any one of them without loss ‘of optimality.

The decision rule of Eq. 2.112 cannot be simplified further without
introducing a specific noise density function p,,. The Gaussian noise case
in which :

po() = e g " (2.113)
\/211'0‘
is frequently encountered. The decision rule then becomes: set #i(p} = m;
-if and only if

P[mt] e—(P—sr}2/2a2 > P[m,] eﬁ(p.*s;')zjagz; _[ — 0, Lo M—1, ] i
(2.114)

This situation is illustrated in Fig. 2.35a for M = 2. From the figure it
is clear that an equivalent rule is then: assign p to m, if and only if
p > a, where the threshold g is the value of p at which the two curves
intersect. The location of this threshold, from Eq. 2.114 with M = 2, is

a=fots o Plm] (2.115)
2 Sg— 51 P[mo]

The optimum receiver output #i(p}) is determined by Eq. 2.112 for any
value of M and for any specified noise density function p,. It is helpful
to view the function #( ) as partitioning the space of all possible values
of p into a set of M disjoint decision regions {£.}, i=0,1,..., M — L
For the case illustrated in Fig. 2.35a, I, is the interval @ < p < c0 and 7,
is the interval —o0 < p £ a. A case with M = 3 is shown in Fig. 2.356.

A correct decision results when m; is the message if and only if the
received voltage p is in the decision region I;: letting € denote a correct
decision, we have

Pieim] = [plol m)dp. (2.116)
I;
Deciniomredes (o) =rreo by pro

f:'\"(f’)c"""' n (J-kﬂ-
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Plm;] palp = 53}

Plm;|pnlo — s:)

(b)
Figure 2.35 The behavior of the aposteriori message probabilities as a function of the
received signal value, p. (a) M = 2, Plmg] > Plm,]; (b) M = 3, Plmy] > Plm,] > Pl

Since the set of events {m,} are mutually exclusive, it follows from the
theorem of total probability that the unconditioned probability of a
correct decision is

P[C] = Zﬂmwm|mL—ZHm]m@hmdm (2.117a)
I

and the unco_nditioned probability of the event error, denoted &, is
P[]} = 1 — P[C]. {2.117b})
For the two-message case in Fig. 2.35
pp | m) = p,(p— s} = \/EO' e——(p—sj)e,"Za'a
and
P[C] = st g

_(p—sllz_n'zcri dp.

+P“Jwaa

e MED iy b o o o, slgred oo g oo 20
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The probability of error is therefore

2, 2
—(p—so) /20 dp

mﬂ—mmﬂ JG

+ P[m,] f om0 g (2118a)

2mo
Equation 2.118a can be expressed in terms of the functlon o( ) of
Eq. 2.50 by making the change of variable o = (p ~— 5y)fo in the first
integral and f = (p — 5,)/c in the second: then

"‘) o+ P[m,] Q(f—;—sl) ©(2.118b)

In the particular case of equally likely messages, Plmy] = P[m,] =},
a = (s, + s7) and the error probability is just O[(s, — §;)/20]. ¥

H&=ﬂmmf"

Input probabilities. Before a transmission occurs, the a priori proba-
bility P[] of each message m, is known at the receiver. When a volfage
r = p is received, the a posteriori probability of each message m; at the
receiver is P[m, | r = p] and the optimum receiver decides in favor of that

message for which the a posteriori probab111ty is greatest. The channe]

permits “communication’ by enabling the receiver to make decigions with.

'a’smaller probability of error after a transmission than before,

_decide in favor of that messa

In the absence of a channel, the “optimum receiver” would always
_ _ hat message whose 2 p prob;
and the probablhty of error would be maximum if all poss1ble mputs were

~equally probable. A similar statement holds true in general when a channel

1s available; accurate communication is most dlfﬁcult to accomphsh when
the messages are equally likely.”

We prove this general statement only for the binary-input, Gaussian
noise example. First, note that Eq. 2.115 gives the optimum thresh-
old a for arbitrary a priori probabilities Plm} and Plmy]; any other
choice of threshold, say b, would increase the probab111ty of error, In_
partlcular the choice

b= f!’% (2.1192)

increases the probability of error over that given by Eq. 2:118 unless,lv"“:‘\
as is the case only when P[ns,] = P[m,], & is the optimuim threshold. Thus .;

the minimum probability of error P[&] of Eq. 2.118 is bounded by

7(p 80} /'20-

PO

P[8] < Pmmf Jw«

ee=t (3 119k)

-

T

priori robablhty was greafest,

-5
G
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Simplifying, we have

P[E] < P[mo]Q( ) + P{m,] Q( ) = Q(SO — 51). (2.119¢)
2¢g 20
The equality holds only when P{mg] = P[#]. Thus the probability of

error for equally likely binary inputs provides a strict upper bound on the

_probability of error for nonequally likely binary inputs and the proof is
complete.

Choice of signals. Since equally likely input messages are the most
“difficult to communicate, the case of uniform a priori probabilities is an-
. interesting one to assume when investigating other aspects of a com-
munication system. For example, let us next consider how the P[£] in

Eq. 2.118 depends on the signal voltages s, and 5; when P[mo} = P[m,] =41.

Then the optimum threshold a equals (s, + 5,), and the probability of

error is given by Eq. 2.119¢ with the equality.

It is clear from Eq. 2.119¢ that the probability of error can be forced
arbitrarily close to zero by making the difference voltage (s, — ¢,) suffi-
ciently large. A more interesting (and realistic) situation results when
there is a constraint on the magnitude of the largest allowable signal, say

Is| < VE, (2.1202)
Subject to this constraint, it is clear that (s) — 5,) is maximized by choosing

ss=vE, s=-VE, (2.120b)
which yields
PIE] = QWE,[a*). (2.1200)
The minimum attainable error probability then depends only on the ratio
E,fo"
We have remarked that the function Q{ ) is widely tabulated. For
large ratios E,/c%, a good approx1mat10n to the integral is obtained in
the following way. Consider

™

0@ =Lm\/1ﬁ e ap,

.and integrate by parts. For « > 0 we have
i

¥

/2 0(e) = !19 (Be " dp)

ool —ﬂ?'l"
—| e dp
|5
-*hf —e'””“dﬁ o« > 0.

(=t

2 Ii—t't".:blb—l ;7
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Since _

“1 2 1 {® 2 2,9
0<J; Ee““zdﬁ<°§£ ﬁe“?"adﬁ=;1§e*“"“,

we have the bounds

1 8—12!2(1 __i) 1
2 oo /2me

These two bounds are plotied together with Q(e) in Fig. 2.36.

e >0, (212D

10

01

0.01

1073

1wt

107¢

1077

oQ ——

Figure 2.36 The function ((2) and thrée bounds.
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- Substitution of Eq. 2.120c in these bounds yields

~Ep/%"

. 2
g Fol2e (1 — %) < P[] < €
I

1 1
NN Vor VE o

Thus the probability of error decreases approximately exponentially with
increasing E,fo® Table 2.2 contains some typical values.

Table 2.2 Binary Error Probability Bounds

Signal-to-Noise

Ratio, E,fe* Lower Bound P[] Upper Bound
4 202 x 1072 228 x 1072 270 x 1072
16 765 x 10~ 7.83 x 107*  8.50 x 107*
20 383 x 107 387 x 100 4,02 x 107¢
40 1.27 x 107 127 x 0710 1,30 x 1070

Anothér upper bound to Q(x), which will be useful later, is
Q@ < a>0. (2.122)

This bound is also plotted in Fig. 2.36. Proof of Fq. 2.122 is deferred to
Problem 2.26.

2.4 EXPECTED VALUE

Even though random phenomena are unpredictable in detail, we have
noted that certain average properties exhibit reasonable regularity. An
empirical average in the real world corresponds to expected value in the
mathematical model of probability theory. '

As a simple example, consider an experiment that consists of IV inde-
pendent tosses of an ordinary gambling die with faces labeled 1 to 6.
Let «, denote the result of the jth toss. Theneachz, is some integer between
1 and 6. The empirical average value of the N results, denoted (%), is

defined as
al¥
(2 = — > T, (2.123)
Ni=
The summation in Eq. 2.123 can be rewritten in the following way:

let N(j) denote the number of tosses that result in the integer j. Then,
regrouping terms, we have

(o) =

z]-

2N = 2 IS,
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where fiy(/) -A—N( J)/N is the relative frequency, defined in Eq. 2.1, of the
result j.

Since the x; are random, that is, unpredictable in detail, so also is their
empirical average {x)y. But when N is large, fil(j) is almost always ob-
served to stabilize close to some particular number. This number cor-
responds in the mathematical model to the probability P[j]. Thus, for
large N, we expect (x}y to stabilize at the number E[x] given by

6
Efz] = 3 /Pl (2.124)

We call E[x] the expected value of the random variable .

Equation 2.124 defines the expected value for the particular experiment
of tossing a die. More generally, we define the expected value of a random
variable =, with density function p,, as

E[x] éfm ap () do. (2.125)

Note that Eq. 2.125 reduces to Eq. 2.124 for

]
Poler) = ;PU] 3o — ).

‘We shall see in connection with the weak law of large numbers that the
general definition of Efz] retains the property of being the number
onto which we expect an empirical average {(x)y to comverge. The
expected value of a random variable is also called its mean value, or
expectation, and is alternatively denoted .

The Fundamental Theorem of Expectation

In many cases we need to calculate the expected value of a random.
variable « that is defined by means of a transformation on a random

vector ¥:
y z = g(y), (2.1262)

where g( ) maps every k-dimensional vector into a real number. Although
Elz] can be calculated from Eq. 2.125 by first calculating p,, from the joint
density p, and the transformation » = g(y), it is often less faborious to
invoke the theorem of expectation, which states that

Ef«] £ f_m p.(@) do

=f;£2 : -J_ig(ﬁ) py(B) dBydfy - - - dfy
[ s@nmae. L (2126b)
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Equation 2.126b can be written still more concisely as
% = Ble(y)] = gy (2.1260)

An intuitive feeling for the validity of Eq. 2.126 can bc.gaine'd from an
outline of its proof. Let us partition the real line (on which # is defined)
into a large number of small contiguous disjoint intervals of length A,
as shown in Fig. 2.37. Let I, denote the ith interval [a; — A2, @; + Af2].
Then ‘

aAS2
Plxin I,] =J' pole) da.
a;—AS2
. . I3
~ A e e
A ! | | o | o 1 o1 %
W
G_z [ ag a) ag ag a4

Figure 2.37 Pattitioning the real line into contiguous disjoint intervals.

We know that the probability of the event {x in I} can also be written
in terms of py:

Plein L] =] p(®d8.
3
where
B,=B:a,-A2<g@) <a+ Af2}.
Since by definition the event {8 in B,} implies that g(B) ~ a;, we have
Al atALR .
f ap o) do =~ a,-.[ p®) de = a; Plzin I]
Afz

ai—Af2 &=
= p@de~] @ n@e,

in which the approximations are tight for small A. Summing over 4ll i
yields
w w a+AL2
& up@a=3 |7 «pd

i=—a0 Jai—A/2

~ 3 | e®p@ap

i=—00

= [ e@ ey e

Here the last step follows from the fact that the {B,} are disjoint and their

union includes all B (the function g( ) maps every B into some real

number). The theorem follows from considering the limit as A — 0.
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As an example of the application of the theorem of Eq. 2.126, consider
the simple one-dimensional transformation « = y*. From Egs. 2.125 and
2.75,

Efz] =f’53§ (05 + p— )] da

L - - L —
=[P da |y

Let § = ++/a in the first integral and f§ = —./@ in the second.
Then '

el = [ 8 npyap = [ nip ap
=" amas

which is in accord with Eq. 2.126b.

We conclude that the expected value of a random variable x is a specific
number determined by the mapping »( ) from (2 into the real line and by
the probability assignment to events on £. Equation 2.126 states that the
value of this number does not depend on whether p, is described explicitly,
or impticitly in terms of p, and the transformation g(¥).

Linearity. One of the most important properties of expectation is
linearity. Let = and y be two random variables and consider the linear
transformation

z = gx + by.

The expected value of the new random variable = follows from Eq. 2.126.
Bl = [ o+ 68)pugte ) dudp
=Jj; f:o ac p, (e, £) df de
4[] b puste pr an s

Integrating out the variable § in the first integral and « in the second, we
obtain

£ = | e puoa do+ | 68 pi(By B

= aE[z] + bE[Y],
or

i = g% + by.
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Thus E[ ] can be viewed as a linear operator; that is to say, the expecte&
value of a weighted sum is the weighted sum of the expected values:

E{Z aix,;:| = ¥ a;E[x,]. (2.127)
This is true whether or not the {,} are statistically independent. '

Expected value of a product. In general, the expected value of a non-
linear transformation such as z = ay Is not the transformation of the
expected values; for example, we have

Bl = o) = | [ ot pasto ) da df

which usually cannot be simplified. If, however, * and ¥ are statistically
independent, p, , factors and

Blog = | [ a8 0.0 (8 do .

The integrations on = and § may be performed separately to yield

Blav] = [ "o pod def ” § p.8) ap = BLa1 B,

or

Thus the statistical independence of random variables guarantees that the
mean of the product is the product of the means. It should be emphasized
‘that the converse statement is not necessarily true; ¥F = T § does not
usually imply statistical independence of the random variables = and y.
Moments

Of particular importance in the sequel are the expected values of the
powers of a random variable. Whenever the value of the integral is finite,
we call

the nth mioment of = and
El{z — )] éf (& — )" ple) du (2.129b)
the nth central moment. In the trivial case # = 0 we have

ER*] = E[1] = L.

T =2 F; x and y statistically independent.  (2.128)

B[] & f % p(e) da (2.1292)
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The second central moment of = is given the special name variance and
denoted ¢,2. From Eq. 2,127 '

o, & El(x — 2] = E[+*] — 2z E[«] + &°

= * — 7 (2.129¢)

The square root of the variance, o, is called the standard deviation.
If we think of a one-dimensional probability distribution p, as analogous
to a mass distribution along 4 rod, the moments E{z"] also have direct

physical analogs. The mean & corresponds to the center of gravity; 2, to
pxlee)

1
]

o

b
Figure 2,38 The density function of a uniformly distriblited random variable.

the moment of inertia around the origin; and .2 to the central moment
of Inertia.

As an example, consider the moments of a random variable x that has
the uniform density function illustrated in Fig. 2.38. We have

b
Z = J =2 (2.1302)
o b 2
—_ b2 2
p =f o= (2.130D)
o b 3
— ba
o =2t —F=—. (2.130¢)
12

To give another example, consider a variable # with the Cauchy density
function in Fig. 2.21. Since the integrand is odd, we have

Eﬂjw bafm du =0,
-—oob2+0t2 .

in which we use the [Cauchy principal value] definition

F f(z) de = lim f B (@) da. (2.131)
—w A= J_ g
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The second moment does not exist, however, since the integral

el f ® pallm
w0 B 4+ OCZ
is not finite. . o
It was shown in Eq. 2.127 that the mean of a sum of random variables
{a;} is the sum of the means, regardless of whether the variables are or are
not statistically independent. Given that the {z,} are pairwise statistically
independent—but not, in general, otherwise—the same statement holds
true also for the variance of a sum; by “pairwise statistically independent”

random variables we mean
Pa,z; = PePeyy foralli and all j # i (2.132)
A general proof is obtained by letting

N
¥y =2 ax, (2.133a)
g

where the a, are constants. Then
&
o =Elly — 9] = E[(z a; — > aﬁi)q = E[(Z a(z, — Ei)):|
€ H 1

— e[St~ 2 + 3 Soaten— ne - )

T iFi
But Eq. 2.132 states that each term in the double summation above
involves two statistically independent random variables, the mean of the
product of which is the product of the means (Eq. 2.128). Thus the
expected value of the double summation is zero and

6,2 = E[Z a(x; — @2] =Y alo,’ (2.133b)

In particular,
o2 = ato?; for y = ax. (2.134)

Characteristic functions. In Eq. 2.96 we defined the characteristic:

function of a random variable » as the Fourier transform of the density
function p,:

M. () =J:m p ()™ dee. (2.135) )

Alternatively, we can view M_(») in the light of Eq. 2.126 as the expected
value of the random variable "%, Thus

M, (») = E[e""*] = "%, (2.136)

This interpretation requires that we extend our definition of “random
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variable”™ to include mappings from ( into the complex plane, whereas
heretofore we have considered only mappings into the real line. A
complex random variable, w, is defined as a pair of mappings such as

wlw) = w(w) + jy(w). (2.137a)

Similarly, the expected value of w is defined in terms of the expected
values of the real random variables x and y as

W= Z 4 [f. (2.137b)

The probability of any event defined in terms of w can be calculated from
knowledge of the joint density function p, ,.

Characteristic functions play a role in probability theory that is equiva-
lent to that played by Fourier transforms in signal analysis. Particulaily,
many theorems are proved in the transform domain. For example,
consider again the problem of finding the density function of the sum of
two statistically independent random variables, say z =z + . From
Eqs. 2.136 and 2.128 we have directly

M,(v) = M@ = gMBei — o1 g™ M) M,(3),
and therefore
Pz = P * Py
which is in accord with Eqs. 2.95 and 2.98.
An important attribute of characteristic functions is their relation to

moments. Taking the nth derivative with respect to » of both sides of
Eq. 2.135 yields

% M, () =f°° (jo)"e ™ p (o) dec. . (2.138)

Evalnating Eq. 2.138 at » = 0 and denoting the nth derivative by a
superscript (1), we have

M(0) =f ()" oo da = (ME["]. (2.139)
Thus, *
M (0)=1
—IMP0) =&
~MP(0) = 2*

(=" M) = =",
Characteristic function of Gaussian variable. 1f » is a Gaussian random
variable, its moments are easily obtained from its characteristic function.
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First let

1 . 3,12 "
=——2¢°"" 2.140
P:L‘(O:) ,\/2‘11' ( a)
Then

M (v) =Jm e** 1 e‘“zfz] do = ?l_f N exp l:-— l(o{ — iv)g] docl‘l
—on 2t \/271‘ —a0 2

Making the change of variable s = & — j» and integrating in the complex

plane, we have
M ( ) efvzlzj\co—jv ( 1 2) d
) = —— exp f——5 s,
¥ ,\/2’17 —aoo—jv P 2

where the integration is along a line parallel to the real axis. Consider the
rectangular contour in Fig. 2.39. Since the function e~ has no poles,
the integral around the entire contour is zero. Also, as ] goes to infinity,

Im{s)

Re(s)

Figure 2.39 The contour of integration for evaluating the Gaussian characteristic
funetion, ‘

the integrand evaluated at Re(s) = £/ goes to zero exponentially as
o2 Tt follows that the contribution to the contour integral from the

vertical sides of the rectangle is zero. Thus

o M P . P A
e ds = e ds = \/2m

and o \
M () =" A (2.140b)

Next consider the random variable ¥ obtained from the Gaussian
random variable = by the transformation y = a + bx. From Eq. 2.77,

1 a—a 1 — (a2
ne = o ) == -
' BN b 2mb?
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The characteristic function of ¥ follows from Eq. 2.140b:
My(‘i)) — eiv(aerz) — eiva, ei(vb)a: — eim Mw(b'ﬂ)
= " exp (—3 +°b%).

The moments of y are then. given by Eq. 2.139. Specifically, we identify
the mean and variance:

g = _J(;a - ,be) CXp (j'ya - %yzbz)lvzﬂ = d,
gt = —[—b* + (ja — b exp (jra — 2D, = a® + %,
0,1,2 =_y_§— gz - b2.

In order to place these results in evidence, the density function of y is often

~ written in the standard form

g P, (2.141)

p() = Tamo,

The function of Eq. 2.141 is called the general one-dimensional Gaussian
density function.
Now consider the sum

N
z = 2 yvis
=
where the ¥, are statistically independent Gaussian random variables with
Ely) =¥
El(y, — 7)1 = o,
hence
M, () = exp (=0} + V7).
By Eq. 2.98
N
M (¥) = ]:[1 M, (%)
) : = exp (—Po® + jym), (2.142a)
in which
N
=, (2.142b)
i=1
¥
m=37 (2.142¢)
i=1

Noting that M (») is the characteristic function of a Gaussian random
variable with mean m and variance o2, we conclude that the sum of
statistically indeépendent Gaussian random variables is also Gaussian.
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“We may determine the higher moments of a Gaussian random variable.
by means of a power series expansion of its characteristic function.
Consider the random variable y with characteristic function

M, () = exp (—¥’0,)
‘With the help of the expansion

e“=1+o«.+2—1’otz+"'+;1—rot"+--', (2.143)
we can write
_InE
M) =1 — %, + bl + - + (2”11) Pig, M 4L (2.144a)
Moreover,
PR [T
el"y=1+jvy+w+...+(_]v)_y+...
2! I
so that,t whenever all moments of y are finite,
— N ’ mya ’
M) =" =1+ ;gv+92)—'yw2+ S +(—')7yv”+ oo (2.144b)
! n!

Equating coefficients of like powers of » in Eqs. 2.144a and b, we haver
(for a zero-mean Gaussian random variable) ' :

0; n odd
= 1
Y ~——2n' o, n even, (2.1452)
2% (nf2)
or, more simply,
— [0 n odd
Y= (2.1450b)
(n— D —Hn =5 (Doy;  neven. |

In pafticu_lar,
y* =3g}
45 = 1505

r

2.5 LIMIT THEOREMS

We shall now study severat of the limit theorems that form the core of
probability theory. :
The variance ¢,2 of a random variable = in some sense is a measure of
the variable’s “randomness.” For instance, Eq. 2.130c states that the

t To obtain Eq. 2.144b rigorously would require proof that the linearity property o
the expectation operator E[  J extends to infinite sums. .

¢
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variance of a uniformly distributed random variable is 512, where & is

the width of the density function. Specifying the variance essentially con:
strains the effective width of the density function. Figure 2.40 illustrates

this effect for the Gaussian density function.
A precise statement of the constraint js due to Chebyshev. Let y be a

1 e_a2/202

2re

Figure 2.40 The Gaussian probability density function for two values of variance.

zero-mean random variable with finite variance 6,2 Chebyshev's inequality
states that for any positive number ¢

o’

Pllyl 1< §=0 (2.146)
€

Equation 2.146 can be proved as follows. By definition,

¥ = f o p,(«) do.
Since the integrand is positive, -

v f @ p,(e) do.

la] =¢ )

This bf)und. can be weakened further by replacing «> with its smallest value,
%, which yields

F>e |

|la]ze

= <" Pllyl > <].
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Chebyshev’s inequality follows from dividing by < and recalling that
- y? = g2 for a zero-mean variable.

The Weak Law of Large Numbers

The simplest of the limit theorems that we shall consider follows

directly from Chebyshev’s inequality. Consider the sum of N identically
distributed statistically independent random variables {x;}, each with
mean % and variance o,2. Let a new random variable m be defined as

1 N -
m=—_ (2.147)
=1 i
From Egs. 2.127 and 2.133, the mean and variance of m are
=lss=NE_s (2.148a
NS N 1482)
and
1 X No? o
o, i=—0,l=—2r=". 21
N 22:1 ’ Nt N (2.1480)
In order to invoke Chebyshev’s inequality, we define
' . A .
y=m-—u,
so that
F=m—x=0
and
— ot N
oi=(m—a) =oat="2. =Y
Therefore
G 2
Plly| = €] < —:2—
becomes the desired result
Z
_ Ty
Pllm — & > el € —.- (2.149)
‘ Ne

_ Equation 2.149 is a statement of the weak law of large numbers.

The random variable m is called the sample mean. Equation 2.149
states that the probability that the sample mean will differ from the true
mean by more than e approaches zero as N becomes large.

The weak law of large numbers provides the mathematical justification
for our earlier interpretation of E[s], or #, as the number at which
the empirical average (z)y of the results of N independent experimental
trials tends to stabilize as N becomes large. We need only identify the

i
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independent random variable z; with the result of the ith experimental
trial, i = i,..., N, and the sample mean # with the empirical average
(*)n- When N is large, the weak law statement that with high probability
wn is close to the number % is interpreted in the real world as the statement
that -barring an atypical sequence of observations—the value of (#)y
will be close to the number Z The possibility of observing an atypical
sequence of trials (one corresponding in the mathematical model to
jm—%| 2 € isnot ruled out; but, if ¢,%/Ne® is small, such sequences
occur rarely.

An interesting special case of Eqg. 2.149 is encountered when each
random variable #, is defined in terms of an event A, of probability p by

1;  for few: win 4;}

zfw) = (2.150a)
0;. for {w:win A5}
Then
Pls, = 1] = P[4] & p,  Ply =0]=Pl47]=1—p (21500)
and, fori=1,2,.... N, we have
_ A -
L = P = z,
7>

%2 =’ — £*=p(1 — p).
Substituting these values in Eq. 2.149 gives

l—p

-5 (2.151)

Pllm — pl > €] < .

Let us now identify the event 4, with the result that A is observed on the
ith trial of a simple experiment. The random variable m then corresponds
to the relative frequency fy (4) in a sequence of N independent trials, and
Eq. 2.151 may be interpreted to mean that P[A] is the number on which we
expect fu(4) to converge when N is large. Equation 2.151 is the result
referred to (Eq. 2.19a) in the discussion of the relation of the mathematical
model to the real world.

%¥ Chernofl Bound

Greater insight into the weak law can be gained from a different, more
graphical derivation. Let (), i=1,2,..., N, beaset of statistically
independent zero-mean random variables, each of which has the same

»f Sections marked by this symbok may be omitted on a first reading.
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density function, say p,, hence the same variance, say ¢,%, which we assume
to be finite. The weak law then states )

15 oy o -
P|: EE y,| = {| < N”EZ . (2.152).
i _ : .

We begin the new derivation of Eq. 2,152 by defining a random variable

flex)

—Ne Ne

{a)

38

N | a

—Ne Ne

@
Figure 2.41 Geometric constructions for alternate proof of the weak law of large
numbers.

z through the transformation

2 A f(éy) (2.153a)

where f( ) is the binary-valued function shown in Fig. 2.41a:
0; for jo| < Ne

o) = (2.153b)
fla) [1; for |o| = Ne. -
1 |
Pl = i
[ N:‘éy

Since z can take on only the two values 0 and 1, we also have

In terms of z we have

- e:l =Pz =1].

N
5= 0-Pz=0]+ 1 -P=1]= P|: %zﬂ;%. (2.154a)
‘ i=1
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The expected value of z equals the desired probability. By the theorem on
expectation,

Z= E[f(éy,.)] (2.154b)

In general, there is no simple way to evaluate the right-hand side of
Eq. 2.154b for arbitrary p,. The weak law'bourd, however, can be obtained
by noting in Fig. 2.416 that

flo) < (Nij; for all c. (2.155)

Y3 RS [

Since the y,; are statistically independent and each has zero mean and
variance ¢,%, by Eq. 2.133

E[(gl yi)z] = g; 6,? = Ng (2.157)

Substituting Eqs. 2.157 and 2.156 in Eq. 2.154a yields Eq. 2.152,

It is obvious from this derivation of Eq. 2.152 that other bounds than
the weak law can be obiained by using functions other than {(«/Ne)? to
bound f(z) in Eq. 2.155. Indeed, for any function g{«) such that

fw) <gle); alle,
N
P[ ']‘ 2 Y

nan > o <xs(2)]

Similarly, if we are interested only in a bound on the positive tail of the

Thus

we have

N
random variable (1/N) > y;, we may bound the one-sided step function
=1
shown in Fig. 2.42a by any function A(«) and obtain
i N N
z= P[— XY > e] < E[h(Zy,-)]
Nizy i=1

An especially powefful bound is obtained in this one-sided case if,
as shown in Fig. 2.42b, we take

h(e) = 49 120,¢>0. (2.158)
We then have

< E[h(iyi)] = E[exp(lzgy,- - ANe)} = g AN E[‘f}; e?-w].
{2.159a)
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Ne «
()
g Mo — Ne)
1 —
Ne @
(b)

Figure 2,42 Geometric construction for proof of the Chernoff bound,

Since the random variables {y,} are statistically mdependent so are the
random variables {e**}. Thus

2 N — .
E[l:[ e‘“"] = 1:[1 E[e**] = [¢]" . (2.159b)

In the last of these equations ¥ denotes any one of the identically dis-

tributed random variables {y;}. Substituting Eq. 2.159b in Eq. 2.15%a

yields

7 <[], (2.159¢)

Although the bound of Eq. 2.159¢ is valid for any A > 0, we should
choose A in such a way that the right-hand side is minimum. We can find

this optimum choice, 2,, by differentiating e*®=¢ with respect to % and -

equating the derivative to zero:

d d
0=—E el(y—c} o= EI:_ M’y—c)]
d7 [ fa= 20 Ja € ieie

= El(y — )" 9] = e E[(y — e)e’].
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Canceling e~% and rearranging gives 4, implicitly, that is, as the solution
to the equation

Efyet?
—éﬁm]] - (2.160a)
The bound of Eq. 2.159¢ then becomes
= [NZ Y > :l < [, exo. (2.160b)

It can be shown® that 1y, as given by Eq. 2.160a, is always greater than or
equal to zero for € 3> 0 and that 4, provides the minimum % (rather than
the maximuwm).

The bound of Eqs. 2.160 is called the Chernoff bound.”® 1t can be used
whenever the numerator and denominator of Eq. 2.160a are finite, which is
the case for every discrete random variable that takes on a finite number of
values and for many continuous random variables. Though less easy to
evaluate than the weak law bound, the Chernoff bound is much more
powerful: if we define

A _In o9 (2.161a)
then Eq. 2.160b becomes
1 N . .
[N PR ] eV ez (2.161b)
i=]

Thus the Chernoff bound decreases exponentially with N, whereas the
weak law bound decreases only as 1/¥. Furthermore, it can be shown®.,%
that the exponent X is as large as possible; that is to say, no bound of the
form ‘

[ E% } < ez,

1—1

with X independent of N, is valid for all & for any X' " > X. We say that
the Chernoff bound is exponentiaily tight.

We extend the Chernoff bound to a set {;} of identically distributed,
independent random variables with nonzero means, {Z; = Z}, by writing

yiéw-—x; i=1,...,N.

Then Eq. 2.160b becomes
[ Z % >T+ e} < feie FIY, 50, (2.162a)

in which  denotes any one of the identically distributed variables {v,}.
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From Eq. 2.160a 2, is given implicitly by
_ E{(m _ E)elnlx—i}] _ E[xej"’m] .
- E[eiotw—i)] - E[ein:c]

An identical derivation can be performed when « is taken as a negative
constant. The result is

N — - ) :
P[% D, <E+ e} & [ehte MmN, £ 0,  (2.162¢)
i=1

in which Jo, NOW negative, is again specified implicitly by Eq. 2.162b.
We can swmmarize these bounds concisely by defining

d2 - e
In terms of 4,

[ePoE—dY (2.163a)

with 4, defined implicitly by
E[we’*]
E[e*7]
Example. As an example of the Chernoff bound, take

{2.163b)

1, with probabilit
[ P vE i=L2,..., N (2.164)

0, with probability 1 — p
We then have
E[e] = (1 — p) + pe’,
E[ze'"] = pe™.

We evaluate 4, from Eq. 2.163b: for 0 < d < 1,

Ao
d=,_w__pe__7
(1 — p)+ pe™
or
1o 1oPengy,
d p
Thus

(21626)

CHERNOFF BOUND 103

Finally,
' _pdi=p
p(l —d)
which is positive if 4 > p and negative if 4 < p, as required.
The bracketed term on the left-hand side of Eq. 2.163a then becomes

e?,.;[a;fcll — E[elnm]e—lnd

=[(1 — p) + pe*Ke )"

a-n =Rl 5=

-4=y=g
- (=4

-
= ¢ ¥,

S TS S

v
P[lﬁ%>d]. 1>d>p

iy o omes
d/\l—d : 1 X ’
P[ﬁz%gd] 0gd<p

i=1 B

I

Thus

and

A {2.165b)
It is helpful to interpret the bound of Eq. 2.165b graphically. Consider

=

= —dlnp=(—dIn(l—p)+dlnd +(1 —d)ln(l —d)

= T,(d) — H(d), (2.1662)
where

To) 2 —alnp — (1 — ) In (L~ p), (2.166b)

H@) 2 —alne — (1 —o@)In(l — o) (2.166¢)

The function H{ ) is called the “binary entropy function.” It is tabu-
lated®” and plotted in Fig. 2.434.
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Hay=—alne—(l-a)ln{l —a)

[aV]
207k in2 §
_E — =
& 05 =
ol v
£ - £
B0 £
El o
2 01 g
= I N N IO T N B | S »
01 01020304 0506070809 10 '
{a} The binary entropy function
Tl
AN {
X
|
| Hiaw}
| |
| I
| |
! I
| |
1 | o
P d
(6) d>p
/ig,(a)
' |
x W
o
! !
d r “
(c) d<p
Figure 2.43 The geometric determination of the Chernoff expenent, X, for binomial
random variables. ‘T() is the line tangent to H{z) at the point & = p. X is the dif-
ference between T,(x) and H(w) at the point & = 4.
It can be verified that T,( ) is a linear function of its argument and
that 7,(«) and H(x) are equal and have the same slope at « = p. Thus

X is given by the geometrical constructions shown in Figs. 2.43b, ¢. Note
that the exponent X increases as |d — p| increases.

An application of the Chernoff bound. An interesting application of
the Chernoff bound in the binomial case is found in the estimation of the
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probability of error that results when the discrete communication channel
shown in Fig. 2.44 is used N times in succession, N odd, to communicate
one of two input messages. Thus, if m = m,, we transmit a sequence
of IV zeros over the channel; if m = m,, we transmit a sequence of N cnes.
The receiver observes the sequence of N received digits and sets #t = my
if the majority are zeros and /M = my if the majority are ones. An error
occurs if and only if more than half the digits are received in error,
Define a set of random variables {z,} as
1, if the ith digit is not received correctly,

i 0, if the ith digit is received correctly.
If the chanmel transition probabilities are p and 1 — p and if the

1 =D
0 ]
P
Input =——s= — Output
P
1 1
l=-p

Figure 2.44 A simple discrete communication channel, called the binary symmetric
channel. Tf the channel input is 0, the channel output is 0 with probability (1 — p) and
is 1 with probability p. The converse statement applies when the channel input is 1.

occurrence or nonoccurrence of a channel error is statistically independent
on each use of the channel, the variables {z,} are identical to those in
Eq. 2.164. Moreover, the probability of error for the receiver is

P[£] = Pl % m] = P[gvx >4
]

Ni=1

Thus we may immediately invoke Eq. 2.165b, with d=1—d =4. If
we assume that p = 0.1 and N = 13, the Chernofl bound yields

s [T
-6y T

13 ’
= (—) ~ 1.3 x 1075
5
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On the other hand, substituting ¢ = (¢ — p) = 0.4 in the weak law bound
yields

~ 0.043.

PLE] < p(1 —2 D) _ 0.1(0’.'})?2
Ne 13(0.4)
The comparison between the strength of the two bounds is more dramatic
if we triple N to 39. The Chernoff bound is then cubed to yield 2.2 x 1079,
whereas the weak law bound is divided by three to yield 0.014,

» Ceniral Limit Theorem

We noted in connection with Fig. 2.7 that the binomial density function -

(that is, the density function of the sample mean

m 2 = 2 %, (2.167)1

in the particular case for which the {«,} are statistically independent binary
random variables, each with mean Z and variance ¢,%) exhibits an envelope
that becomes simultaneously narrower and more bell-shaped as M
increases. The fact that the envelope becomes narrower is attributable to
the normalization factor 1/M in Eq. 2.167: as M increases, the mean
/M = & remains constant, whereas the variance ¢,2? = ¢,2/M decreases.
We are interested here in investigating the tendency of the envelope to
become bell-shaped. Consequently, instead of m, we consider the related
random variable z defined by

II_I>

. ﬁ (2, — 7). (2.168)

\/
With this normalization z == 0 and ¢,2 = ¢,2, s0 that both the mean and
the variance of z remain constant as & increases. The behavior of the
envelope of p, as N increases is evidenced in Fig, 2.45,

The bell-shaped tendency illustrated in Fig. 2.45 for the binomial
distribution is an example of a much more general group of theorems,
called collectively the central iimit theorem, one statement} of which reads
as follows:

Let {y,} denote a set of statistically independent, zero-mean random
variables, each with the same density function p, = p, and finite
variance 2. Define

¥, (2.1692)

 The particular limit theorem stated here is called the Lindeberg-Lévy theorem. This
and other related theorems are discussed in References 30 and 35.
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Figure 2.45 The N-ferm binomial density function normalized to zero-mean and
constant variance.
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Then, for any o,

lim F (o) =f 1t dp. (2.169b)
N-roo ] \/2‘#0"?,. .
As a consequence, for any two numbers a and b

. b [ 1 5 2
lim | pfo)da .c—-f e 1% g {2.170a)
@

N-roo va .\/ E’J;O’,u
or, when b = 4-00, .
lim | po) da = Q(-‘i). (2.170b)
N=w da o
Since the choice does not affect the right-hand side, the integration interval?
" of Eq. 2.170a may be chosen either to include or exclude the points a
and b.

Discussion. The central limit theorem does mot imply that p, itself
approaches the Gaussian density function; it does imply that the integral
of p,(«) between fixed limits approaches a value given by the integral of the
Gaussian density function. The distinction is clear if we consider p,
to be binomial; for any N, no matter how large, p, is a sum of impulses
and therefore never approximates the (smooth) Gaussian density function.
~ The central limit theorem is operationally useful in estimating such
probabilities as '

1 X a

Pl—= > >a] %Q(—)

N iz G,
when N is finite but very large and |afo,| is a relatively small constant
(independent of N}. Quantitative evaluation of the words “very large”
and “relatively small” depends on the details of the original density .
function p,: if p, itself is Gaussian, the central limit theorem is exact for
any N and |afo,|. An equally trivial counterexample is the binomial case:
if cach y, assumes only the values —1 and 1, and if @ is any number

greater than \/ N,

u

s -oeols)

In estimating probabilities in which afo, grows with N, such as

P[l § Y, > e} = P[\/—%g Y > \_/Kf e], (2.171a)

Nia =1
the general usefulness of the approximation

12X N
PlLZu>e|~ oY
Nia g,

E) (2._17119)
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is dubious, regardless of how large we take N. Consider, for example, a
set of N binary random variables {;} in which, for cach i, «; assumes the
values 0 and 1 with equal probability. With ¥, £ x;,— %, 06,2=1% and
e = 4, we obiain from Eq. 2.171b

p li‘g\; o> % + e] ~ Q(\/j{) —oWN).  (1729)

We have already seen (cf., Eq. 2.121) that the Q function behaves ex-
ponentially as 0e) ~ >0,

Thus Eq. 2.172 implies

N
PF 2 > 1] ~ e, (2.172b)
Ni=1
whereas the exact expression is
1 N 1 N
Pl:—~ Ma, = 1] = P[—- ¥ or, = 1] =2V ™Y (2173)
N Ni=1 )

The operational significance of the difference between Egs. 2.172b and
2.173 may be extremely significant; indeed the fractional error

e gHO1N
00N T

grows with N and becomes enormous when N is large. On the other hand,
it is readily verified that the Chernoff bound agrees with Eq. 2,173, which
is in accord with our earlier statement that the Chernoff bound is ex-

ponentially tight, Thus the Chernoff bound should be used in lieu of the

central limit calculation in cases such as this, in which the limit of inte-
gration in Eq. 2.170b increases with ¥.

Argument. An appreciation of the validity of the central limit theorem
can be gained from the following arguments.

Let M,(») denote the characteristic function of any one of the N
identically distributed zero-mean random variables {y}, and let M. (»)
denote the characteristic function of their normalized sum z. Then M (v}
and M,(») are related by

N

M) = Eie””j = E[CXP (J’v =5 y)] = E[I\I exp (i j—fv’ y)]

»\/N_izl =1 .

) Y R




110 PROBABILITY THEORY

_in'which we have used the fact that the mean of a product of statistically

independent random variables is the product of their means.

Now let us assume that p, is such that every moment {y“} n=1,
2,..., is finite. Then, in accordance with Eq. 2.144b, M,(») may be
expressed in the power-series expansion

M) = 1+(;v)y+(”g +("’) g, (21750)

Since ¥ = 0 and y_z-— o,%, we have

b1 -
M) =1— wz%ﬂ + (), (2.175b)

where f(¥) is a continuous function that approaches the constant (—jy_"ﬁ’6)

as ¥ approaches zero.
From Eqs. 2.174 and 2.175b, we have

ln M, (») = Nln M(-\/LN) =Nln [1 —”5“; + (J—%)af(\/'”—ﬁ)]

(2.176)
The logarithm may be expanded in the power series
] 3
1n(1+w)=w—“’?+“’?—---, (2.177)

which converges for any complex variable w for which |w| < 1. Since we
are interested in the limit as N — oo, we may take A sufficiently large that,

Jor any fixed », . .
5%+ (G <

Applying Eq. 2.177 to Eq. 2.176, we have

o[- 23 +(¢Nrf(v>1

_ v,k 3 A (terms mvolvmg the factorsﬂ
= | ——— + .\/N \/ﬁ N-—2 N— 3% N-3 .
Thus, for any finite value of »,
2 3 v
lim In M li N[——-—+( ) ( )-[—]
Nl-l:r:o o M,0) = NT:o J N, \/_

—pie,?
2

-t
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Since the expenential function is continuous, it follows that
lin M (») = e o2, (2.178)
N-w
We recognize that the limiting form of M (») is the characteristic function
of a zero-mean Gaussian random variable with variance 0,%
We must now resist the temptation to claim that the density function

lim pa) = 11m Mz('u)e ey (2.179)
. N w —0
is Gaussian. As we have already seen in connection with the binomial
distribution, such a claim is false! The operations of limit taking and
integration in Eq. 2.179 cannot, in general, be interchanged.

Although the density function of z does tend to Gaussian if p, is
sufficiently smooth, the general central limit theorem statement that the
distribution function converges to Gaussian form hinges on the additional
“smoothing” that is introduced by integrating the density function p; to
get the distribution function F,.

%% APPENDIX 2A REVERSIBLE TRANSFORMATION OF
RANDOM VECTORS

The change-of-variables transformation considered in Eq. 2.78 is a
special case of a reversible transformation of vectors. A transformation
x -y, with both x and y k-dimensional vectors, is called reversible if it is
one-to-one,that is, if the inverse transformation y — x also exists for all
x and y of interest. For example, let

¥ = (8 fs(0), - - -, [(x0), (2A.12)

where each of the {f} is a function of k variables; that is, each f; assigns
a (different) number, say y,(), to a vector x(w). The transformation is
reversible if there exists another set of functions {g;} such that

x = (&), £:5)s - - - &Y. (2A.1b)

It is convenient to express Egs. 2A.1 in the more concise form
Yy =1Ix) (2A.22)
x = gy) = g(f(x)). (2A.20)

We now relate p, to p, for a reversible transformation in which the
partial derivatives df;/6x; and Jg,/0y; exist for all fand j, 1 <4, j< k
First we determine the probability distribution function F; and then we
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differentiate F, to obtain p,. By definition,

F,(B) =fpx(a) da, (2A38)
I

where 7 is the region

I={a:fy(0) € P fo(@) < oy ... . i) < B} (2A3b)

Taking the derivative 3*/(8f, 86, - - - 88,) of the right-hand side of Eq.

2A.3a to obtain p(B) is complicated by the fact that / is not simply .
expressed in terms of the variables of integration. This difficulty can be -

avoided by making the change of variables

y = f(a0). (2A.4a)

" Then it follows from the existence of the inverse transform g that
a = g(y). (2A.4b)

The region of integration J can be expressed simply in terms of y as

I={y:y<B} (2A.4¢)
Since g(y) may be substituted for « in the integrand of Eq. 2A.3a, the
only problem in performing the change of variables of Eq. 2A.4a is to
relate the differential volume elements det and dy. The relationship is

do = |7 (V)| dy. (2A.5a)

where |J,(¥)| is the absolute value of the Jacobian J (Y) associated with
the transformation g. The Jacobian, by definition, is the determinant

Jo Jo v Ju
Ja e 0 Ja
L=\ : (2A5b)
Ja Je o T
with elements
g, =800 g0k j=1,2,...,k (2A50)

k3

0y,
With the change of variables of Eq. 2A.4a, Eq. 2A.3a becomes

FA) = | _ el il dy

=" " ptsonacoiar. (24.6)

X —y given by
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Taking the partial derivative is now trivial, and we obtain the desired
relation between p, and p, when random vectors y and x are related by
the 1:1 transformations y = f{x); x = g(y):

pAB) = ple(®] LB (2A.7)

Further insight mto the relation between p, and p, may be gained
by recalling the fundamental interpretation of the probability density
function: p, is the function which, when evaluated at a point a and
multiptied by the volume AV, of a small region AZ, including the point
a, yields the probability that x will lie in the region. But, if x lies in the
region AL, then y = f(x) must lie in a corresponding region Al, of
volume AV, which contains the point b = f(a). Thus

2(B) AV, = p(a) AV, (24.82)
Since a = g(b), we have
2b) AV, ='pgB)] AV, (2A.8b)
Of course, A¥, is not in general equal to A¥,; indeed, from Eq. 2A.5a,
AV,

2 e T (D).
| a7~ V) (2A.80)

Substituting Eq. 2A.8¢ in Eq. 2A.8b yields
by =~ p.lg)] 1T (b)], (2A.8d)

which is consistent with Eq. 2A.7.
As an example of the use of Eq. 2A.7, consider the polar transformation

Y= fi{x) = \/51712 + '-"-"22,

2A.9

¥ = fo(X) = tan™ S . ( 2
1

As shown in Fig. 2A.1, the inverse transformation is
vy = gi(y) = y1co8 ¥y

. ]; Yz 0, 0Ky, < 2w (2A90)
#; = go(¥) = ¥y siny, _

Thus )
0g(B) 95:(B) |

J(8) = ap, 96, _ C‘OS B, —fisin B,
22:(B) Oz(B) sin f, ficos B,
9 b :
= pycos® fy -+ By sin® By = fi. (2A.9c)
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Introducing the more natural notation @ = (r, 0), so that
I =r, :
g1(R) = rcos 0, (2A.10a)

g:(B) = rsin b,
we have

PoB) = pde@)17,R), y

or ‘
p,(r, 8) = py(rcos 0, rsin 0) r; r>=0, 00 <27 (2A.10b)
x2
xp=y1sinyy ———————
’ Y1 i
2 |

) = y1005¥z

Figure 2A.1 The polar iransformation.

For instance, if p, is the two-dimensional Gaussian density function

1 o? — 2poy g + op®
Piley, og) = m exp (— 30— p) ), (2A.112)

then, from Eq. 2A.10b,

0 r [ (1 — 2p sin 0 cos 6)]
Py(i‘, ) 271'\/1—p2 p 2(1_P2)
F20,0<0<2m  (2A.110)

PROBLEMS

2.1 Let A, B, C be three events, not necessarily disjoint, defined on a sample
space . Prove the three inequalities stated: below, and for each discuss the
.conditions under which the equality sign holds for every legitimate probability
assignment. I

PlA] + P[B]'+ PIC],

P4 UBUC]<
P[4 v B U C] » Pl4],
P{ABC] < P[A]L.
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2.2 Let Q be the integers 1, 2, ..., 10 and let each integer be assigned proba-
bility . Define the events 4, B, C by

A4={1,2,3,4,5},
B=1{4,5672381
C=143,5109, 10}
a. Calculate the following probabilities:
Pi4 v B9, Pl4 n ], PI(A v B)* N C],
P[(4B) U Cl, PHABE U (4C)].
b. Whatis the total number of distinct events implied by the events Q, A4, B, C?
2-.3' Consider the probability system of Problem 2.2. Are the following

‘equations true?

P[4 | BC] = Pl4],
PLB| AC] = FB],
PIC | AB] = PC].

Are the three events 4, B, and C jointly statistically iﬁdependent? Are they pair-
wise statistically independent?

2.4 Consider the following experiment involving four urns. A ball is chosen
from urn A, which contains six balls labeled B, three balls labeled C, and three
balls labeled D. The letter drawn specifies the urn from which a second drawing
is made. Urn B contains five red and five white balls. Urn C contains four red
and six white balls. Urn D contains two red and eight white balls,

a. Construct a sample space and probability assignment that describes the
experiment. .

b. Given that the second ball drawn is red, what is the conditional proba-
bility that the first drawing yielded B?

c. Are the two events “first ball labeled C™ and “'second ball red” independent?

d. Are all results of the first drawing statistically independent of the result of
the second drawing?

2.5 Let A and B be two statistically independent events of nonzero probability.
Prove or disprove the equation

Pl4 v B] = Pid] + P{Bl

2.6 Consider any event 4 with nonzero probability and a set of disjoint events
B, Bs, ..., B, such that

C=

B, =Q.

i=1i

Show that

s, | ay = DA B B

2 P4 ]| B PB]
=1

This result is known as Bayes rule (for events).
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2.7 An experiment consists of throwing a fair die until two successive results
are the same. Construct 2 mathematical model that describes the experiment and
determine the probability of stopping with the sthtoss,r = 0, 1,2, . ... Verify
that these probabilities sum to one.

2.8 A communication network with four terminals I, II, ITT, IV is connected .

with four links a, b, ¢, d, as shown in the figure. Not all links, however, are
necessarily available. Let p denote the probability that any particular link is.
available and assume that the availability of each link is statistically independent
of the state of all other links. Two stations can communicate if and only if they
are connected by at least one chain of available links. -

a. Construct an appropriate probability model with 16 sample points, one
for each state of the system. :

b LetA 2 {w: 1 and TV can communicate}. Calculate P[4l .

c. Let B 2 {w: I and III can communicate}. Calculate P[B]

d. Calcufate P[48]. How many sample points does this event contain? Are
the events A and B statistically independent?

e. Show that P{A] = p P[4 | ¢ available] + (1 —p)yPld ]| c not available].
Using this formula, re-evaluate P[4} by inspection.

£, Prove that P[4] would be increased if link ¢ were connected between I and
TIT rather than between II and TIL. :

1F
a d
I v
b
I
Figure P2.8

2.0 Consider three events A4,, By, and Cy, with complements A, By, and G,

respectively. Prove that A;, By, and C,; are statistically independent if and only "

if the eight equations

PlA;B,C;] = PI4]PIBIPICT  hjk=12
are true. Does any subset of these equations imply the others? If so, determine
a minimal subset with this property.

210 Consider the communication system described here. The transmitter
throws one of two fair dice, die 1 if the message is 4 and die IL if the message
is B. Die I has five faces labeled A and one face labeled B, whereas die 11 has five
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faces labeled B and one face labeled 4. The receiver decides the message is that
shown by the thrown die. Assume the two messages are equally likely.

a. C_onstruct a suitable probability system and determine the probability of
error (i.e., the probability that the receiver’s decision is incorrect).

) b. Now assume that the transmitter throws three type I dice if the message
13 A and three type 1T dice if the message is B. The receiver decides the message
by majority rule. Repeat part a. :

c. What is the general expression for the probability of error when the trans-
mitter throws N (¥ odd) type I or type II dice and the receiver decides by majority
rule?

d. The transmitter now throws four type I or type Il dice. The recejver again
deci‘des by majority rule but asks the transmitter to throw the same four dice
again in case of a tie. This continues until a decision is reached. What is the
probability of error? What is the probability that the decision will be reached
with the Nth repetition?

211 A ncisy discrete communication channel is available. Once each second
one letter from the three-letter alphabet {a, &, ¢} can be transmitted and one
letier from the three-lefter alphabet {1, 2, 3}, received. The conditional proba-
bilities of the various received letters, given the various transmitted letters, are
specified by the accompanying diagram. ’

Figure P2.11

A source is available that uses a, b, and ¢ with the following probabilities:

Pla] = 0.3,
P4} = 0.5,
Plc} = 0.2.

) What is the best receiver decision rule (assignment of 1, 2, 3to a4, b, ¢) and what
is the resulting probability of error? What is the minimum probability of error
that could be achieved without use of the channel?

2.12; Consider the noisy discrete communication channel illustrated by the
accompanying diagram.
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Figure P2.12

a. If P[0] = 0.7 and P[1] = 0.3, determine the optimum decision rule (assign-
ment of a, b, ¢ to 0, 1) and the resulting probability of error.

b. There are cight decision rules. Plot the probability of error for each
decision rule versus P[0} on one graph. -

¢. Bach decision rule has a maximum probability of error, which occurs for
some least favorable a priori probability P[0]. The decision rule which has the
smallest maximum probability of error is called the mirimax decision rule.
Which of the eight rules is minimax?

213 Let A, i =1,2,...,K, beaset of disjoin events such that

K
U4, =Q
i=1

a. Prove that, for all o, §,

K
Pm,y(a; By = 'Zl P:c,y(ma B, Ai)-

b. Express the following without the use of integrals:

fw fw Pan(ts B, A) do B
J mf s B A) o df

on pale |y = B, A) p,(B| A) B,

where 4 is any one of the {4,}.

x1
Threshold ¥
detector p——a3>—
x2
o LY

Figure P2.14

where
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;'2.14 \; Two statistically dependent random variables ®; and «, are applied at
‘the inputs to a threshold detector, the output from which is equal to the number
of inputs that exceed the threshold, say 7. Thusy =0, 1, or 2. Determine the
density function p, in terms of p; . and 7. (See Fig. P2.14.)

: 215 Consider the random variable z obtained from a random variable & by

‘thié transformation

z =sint.
a. Determine p, when
1 T <x < w
=3 A x &Ko,
Ps(“) =l 2z 2
0; elsewhere.

b. Determine p, when ¢ is a constant, N is an integer, and

1

o) = Nw —Nm+ ¢ <o <Nr+ 9,
W) = .

0; elsewhere.

2.16. A random variable # with nonimpulsive density function p, is transformed

‘inté & new random variable ¥ by the transformation
¥ =f=),
f(@ = Fif.
Here, as usual, F, denotes the distribution function of ». Show that

1; 0€a<x,
phe) =

0; elsewhere,

2.17 Let = be a random variable with the density function
pale) = etel.
Determine the density function p,, of the random variable
y = es.

2.18‘“ A random variable # with probability density function as shown is applied
at the input of each of the five nonlinear'devices illustrated on p. 120. Calculate
and plot the resulting probability density Py, fori=1,2,3,4,5.

jth i Yi
] . 2 Noqlmear
device




120 PROBABILITY THEORY

paa) 71
05 6(ee = 1) +1
02 x
' | L 15, e S A !
-2~1 " 1 2 3 4 i )
Density function of x ' (a) Ideal hard limiter
Y2

i
= : x x
-1
(b) Peak clipper (c) Fult-wave rectifier
Y4 ¥g

A 4
-25 =052
| x I L1 yy
/I 1 _j_"_‘ 415 +35
-2

—4
(d) Amplifier - {e) Uniform quantizer

Figure P2.18

2.19 Letz and y be statistically independent random variables with the proba-
bility density functions
1

—_— —_ < -{_.
.Pa:(fx) = ’ﬂ"‘/l — ot ’ L<= 1,

Q; elsewhere.

et § 30,
2B) = ;

3

elsewhere.

Show that the product z = @y has a Gaussian density function.

220 A noise process is studied and the probability that & “‘zero-crossings™
oceur in a time interval [0, o] is denoted Pk, «). For example, exactly three
“zero-crossings™ occur in the time interval [0, 3] for the noise waveform pictured.
For all values of

i Plk, o)y = 1.
E=o
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Let the random variable + denote the time at which the first zero crossing
occurs in the interval [0, «]. Express p, in terms of P(k, ). Hint. First calculate
F,(«), the probability distribution function of r evaluated at =

Noise waveferm

’ t

0 i\/é\a

Figure P2.20

2.21 A random variable ¥ with density function
Bo D) o = 1,
i) = 0; o<1,

is obtained by means of a transformation ¥ = f(z) from the random variable =
with density function
' ey a0,
o) =
P =10 o <o,

Determine a reversible transformation f compatible with the specified density
functions. .
2.22 Let» and y be statistically independent random variables. New random
variables # and » are defined by

u=ar + b,

v =cy +d,
where a, b, ¢, and d are constants. Show that the random variables u and v are
also statistically independent,
223 A communication system is used to transmit one of two equally likely
Tncssages, my and m;. The channel output is a continuous random variable #,
the conditional density functions of which are shown in Fig. P2.23.  Determine
the optimum receiver decision rule and compute the resulting probability of
error.

prlee|mp) Prlet|ma)
1 -
1 i | t 1
of 1 2 ¢ T o 1 F] 3

Figure P2.23
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224, The communication system of Problem 2.23 is now modified by the
insertion of a quantizer at the channel output as illustrated in Fig. P2.24.
Determine the optimum decision rule for estimating the transmitted message on
the basis of the quantizer output r’. Compute the resulting probability of error
and compare with that obtained without quantization. Hinf. Make a discrete

model for the over-ali channel and calculate the transition probabilitieé;. -

r - r
Channel Quantizer

Discrete model: the arrows
represent transition prebabilities

3t
21—

—25 ~15 -051—
[ N R EV R

05 15 25 35
1

Quantizer
Figure P2.24

2.25 A “diversity” communication system employs two channels to transmit-

a voltage s to a decision device as shown in Fig. P2.25. Thus the decision device
has available two received voltages, #, and rp, in which :

ro=3+ ", rpg = 8§ + My,

Assume that #; and n, are zero-mean Gaussian random variables with variances
o2 and o2 and that s, #,, and . are jointly statistically independent. The
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ry -

Becision

n
ra device ?

m g
Transmitter

im(): miz -iso, 512

——) (<

Figure P2.25

system is used to commﬁnicatc one of two messages miy and sy with a priori
probabilities Plws] and Plmy]. For message m, the signal is

s=(-1pVvE =01
The optimum decision rule seeks to determine that / for which the a posteriori
(conditional) probability of s, given ry and ry, is maximum.

a. Petermine the structure of the optimum decision device and calculate the
resulting probability of error.

b. Compare this result for ¢; = ¢, and P{m,] = P[] with the performance
obtained with an optimum decision based only on r;.

:2.26 Derive the inequality

A |
o2 [ etrgs < Lo oo
& \/217 2 ’

For what value of « does the equality hold? For what values of « is this bound
tighter than the inequality

1
Qo) € —— a2 ?
A Vnu
For what values of o are the two bounds both within 0% of the true value of
O(«)? Hint, Identify [O(e) as the probability that a pair », ¥ of independent
zero-mean, unit-variance Gaussian random variables lies within the shaded
region of {a) in Fig. P2.26. Observe that this probability is exceeded by the

] A8}
Figure P2.26
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probability that =, y lies within the shaded region of (). Evaluate this last

probability by means of a change of variables.

2.27 Let y and = be two random variables such that Ef(y — 2)*] = 0. Deﬁnq

the event .
A4 = {0 yl) # xw)}
and evaluate P[A].

228 Let « and y be two random variables with finite second moments and

define
z2 = Y

Prove that :
a2 + 0,2 — 20,0, €62 <o + a2 4 20,0,

hence
a? < 20" + _O‘yzl

2.29 Let 2 be any random variable for which the two conditions
px(m) =0; o <O
A (=)
L =f o« pofex) doe < 0
—a0
are met. Prove that forall & > 0

1
Plx > k3] é-‘é.

Is there an acceptable density function p,, for which the equality holds true?

230 Let x;, T3 ..., ¥, be & set of N identically distributed statistically in-
dependent random variables, each with density function p, -and dlstrii?utlon
function F,. As shown in Fig. P2.30, these variables are applied as the inputs

to a box that selects as its output, ¥y, the largest of the {x;}. Clearly, yy is 2.

random variable.
a. Express p, in terms of N, p., and F.

xy
x2
-] Select I = max |z, 2z, **T, Xy
largest
i
e
Figure P2.30
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b. Assume that the x; are exponentially distributed random variables:

@ {e—“; a2 0,
o) =
e Q; a < 0.
Calculate the expectation 9y for ¥ = 1, 2.
Discussion. 1t can be shown that the general expression for 7y in part b is

% 1

In=273-

=1

In certain communication situations involving diversity transmission over
independent Rayleigh-fading paths {see Chapter 7) =, would represent the
energy received over the /th path. (Show that the square of a Rayleigh random
variable is exponentially distributed.) A “selection diversity” receiver selects
the path with the largest energy. We observe that the mean energy of this path,
Jy, increases to infinity as N— . The incremental advantage of adding
another diversity channel, however, decreases rapidly as N becomes large.

2.31 Let = be a random variable with mean %, variance 5,2, and characteristic
function M {v). Decfine

y S b; a and b constants.

Determine ¥, o,%, and M {») in terms of &, 6,2, M (¥}, a, and b.

232 Let = and y be statistically independent random variables with the proba-
bility density functions p(e) = p, () = 4e7*l

a. Calculate the nath moment, Efz"], of «.

b. Calculate the nth absolute moment, E[Jz{"], of .

¢. Determine the characteristic function of =.

d. Determine and plot the probability density of the sum 2 =2 +y.
e. Calculate the probability that = is greater than y.

2.33- A random variable = has characteristic function

M) =k (Sinw)B

a. Evaluate the constant k.
b Calculate &,
¢. If y = = 4+ m, where m is a constant, calculate M, (»).

2.34 A random variable # which takes on only integer values is said to be

“Poisson distributed” if
Ame—4

o
Pole) =2 (e — m) — -
. — m!
Plot p, for 2 =2, m < 5.
a. Find #, ¢.2, and M, {»).
b. Let = and y be statistically independent Poisson variables with constants
. and A,. Define z = = + y. BExpress p,, %,and o2 in terms of 4, and 1,.
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235 The random variables ; and =, have the joint density function

1 byb, .
Pay(tas 2) = 2 (b2 + of)(bs? + %7’

by, by > 0.

a. Show that =, and =, are statistically independent random variables with,
Cauchy density functions (see Fq. 2.48a).

b. Prove that M, (») = —oalvl, .

c. Define y = @y + @, Determing py.

d. Let {z;} be a set of N statistically independent Cauchy random variables

withh; =b,i=1,2,...,N. Define
1
Ni

M

Zg

&
3

[}

Determine p,. Is z—which is cafled the sample mean—a good estimate of the
true mean

Il

m Z;

2.36 Let {o;} be a set of N statistically independent random variables and
define ¥ -
y =2
i=1

a. Which of the following statements are always true? Prove or give a
counter example.

N
(D g = &
=1
— N o
(i) s = 2 &%
i=1
_ N
(iif) 3 le,-".
' N
(iv) M, 'y(v) = le :ai("')-
. N
v) of = glo‘xf.
N o —
(vi) [ — 392 + 2% = X [o® — 3wl w; + 257
i=1

The combination in brackets in (vi) is called the third semi-invariant moment.
In part b we consider the general form of semi-invariant moments.

b. Define 1,) 2 In M,() and p,(s) = In M, 0).

N
(i) Show that C ) =_§1 #:0)-
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Assuming that all moments exist, we may expand p,(»} and p,(») in a Taylor
series:

®
lug(v) = E aj'._|
i=o J*

© »i
ulv) = z iy 7y -
=0 J
Equating coefficients of equal powers of », we obtain

X
a; =3 dyj

i=1
Thus the jth coefficient in the expansion for a sum of ¥ independent random
variables is the sum of the jth coefficients of the constituents. The jth coefficient
ig called the jth semi-invariant moment and g, is called the semi-invariant
moment generating function.

(ii) Evaluate gy, a;, @5, and a, in terms of the moments of y.

2.37 a. Prove that
(@ — o

Pllxr — & >« < T

€

for any random variable = with #d < o.
b. Assume that » is a Gaussian random variable and let ¢ = ko. Determine
the range of k for which the bound of part a is tighter than the Chebyshev bound.
¢. Why is the bound of part a not so useful as the Chebyshev bound in proving
the weak law of large nurbers? Hinr, Show that, in general,

¥
N RS XA
i=1
. ¥
where & £ 'y, and the {y,} are statistically independent identically distributed
=1

random variables.

2.38 . We wish to simulate a communication system on a digital computer and
estimate the error probability by measuring the relative frequency of error.
Approximate by means of

a. the Chebyshev inequality,
b. the central limit theorem,
¢. the Chernoff bound,

how many independent uses of the channel we must simulate in order to be

99.99 certain that the observed relative frequency lies within 57 of the true-

P[g], which we may assume is4ess-than 0.01.

239 One of the two equally hEely messages is transmitted over a noisy channel
by means of the following strategy. If m, is the message, the transmitter sends

a sequence of N voltage pulses over the channel, each with amplitude vE If
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#ny is the message, N voltage pulses with amplitude — V'E are sent. The effect of
the channel is to add a (different) statistically independent Gaussian random
variable to each amplitude. Thus the channel output is a sequence of N
amplitudes :

F; =8 Ry i=52,..., N,
where s = +VE if the message is m, and 5 = —V'E othérwise. Assume for
all 7 that _
i, =0; n2 = o

a. The receiver calculates

N
y=z?‘i
i=1

and seis 2 = m, if and only if ¥ > 0. [We shall sce in Chapter 4 that such a
receiver is optimum.] Determine the resulting P{€] and show that

P[e] < e~NERe,

b. A suboptimum receiver makes an independent binary decision about m on
the basis of each r; in turn. Let p denote the minimum attainable probability
that any such decision is wrong. Obtain an expression for p. The receiver then
forms the sum ¥

T = z Ly
=1

where «; A _1 if the ith decision favors m; and #; A& 11 if the ith decision
favors m,. Thus Plz; =1|ml =p for afl 7 independently. The receiver sets
f=myife >0and i =m ife < 0. Use Chernoff bounding techniques fo
show that : ’
P[] < e—.N[—]n\/dp(l—n)].
Show that

peE- V E}2na®

when Efo? is very small, so that the probability of error bound in part b then
becomes
P&l < e—(NEj2a®)(2im)

Comparing this bound with that of part a, we see that the effect of making
individual decisions is to multiply E by the factor 2/ (~ —2 db).

3

Random Waveforms
e

We have considered so far how to make the optimum decision about
which message is transmitted when a receiver’s front end and detector are
fixed. With reference to Fig. 3.1, this problem involves limiting our
observation of what is received to a quantized voltage sample at point 4,
or to an unquantized voltage sample at point a’. The decision rules

+ Distuzbance

m s(t} )

—-—i Transimitter Channel Receiver
{mi} st} @ front end
~
I Detector l |Quantizer| l Decisicn | L
' I I e

Figure 3.1 A communication system model with a finite number of input messages
{m},i=01,....,M—1

established in Chapter 2 are therefore optimum only in the limited sense
that they produce the smallest possible probability of error, given that

we cannot redesign the way in which the receiver obtains the voltage at ‘

point.a’ from. the random received waveform (7). To design a receiver
that is optimum in an over-all sense, we must focus back on points b and
d and investigate the problem of dealing directly with random time
Junctions, instead of just with random voltages.

In this chapter we consider those mathematical aspects of random wave-
forms that are essential to our study of this problem. As in Chapter 2,
the primary objective is to develop the engineering import.

3.1 RANDOM PROCESSES

The appropriate mathematical model for dealing with unpredictable
voltages involves the concept of a random variable, =, defined as the
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assignment of a real number #(w) to each point @ of a sample space in
such a way that a probability distribution function F, exists. Unpre-
dictable waveforms are dealt with in a similar way: instead of only a
single number, however, we now assign to each point @ in ( a real time
Junction, say x(w, ). The situation is illustrated in Fig. 3.2, which shows

x(wy,t)

~x{w1,4)

x(wi,2)
I NA

*{wa,f) . x (e, bp)

Plewa} /__,—/\__\
. ws LY

~-
N

/\
V\-\’\\ t
x{wg,f1}

Hew? x(mg,tl)\m /I(wa,tz)
Pleos] ’A___\/ K P

.3z
- N ¢
x{ey,£)

Plol
. wy =]

x{wq, b1} —> ¢
\/\_\\/ﬁ (g, 22}

i1 £

0

Figure 3.2 A simple random process.

a finite sample space {2 with four peints, and four waveforms, labeled
a(w;, 1); i=1,23,4.

Now let us think of observing this set of waveforms at some time

instant, ¢ = #,, ag shown in the figure. Since each point w; of { has
associated with it both a number =(w,, ;) and a probability, the collection

. of numbers {&(e;, 1)}, i = 1,2, 3, 4, forms a random variable. Observing
the waveforms at a second time instant, say 7,, yields a different collection
of numbers, hence a different random variable. Indeed, this set of four

waveforms defines a (different) random variable for each choice of

observation instant.

In general, we are interested in the case in which Q contains an infinite

number of points , and the set of waveforms {z(w, #)} is correspondingly
rich. For example, {x(e, £)} might include every real waveform defined

on[—oo < ¢ < o). Just as with finite £, we presume that the collection
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of waveforms, together with the probability assignment, defines a random

variable for each choice of observation instant,

The probability system composed of sample space, set of waveforms,
and probability measure is called a random process and is denoted by a
symbol such as z(f). The individual waveforms of a random process
x(ry are called sample functions, and the particular sample function
associated with the point w is denoted =(w, £}. Naming a random process
=(¢) and denoting the sample function associated with the point @ as
(e, 7) corresponds to our previous practice of naming a random variable
z and denoting the sample value associated with the point @ as x(w).
We shall find it convenient to use the notation »(¢) in two different senses:
first (as above) to denote the random process and second to denote the
random variable obtained by observing the random process at time #,
Whenever the sense is not clear from the context, we write () or 7 lo
denote the random variable observed at time ¢,.

Interpretation of the Random-Process Model

1.et us consider how the random-process model enters into the problem
of designing a receiver such as that diagrammed in Fig. 3.1. First, which
of the set of possible transmitter waveforms {s,()} is actually transmitted
depends on the random input message m. We note immediately that the
signal s(2) is a random process with a finite number of sample functions;
the probability that s(7) equals s,(z) is P[m,].

Next, consider the channel, Let us assume that natore, in some way
that we can describe only probabilistically, selects one member of a set
containing all possible disturbing waveforms and adds it to s(¢). The
appropriate mathematical model then involves a sample space {2 on which
three random processes and the random input message are defined
simultaneously: associated with any particular sample point w is a
message, say m;, the transmitter signal s{w, ) = 5,(2), one of the possible
noise waveforms, say n(w, t), and the received waveform

rHw, ) = s(w, 1) + n(w, 1). G.12)
Since Eq. 3.1a holds for every point w, we write
r(t) = (1) + n(2), (3.1b)

where #(?), s(¢), and #(r) are random processes. Over () the entire set
{r(w, £)} exhausts all possible pairs of noise and signal waveforms.

The problem confronting us when designing the receiver illustrated in
Fig. 3.1 may now be stated. We look on the random process r(¢) as a
black box (encompassing the message source, transmitter, and channei)




132 RANDOM WAVEFORMS

at whose output terminals one of the time functions r(w, £) appears. In
effect, some hidden mechanism within the box selects a point o at random
and emits the corresponding sample function. The receiver must operate
on this sample function—whichever one it may be—in some fixed way to
produce an estimate of the message. The crux of the problem is that we
must specify the receiver operations in advance, whereas we cannot know
in advance which sample function will appear.

Given a fixed receiver design, it is clear that some of the r(w, ) will lead
to a correct estimate of the message and some will not. Let us denote
the set of sample points @ that leads to an incorrect estimate by the
symbol &:

§ 2 {w: (o, ) = error}.

Qur objective is to design the receiver in such a way that the probability
of this event, that is, the probability of error P[&],will be minimum. The
subject of Chapter 4 is how to design such a receiver in certain important
cases. First, however, we must develop appropriate mathematical
techniques for doing so. Accordingly, we now return to the discussion
of random processes.

Random Vectors Obtained from Random Processes

By definition, a random process implies the existence of an infinite
number of random variables, one for each ¢ in the range —o0 < # < 0.
Thus we may speak of the probability density function p , of the random
variable 2(z,) obtained by observing the random process =(f) at time #.

More generaﬂ){, for k time instants #,, fo, . . - , #, We define the k random
variables #{1), #(t,), . . . , 2(#) and denote their joint density function by
Py 101 which we introduce the notation '

x(t) = (a1, a(ta), . . -, 2(1)). (3.29)

The components of the random vector X(t) associated with any particular
sample point @ are the values of the sample function a(w, §) observed
at times #;, fo, . . ., £30

(e, t) £ (2w, 1), 2(o, 1), . . . , 2w, B)). (3.2b)

Note that the density function p., depends on the random process (1)

and the specific time instants {z;}.

As an application consider the probability of obtaining a waveform
that passes through a set of k& “windows”, as in Fig. 3.3; that is, the
probability of the event

A=fwra, <o t)<by i=1,..., kL (3.32)
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byl
b J- 3’ - Possible sample
- s . & function
ROICE RN [as e
N [}
A} {
A | ! :
i \\ o b2l " i3
\\-. J//az T~

Figure 3.3 The probability of the event {w: & <a{w, #) < b, @& <z(w, 1 <
by, ay < z{eo, ty) < bg} ‘is the probability of the set of sample functions which pass
through the windows.

This probability is
by by [
Pl4] =J f f Pun(®) do. (3.3b)
41 van ay

Tn a similar way, we can calculate the probability of any event defined in
terms of a finite number of time instants.}

Specification of Random Processes

We say that a random process x(?) is specified if and only if a rule is

given or implied for determining the joint probability density function

P, fOT any finite set of observation instants (¢, 7, . . 2 )

In application, we encounter three methods of s spemﬁcatmn The first
and simplest is to state the rule directly. For this to be practical the
joint density function must depend in a known, elementary way on the
time instants. An important example of this method is the Gaussian
process, on which we shall concentrate after discussing filtered impulse
noise.

For the second method a time function involving one or more parameters
is given; for example,

g(0) = rsin 2t + 0). (3.4}

The parameters r and 6 arc then taken to be random variables, with a
specified joint density function p, ,. The sample functions of the random
process «(f) are then

a{w, N = ¥{w) sin [2at + 0(w)i; all @ in Q, (3.5)

+ 1t is not possible in general to calculate directly the probability of events defined in

terms of an infinite number of time instants, such as the event B defined by
= {w: z{w, t) < 0 for all ¢ in the interval [0, 1}.

Probabilities of this sort can be calculated only indirectly in the limit as k becomes
infinite of expressions similar to Eq. 3.3b. ’

|
|
i
|
\f
?
{
}
3
;
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and the sample space is that on which » and § are defined. Any density _
function p,, can then be derived from knowledge of p, , although the
calculations may be difficult and tedious.

One possible association of waveforms with sample points for the
random process of Eq. 1.5 is illustrated in Fig. 3.4, in which Q is taken to
be the two-dimensional plane and the numbers r{w) and 6{w) are taken to

r{w)

B {w)

Figure 3.4 Random variables r and 8 defined as the polar coordinates of each sample
point & when {} is a plane.

be the location of the point w in polar coordinates. A possible joint prob-
ability density function is

o —121’2
— ¢ ; 0La<aw, 0K <2n,
o, ) = {2 = <? (3.6)

0; otherwise.

The third method of specifying a random process- is to generate its
ensemble by applying a stated operation to the sample functions of a known
process. A trivial example is the definition of a new process, say ¥(?), as
the time translate of a given process, say z(f):

o, N = o(w, t + T); all w in . 3.7

In this case any density function for the new process may be writien
immediately in terms of the corresponding (known) density function of
the original; the random vector

7O = e, ¥t - - - ¥(1) (3.8a)-
is equal for every sample point to the random vector x(t + T), where
x(t + T) & (@l + T), ety + Ty« alty + T))- (3.8b)

Thus .
y(f) = x(t -+ T) _ (3.8¢)
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and x x:
_ . 20 x(w,t) |Tm“"| ¥ (o)
Py = Pxetm> 3.9

A more interesting example of the third Figure 3.5 The random pro-
cess «(1) is transformed into

?ne-thod, and one thatwe.shall often encounter, 9(#) by passing each sample
is linear filtering. A new random process ¥(f)  function «(e, #) through the
can be obtained by passing the sample func-  linear filter.

tions of a given process, (), through a linear

filter with impulse response (), as shown in Fig. 3.5. The sample functions
of the two processes are then related by the convolution integral

y(w, 1) =j h(t — ) 2(w, @) de; all @ in Q. (3.10a)
More concisely, we write
¥(0) =f h(t — o) o(o) dar. (3.10b)

In general, it is difficult to determine a density function for the process
4(f) from knowledge of the density functions of the process x(?), although
when «(f) is a Gaussian process we shall see that doing so is simple.

Stationary Random Processes

In dealing with random waveforms in the real world, we often notice
that statistical properties of interest are relatively independent of the time
at which observation of the waveform is begun. For example, the empirical
averape of N consccutive samples taken at l-sec intervals may be
insensitive to the precise time at which the first sample is taken.

A stationary random process is defined as one for which all density
functions are independent of absolute time reference (time origin). Thus
a process a(f) is stationary if, for every finite set of time instants {thi=1,
2, ..., %, and for every constant, T,

Pua+m = Pxiw- (3.11)

~The notation is that defined in Eq. 3.8.%

" -One implication of stationariness is that the probability of the set of
sample functions which passes through the windows of Fig. 3.6isequal to
the probability of the set of sample functions which passes through the
corresponding time-translated windows. It is not necessarily true that
the two sets consist-of the same sample functions. ‘

A second implication of stationariness is that ensemble averages can be
associated with the entire process rather than only with the process
evaluated at some particular instant of time. For example, a stationary

i T in g contont Hhis dotacd gl o poiodic o3

e e i (23 ) 2 oo pilnk 3% ) 4 aen
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|

51

R~ Ty ————

ot B

t ta t to’ t3
Figure 3.6 Three windows and their time-translates (/" = #; + T; i =1, 2, 3).
process «(f) can be said to have a mean value # or a second moment %
without specifying the instant of observation 7:
Ele(f)] =%  allz (3.12a)
El2(0)] = 22; allz. (3.12b)

That this is so follows directly from Eq. 3.11. For any two observation

instants, #; and ¢;, we have

Patt ) = Patey)
and thus for any n '

Ele"(1)) = f

o0

o @) do = | 4 pu(@) da
o —_00

2 El"(t,)]. (3.120)

More generally, it follows from the theorem of expectation (Eq. 2.126)
that the average of any time-invariant function g defined on k samples
from a stationary process @(z) is independent of time origin:

g(x(t)) = fg(a) Puin(e) de = Jg(m) Pxierm(n) do
= g(x(t + T)). : (3.12d)

A simple example of a stationary random process is the ensemble of
waveforms {f(t + 7)} generaied from the periodic ramp. f(#) shown in
Fig. 3.7 by taking = to be a random variable with the uniform density
function .

H 0L BLT, ’
<A< (3.13)

S

By =

0; elsewhere,
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fit)
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3 | N
$ T 0l nor 2T ET N
Figure 3.7 A periodic ramp function.

where 7 is the period of f(¢). As a first step in proving that th;"s_purﬁq‘)ﬂg_f_:gg,;

say x(f), is stationary, we demonstrate that the random variables obtained

by sampling x(7) at times ¢, and (¢, + T) have the same density function,

independent of T and £, :

Px(tl) = pm(tpLT]'

The sample function ®(ev,, £} is iltustrated in Fig. 3.8 for a sample point
wg such that (wy) = 7y. Over £ the random variable 7 takes on every
value in the interval [0, T]; correspondingly, the random variable x(f))
takes on every value in the interval [0, gl. The transformation from = to
a(t,) is shown in Fig. 3.9,

x {wp, £) x (wo, &1)

o

-To 0

=1
t t;
x{ug ) .
—a T

Figure 3.8 When +(w,) = 75, the sample function =(eq, 1} is f(z + o).

N

x (t)

f ()

I
i
|
!
1
0 T

Figure 3.9 The transformation relating the random variables = and =(2,) is obtained
from Fig. 3.7 by holding 1, fixed and shifting f{¢) to the left by the amount .
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To determine the distribution function of =(s)), consider first the event
{r:2(t,) < o, in which « is as shown in Fig, 3.104. The probability of
this event is just the probability that = will lie in the shaded interval, .

Fooy() = PL{r a(t) < )] =fp,(ﬁ) ap
Iy

=_1J‘d'8=5=01’
TI T a

where 7, denotes the length of the interval /.

x (f1)

{a) To

x (&1}

Figure 3,10 The geometrical relations determining Fu, ,(e); the interval [, is shaded
in (@) and the intervals I; and I, are shaded in (b).

Next consider the event {r:(s;) < «}, where « is as shown in Fig,
3.10b. Itis clear that this event will occur if and only if + lies in one of the’
two intervals [, and I,, with lengths T, and T, respectively. Thus,

1, + T,
T

_
T’

Foun(e} =
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Since for any a, 0 < « < «, the event {r: 2(1;} < «} can occur only as
shown either in Fig. 3.10a or b, we have

0; a < O,
Fup)={2; 0<xz<a,
1; a < o.
Differentiating with respect to « yields
1 ;0 0gaga
Pat() = {2 , (3.14)
Q; elsewhere.

Finally, we observe that the derivation of Eq. 3.14 is independent of the
observation instant ¢, and therefore must yield the same result when
carried through for 2(¢; + T). Thus

Petser ) = Patzy) all Tand #;.

We complete the proof that () is stationary by considering the density
functions p.q, and py.r of the random vectors

() = (&(ty), 2(t), - - - #(ty)),
Xt + T) = (s + T2ty + T), - .., lty + T)).

Tt is clear from Fig. 3.8 that the knowledge that =(f,) = «; uniquely
specifies the value of the random variable 7, hence uniquely specifies the
sample function of the. process =(¢) = f{z + 7} being observed. Given
that (¢,} = «,, the value g, that will be observed at time ¢, is therefore not
random but depends only on «, and the time difference (; — t): from

Fig. 3.8, T
a; =f(rl~ —t +°“—). (3.152)
a

Hence the conditional density function
Pm(t,—)(“il w(ty) = ap) = 0(x; — @)
is independent of the time origin. Similarly, for any T and z,,

Pm(t,—+T)(°€a:[ a(ty + T) = o) = 8(e, — a,z'); i=23...,k
where &, is the value specified by Eq. 3.15a. It follows immediately that
forany t = t), fg, . .. 5 ;)

[3
Pxin(o) = Pm(m(%) 11 8(ee; — a)) = Priesmy(e). (3.15b)
i=2
Thus «(?) is stationary.
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The method of analysis used in the foregoing derivation is not restricted

to the simple ramp f(¢) but can be applied to any periodic function g(s).
Define the random process ¥(?) as the ensemble of waveforms {g(r + +)},

where 7 is again uniformly distributed over the period T of g(9):

y(1) 2 g(t+7) (3.16a)
1
—: 0BT, :
pp={T °SPS (3.16b)
0; eisewhere.

We now use an equivalent but less detailed argument to show that y(¢)

is stationary.

Figure 3.11 A set of barriers and a waveform that passes under them.

For the proof we introduce the translated process

A=yt + Ty =g(t + T+ ) (3.172)
and the random vectors
2(t) = (1), 2(t), - - ., 2(1))
= (y(tl "i" T)s y(‘z + T)s LN y(t]c + T))
=yt + T). (3.17b)

By definition, the process (7} is stationary if Fq = F,, for all T and

all sets of observation instants {z,}. These distribution functions are
equal whenever

P[{T:,y(t) < o} = Pl{r: z(t) < a}]; all a; (3.18) -

that is, whenever the probability of the set of sample functions of ()
passing under arbitrary barriers such as those of Fig. 3.11 equals the
probability of the set of sample functions of z(¢) passing under these
barriers. The following arguments show that Eq. 3.18 is valid.
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We note first that if =, is determined from =, and T by the construction
shown in Fig. 3.12, the periodicity of g(f) implies that g(r + =) and
gt + T + ') are the same waveform for any =, in the interval [0, T].
There is a one-to-one correspondence between the sample functions of

y(f) and =(r). ’

wcreasing T

71

1"

Figure 3.12 The values 7 in the interval [0, T]are mapped onto a circle of circumference
T. The point »," is that point in the interval [0,7] obtained by starting at =, and
moving a distance T counterclockwise around the perimeter.

Next, it is convenient to indicate by heavy arcs the intervals of T cor-
responding to those sample functions {g(¢ + 7)} of y(7) that pass under
the barriers of Fig. 3.11. A typical situation might be the one shown in
Fig. 3.13a. Arcs may also be used, as illustrated in Fig. 3.135, to indicate
the intervals of + corresponding to sample functions {g{r + T + )} of
2(f) that pass under these barriers. In accordance with the construction
of Fig. 3.12, we note that Fig. 3.135 is always obtainable from Fig. 3.13«
by rotating the arcs.

From Eq. 3.16b, the probability that + lies in any collection of arcs is
equal to the total length of the collection, Since rotation does not affect

7=0,T 7=0,T

(a) {b)

Figure 3.13  The arcs denote the values of 7 for which (a) sample functions of #(f) and
(&) sample functions of 2(z) pass under the barriers of Fig, 3.11,
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are length, Eq. 3.18 is valid, and
Fyy = Fon = Frum

or
Prwr = PylerTH (3.19)

This concludes the proof that the random process y(#) is stationary for

any periodic function g(¥).
A straightforward extension of the foregoing result involves a periodic

time function g(w, 7) specified in terms of a set of J parameters {w;}, none .

of which affect the period T. Consider the process

#(f) £ g(w, t +7), (3.208)
in which we let ‘ A
w = (W, Wy, ..., W5) (3.20b)

be a random vector and p, again be uniform over [0, T]. If the random
variables {w;} are independent of , that is, if

Dur =DuPrs (3.20c)
we have

peo@ = | ol | w =) 2ol . (321)

Since, by Eq. 3.19, py( | % = ¥) is independent of the time origin, so
also is pyy. By taking both the period T and the number of components
in w to be very large, we can generate a rich variety of stationary processes.

As an example, we apply this result to the process obtained from the
periodic function sin 277 by letting the amplitude and phase be random

variables:
2(f) = rsin (2nt + 0). (3.22a)

Here, as in Eq. 3.6, we may choose

o2 _2
et 0oy, 00y < 2,

Py oot ) = 2 (3.22b)
0; elsewhere,
Defining = = /27 then yields
() = rsin 27(t + 7). (3.23})

We observe from Eq. 3.22b that r and § are statistically independent,
which implies the independence of r and =. Moreover, since § is uniformly
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distributed over [0, 27], 7 is uniformly distributed over {0, 1]. Finally,
since for any r the function

glr, 1) 2 7 sin 2t
is periodic with period 7" = 1, the preceding discussion implies that the
random process 2(¢) is stationary, In particular,
Paiey = Pators for any .
It is readily verified that

—a i3

1
(s o) = o) =——mm2c
Pain(0) = Pyionle) N

Example of a nonstationary process. The requirements that a random
process must meet in order to be stationary are stringent. A simple
example of a nonstationary random process z(?) is the ensemble defined
by

(w, £} = sin 2af(w)t; all w in Q, (3.24a)

in which the frequency fis a random variable with the density function

1
= 0<LagW,

plo)y =1 W T E (3.24b)
0; otherwise.

Three particular members of this ensemble, for which £ = W/4, W2, and
W, are plotted in Fig. 3.14.

To show that z(z) is nonstationary, we need only observe that every
waveform in the ensemble is

zeroatt =0,
positive for 0 < t < L
: 2w

. 1
negative for — — < ¢t < 0.
8 2W

Thus the density function of the random variable z(f;) obtained by’

sampling x(¢) at #; = 1/4W is identically zero for negative arguments,
whereas the density function of the random variable =(t;) obtained by
sampling »(f) at t; = —1/4W is nonzero only for negative arguments.
Clearly, p,q,) # Pay» 20d Eq. 3.11 is invalid. '
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Figure 3.14 Sample functions of a nonstationary random process.

3.2 FILTERED IMPULSE NOISE

The random processes that we have considered so far are helpfui in
consolidating concepts but are not pertinent examples of the noise dis-
‘tirbances encountered in electrical communication. Filtered impulse
noise, however, is ubiquitous; no electrical circuit is ever without it.
We now consider one source of filtered impulse noise to provide physical
motivation for a subsequent study of Gaussian processes.

Figure 3.15 is a simplified diagram of a triode amplifier. Electrons are
emitted thermionically {rom the heated cathode and migrate to the plate
under the influence of the electric field induced by the plate and grid
voltages. These electrons then flow through the plate circuit filter A(?)
and return to the cathode. ' : .

The typical transit time of an electron from cathode to plate is roughly
10-9 sec. From Fourier analysis a plate circuit filter with bandwidth W
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| Plate +

cireuit
+o———- filter, e(t)

es(t}
idld r‘ Rt)

Figure 3.15 A simplified diagram of a triode amplifier '
B stage. The volt
e(1) to a unit impulse of current is A(?). P # YO TeponsE

has an impulse response with substantial duration, say A, of at least 1/
sec. It follows that even for a bandwidth of 100 Me, A is greater than 10~
sec and exceeds the transit time by an order of magnitude.
1 Utnder tt}ise circumstances it is appropriate to conclude that each
electron striking the plate deliver i i
the v 5, wi A P s & current impulse of magnitude ¢ to
g = 1.6 x 107* coulomb

is the charg_e of an electron. Since the plate circuit is linear, the output
voltage e(t)' is tl?e superposition of the response to each electron individually.
As shown in Fig. 3.164, b, ¢, we have

" i(f) =a§iq 8t — ) (3.252)
e(t) = f_ i o)) Bt — o) do (3.25b)
=3 ght —7), (3.25¢)

wher_e 7, Is the time of occurrence of the ith current impulse.

It_Is c_lear from Fig. 3.16 that the output voltage e(f) depends on the
precise time structure of the electron arrivals. For instance, if the impulses
c<')mpnsing it} occurred periodically, e() would be completely pre-
dictable from knowledge of the period and phase. On the other hand,
beca'use of the thermionic origin of the electrons, we cannot predict
precisely the instants {r,}—hence the output e(z}—for any given vacuum
tube. We say that e(r) is “noisy.”

In a mathematical model of our amplifier we treat the {r,} as random
variables and e(?) as a random process. Equation 3.25¢ provides another
example of defining a random process by assigning certain parameters of
a time function as random variables.

Statistical Characterization

.The remaining problem is to determine the density functions associated
with _the process e(r). For an exact analysis we would firsi specify the joint
density function of the random variables {r,}, which is a formidable task.
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— R L
—_ b _ 0 In space-charge-limited operation, for instance, the {r,} are not statistically
j" e K . independent; a period of greater-than-average emission from the cathode
increases the space-charge density, which inhibits the electron flow
immediately thereafter.

Fortunately, the fact that the number of electrons contributing to the
output voltage at any particular instant is enormous permits an approxi-
mate analysis of great usefulness, If the current is 1 ma, an average of
N = 6.25 x 10% electrons strike the plate per second. For W = 100 Mc,
the effective number of random variables, A(r — 7,), contributing to e(r)
in Eq. 3.25is N X A = 6.25 x 107,

This situation is a classic example of one to which central limit theorem
arguments may be applied. In essence, the statistical dependencies that

o

‘f exist among the {r,} are insufficiently pronounced to suppress an over-
— g — whelming Gaussian tendency. That this Is so has been shown in careful
< and detailed analyses'™® based on reasonable models for the electron

stream. .The results can be summarized as follows:

1. The random variable e(;) obtained by sampling the random process
. e(t) at the output of an amplifier such as that in Fig, 3.15 at any time ¢,
B has a density function that is approximately Gaussian whenever the
electron flow is large.

2. When the amplifier input signal e (¢} is weak and affects the electron
stream only incrementally {as in the input stages of a communication
receiver), the output random process may be written

e() = e,*(1} -+ n(®), (3.26)

where e,*(¢) is the (nonrandom) output voltage predicted by noiseless
circuit theory and r(7) is a random process that is independent of e,*(7).

3. In measurements made under-stable operating conditions the noise
process a(f) may be considered stationary with zero mean. Thus the .
random variables e(z,} and #(r;) have mean values

) = o) -

n(t;) = 0.

mimEs
odbodin o 1) o doodiniyd
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£ {a)
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%
is obtained by adding together the plate response (shown in ¢) to each individual electron.

T2 T
T

| [[*

7

(3.27)

T

(e}
(b}

Figure 3.16 The superposition of current impulses in the plate circuit filter. The value of e(f) at any time,

say h, OF Iy,

g These analytical results are in accord with our intwition. Even more
: to the point, these results are consistent with empirical cvidence: assuming
s these properties in a mathematical model of vacuum-tube noise leads to
o calculations of system performance that agree with experimental results
under normal operating conditions. :
Noise attributable to the random arrival of discrete charge increments
146 ' | is also called shot noise. :
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Statistical Dependency

The preceding discussion makes it reasonable to ascribe a Gaussian

probability density function to any time-sample of a filtered impulse noise

process such as a(z) in Eq. 3.26:

1 _a2jagt
Patep(e) = e % (3.28)

J2no

where o® = n2(#,). The fact that the right-hand side of Eq. 3.28 is inde- -

pendent of #; reflects the assumption that r(?) is stationary. It follows
that for any other observation time ¢, :

Patt) = Pty (3.29)
The problem of determining expressions for joint density functions such

8S Pose,).nisy» NOWeveT, must stiil be considered. :
If two random variables are statistically independent, their joint

density function is simply the product of their individual densities, On

the other hand, an assumption that n(#) and n{f;) are statistically

independent is.inconsistent with the shot-noise model for many choices
of ¢, and #,.
_Let us assume that £, and #, are separated by an interval shorter than
the substantial duration A of A(f). Since, from Eq. 3.25b, e(f) results from
sliding A(f — «) past i(x) and integrating, many of the impulses that
contribute to e(t;) also contribute to e(t.), and these two voltages are
physically dependent. We note in Fig. 3.16 thatif i{e) is such that Az, — @)
spans a larger than average number of impulses, both e(t;) and e(tp) will
tend to be larger than average whenever [f;, — f5] < A.

This physical dependence between e(z;) and e(?,) must be reflected in a
valid mathematical model. In particular, when ¢, and ¢, are close together,
knowledge that n(#,) is larger than average must increase the conditional
probability that n{t,) is larger than average. This implies that for a valid
model

Pﬂq-ﬂz #Pﬂlp‘ﬂg; fol.' It2 — 2‘ll < A’) (3'302')

in which for notational simplicity we define

O ) (3.30b)-7

The problem of ascribing an appropriate functional form to the joint '

density function p,, ,, cannot be resolved without additional analysis.

In Section 3.3 we consider central limit theorem arguments which
support the fact that the appropriate choice for p,, ., is the joint Gaussian
density function encountered in Chapter 2. For the moment, however,
it is instructive to study this density functien in more detail and to verify

a
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the fact that its properties are consistent with the filtered impulse-noise

model. The joint Gaussian density of Eq. 2.58, generalized to allow an
arbitrary variance o2, is

1 o — 2pef + B°
Py mltts f) = ——F— —_—— —
7 ,‘n( ﬁ) 2770'2\/1 — P2 eXp |: 20’2(1 - pz) :|, 1< p<l.
. i (3.31)
We first observe (as in Eq. 2.64) that the individual densities Pa, 2nd

P, are zero-mean Gaussian: it can be verified readily by integration that

Pay(@) = pry(@) = = Cre“"zfﬁ"z. (3.32)

This is consistent with Eqs. 3.28 and 3.29.
Second, we observe (as in Eq. 2,85) that the conditional density of #,,
given that s has value «, is

A Py nglets )

BBl =) = Py _
L ep |- B,
\/2770'2(1 - % P [ 20%(1 — P2)j| * e} < 1.

(3.33)
The conditional density function is also Gaussian, but the conditional
mean of n,, given n; = «, is pa rather than zero. The conditional variance
is ¢*(1 — p*). The terms “conditional mean” and “conditional variance”
refer to the mean and varfance of the conditional density function.

The parameter p plays a central role in determining the structore of
Puynye For example, we recall from Fig. 2.32 that, as p — 1, p,, (§ | ny = o)
approaches an impulse function centered on «, the conditional variance
becomes smaller and smaller, and there is less and less uncertainty about
the value of #,, once #, is known. In the measurement of filtered impulse
noise, values of p close to 1 pertain to observation times ¢, and ¢, that are
close together; the value p = 1 pertains to the degenerate case in which
#, equals ¢4, and the two measured filter outputs are one and the same.

In contrast, when p = 0, the random variables n, and n; are statistically
independent, and

PoB | = @) =p,(B). (3.34)
Knowledge of the value of n; tells us nothing about #,. The corresponding
sitnation occurs in measuring fiitered impulse noise when |#, — #,| is much
greater than the effective duration of the filter’s impulse response, since
then there is no significant overlap of the impulse patterns determining
the value of the measurements at times ¢, and 7,. Values of p intermediate
between 0 and 1 correspond to values of [z, — #,] that are comparable to
the effective duration of the filter’s impulse response,
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B
6 K
Yo % //’f”'i @ p=0
) p=
\(\ /
™ \ AB
RN
Y
s N 2 AN O
~,
v N A§47/ o
.
(8) p= =05 / \\
AN
d AN
7
(c) p=09

Figure 3.17 Contour plots of constant probability density for the two-diplcnsional
Gaussian density function of Eq. 3.31. The density functions themselves are illustrated

in Fig, 2.24 for ¢ =1,

Further insight into the behavior of p, ., s 2 function _of p can l?e
gained from the contour plots of constant probability density shown in
Fig. 3.17. The contours are most easily visnalized in terms of coordinates

1, Vo Totated 45° from o, . If we let

o« =1 cos% — s sin:—: . (3.35a)
ﬁ=yﬁmg+yﬁ%§, _ (3.35b)
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the exponent of p,, . simplifies to
@ — 2pap + B2 = X1 — p) + 721 + p). (3.36)

Thus for all [p| < 1 the contours of equal density are ellipses erected on
the y,, ¥, axes. When p = 0, the ellipses degenerate into circles, whereas
when p— +1 or —1 the ellipses degenerate into the y, and y, axes,
respectively.

Joint Gaussian Density Function

Covariance. For any two random variables, say 2, and z;, the central
moment

s = El(z — 2)(z; — 2)] (3.37)

is called the covarignce when i # j. (The central moment A,,1s the variance,
0%, of z;.}) Since expectation is linear, we also have

Ay =2, — 282 + 23,

=gy

[N

1 (3.38)
The covariance coefficient, p;;, of two random variables is defined as

A )"i:ﬁ'

py 2 L5 (3.39)
0,0,

For the zero-mean Gaussian variables n, and n, the covarianceé is nyn,.
Recalling that the conditional mean of n,, given n; = a, is pe, we have

w5 = [ [ Bt )

=f°;apm(oc)docf;5pn2(ﬁ|nl=oc)dﬁ

= pf u® p, (@) do = po®. (3.40)

The parameter p is therefore identified as the covariance coefficient of the
equal-variance random variables »; and #,:

p="E22 4 (3.41)

It is always true that the covariance coefficient of two random variables
is restricted to the interval [—1, 1]: since the expected value of the square
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of any random variable is non-ncgative, we have

0< E[(’i‘—z ii’——z)] =% 4 2 A +%,  (3.42)
Gy L g ;0 G;

which implies
' —1<p; <1 (3.42b)

Whenever |py;| = 1, the expectation in Eq. 3.42a equals zero. But the
second moment of a random variable can vanish only if the random
variable is zero for ail sample points, except possibly a set of zero’
probability. Thus

pi,-=ﬂ:1@-2‘;z"=ﬂ;z";z", (3.43)
i 3

where the random variables are equal in the sense of Eq. 2.68.

Equation 3.43 is consistent with Figs. 2.32 and 3.17. When p = £1,
then n, = n, and the joint density function p, n, is impulsive. In such
a case we say that the joint Gaussian density function p,, ,, is singular.

Unequal vaviances. Equation 3.31 represents the joint density function
of two zero-mean Graussian random variables with equal variances. The
unequal-variance case is obtainable from Eq. 3.31 by the elementary
transformation

: T =m

2y =bny; B> 0. (3.444)

Then x, and =z, individually are zero-mean Gaussian variables with

ceniral moments

—g =gt
Ay = Oyt = 0%

)‘22 = 0122 = b20-2’
“-"‘X.,_:O Mg = Ay = Wy = my(bnsy) = bpd®. (3.44b)
The covariance coefficient remains unchanged:
o _he 4
P12 = = p. (34 C)
: 0, Cun

In terms of these quantities, the zero-mean unequal-variance Gaussian
density can be written by inspection: from Eq. 3.31 and the relation

(cf. Eq. 2.88)

_1 é)
pzl,a:g(‘xs ﬁ) - lbl pnllﬂg(a’ b
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2

we have, with the shortened notation o, & o, 2and 6,2 2 g 2
1 @z

~ | o g

‘ 1
Pl D= e 0 | T o~ s e

Lhdﬂ._L_F_QW+%}

2"'"710'_2\/ 1— pt 2(1 — pD) o @ s
(3.45)

_ Na_nzera means. The general two-dimensional Gaussian density func-
tion is obtained from Eq. 3.45 by making the further fransformation

=1 + ;;3
— 346
. 22 = xz + 225 ( )
which implies
1
N

s e - e 5 - n + O

p21lzg(d’ |B) = pwl,zi(‘x - 2_1, ﬂ - 2"2-) =

X exp {—
2
5] 0,02 0_22

N 7 (347
In writing Eq. 3.47, we have recognized that transformations involving

only the addition of constants, as in Eq. 3.46, do not alter ce
50 that Q.. 2.20, do not alter central moments,

o & Bl — 7)) = 2,
0" £ El(z, — 23] = 22,

(3.48)

5 A El(z — Z2)(z: — %) - T,

£ .
0103 0,0

Rgndom variables z) and z, are called jointly Gaussian if and only if their
density function p_ _ has the form specified by Eqs. 3.47 and 3.48. We
observe that the general joint Gaussian density function depends only on
the means, variances, and covariance (or covariance coefficient). We also
obSt‘ar\._'e once again that two jointly. Gaussian random variables are
statistically independent if and only if their covariance is zero.

Gene.ral linear transformations. One of the most important properties
o‘f the joint Gaussian density function is that random variables defined as
Imegr transformations of Gaussian variables are also Gaussian. In this
sect1::m we show that this is true for any reversible linear transformation
applied to the pair of zero-mean Gaussian variables @; and =z, of Eq. 3.45.
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The peneralization to k& Gaussian variables, k£ > 2, is deferred until the
next section. ) i
First consider the transformation (xy, #,) — (%, %) given by

b 5 0. (3.49)

The c;)ndition b # 0 guarantees that the transformation is reversible, If

A .
Ty = axl + bwz:

5 — 0, both 2, and z, depend only on the single random variable z,, and

Do, is singular (that is, it involves impulses). From Eq. 2.76 the

i
coﬁ'éltnonal density of x,, given #; = o, 18

1 f— ax _
Pm;(ﬁ‘ xl‘:m):mpmz( b ) _‘x)'
Multiplying by p, () yields _
1 f — au
Pm,xs(ma IB) = m pm;,:ﬂz(as b ) (350)
Substituting Eq. 3.45 in Eq. 3.50 and simplifying, we have, after consid-
erable (and unrewarding) algebra, | N
(% B) .
w, fl = ————————
Pay,as 2170’103,\/1 — i
] 2
X exp {— %[”—2 _2Pugp E;]} (3.51)
2(1 — pra oy 0103 O3
where . . .
ot 2w = a%e, + 2abmz, + bixy, (3.52a)
prs 2 2258 az’ + bz, (3.52b)

0103 0403

We note that Eq. 3.51 once more has the Gaussian form. '
Next consider the reversible transformation from the pair (2, ,) to
the pair (x, z;) given by

x, = ax, + bxy; b ;é.(),
z, = exy + dits; be —ad # 0. - (3.53)
By writing
d d
2y = (c - —bq)xl +3x3,

we observe that the transformation of Eq. 3.53 can be considered as the
cascade (2, 1) — (2, %5) — (%, ;). Since each individual step results
in the general Gaussian form, the cascaded transformation does also, and
the proof is complete,

e &
u‘;l.-_u':zl.qlp Horr vy = TP &P«W%@W“’M“uj

1
d'1= .
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A simple example of a linear transformation is (ny, ny) — (2, %), in

" which

x

-

A O . T
= 1, CO8 — sin=,
10087 F masing
(3.54)

A T w
&y = —ﬂ131n1+ Ny COS —,

and p,,_ ., is the zero-mean equal-variance joint Gaussian density function
given by Eq. 3.31. Since

o = it = fud + AP, + = o1 + p),
0 = zF = I — APmn, + g = o¥(1 — p), (3.55)
Do S iy = — gt + Yy — Yy + 417 = 0, e

from Eq. 3.45 we have

1 2y Yo i|
), » = eX _ —
P 1 2(}'1 ?’a) 271'0'2 /1 _ Pa p |: 20,2(1 + P) 20_‘2(1 . P)
= Pu,(¥1) P,(72)- (3.56)

We observe that the random variables x; and x,, obtained from the
Statistically dependent variables ny and #, by the “rotation of coordinates™
transformation of Eq. 3.54, are statistically independent. By choosing the
angle of rotation to be § tan™ [2p,,0,0,/(0,2 — a,2)] rather than =/4, the
general two-dimensional Gaussian density of Eq. 3.47 can also be trans-
formed into statistically independent form.,

Summary. The preceding discussion has established four extremely
important properties of two random variables that are jointly Gaussian,
that is, variables with the joint density function given by Eq. 3.47.

L. The joint Gaussian density function p,, , depends only on the means
2, and Z,, the variances a,,% and ¢,.% and the covariance

Az = B[z, — 2)(zs —~ Z)]. )

2. If z) and =, are jointly Gaussian, they are individually Gaussian.

3. Two variables that are jointly Gaussian are statistically independcnt(_l

if and only if their covariance is zero.
4. Linear transformations on variables that are jointly Gaussian yield
new variables that are also jointly Gaussian. '

These four properties are not true in general for two random variables
that are not jointly Gaussian.

i
P

%
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In Section 3.3 we derive from multidimensional central limit theorem
arguments a density function for k& random variables that is called %-
dimensional Gaussian. Random vectors with this density function are
Jjointly Gaussian. We shall see that the four properties summarized for
the case k = 2 extend without change to the case of arbitrary k:

1. The density function p, of a jeintly Gaussian random vector
z = {%, %, . . - , %) depends only on the means {z,} and the set of central
moments {1}

A=Ay 2 Els =)z —z)l i=12...,k
j=1,2,....,k

2. Any subset of jointly Gaussian random variables is jointly Gaussian.
3. A set of k Gaussian random variables is statistically independent if
and only if the covariances 4,; = 0 for all iand j # i. In this case,

15a? A

F I S _lgm
) = TL 200 = (o T g P ( 22 af)’ 357

in which we have written ¢, in lieu of A,; and assumed allz;, = 0.
4..Any linear transformation of a set of k jointly Gayssian random

variables yields new variables that are also jointly Gaussian. In particular,
a weighted sum of Gaussian variables is Gaussian.

Even for k = 2 we have seen that the algebra is tedious and that the
general expression for p, is sufficiently cumbrous that notation is a problem.
For k > 2 the simplification that results from the use of matrix notation
is essential. This notation is reviewed in Appendix 3A and is applied in
Section 3.3 to verify the foregoing properties of joint Gaussian variables.
Since only the properties themselves, and not their proofs, are used in the
sequel, Section 3.3 may be omitted on 2 first reading.

m 3.3 THE MULTIVARIATE CENTRAL LIMIT THEOREM

Insight into the appropriate mathematical model for filtered impulse

noise is gained from consideration of the multivariate central limit theorem, ’

which reduces for a single random variable to the central limit theorem
of Chapter 2. The theorem is proved by means of the joint character-
istic function, denoted M (v), of a set of k random variables

X = (@, Tgy « + 2 » ). (3.58)

JOINT CHARACTERISTIC FUNCTIONS 157

Joint Characteristic Functions

Wc: define M,(v) to be that function obtained from the joint density
function p, by performing a Fourier transformation on each argument:

M. (v, vo, v o s

)
oG o o ’
é e ( ivia) sivean ivraz
) Diloty, Otg, o oL, o)1 e VRS o oy - - - ety
— —w —c

Using matrix notation and the theorem of expectation, we can write this
more concisely as

w0 & [ p e da

e e (e <[ fre] o

=1

If the {=;} are statistically independent,

N 3 N
M (v) = 1—]1' Efe" ] = JT M, (»). (3.60)
F== =1
Note that M(v) is a function of k arguments: v = (v, 3,5, ..., ¥.).

Equation 3.60 should be contrasted with Eq. 2.98, the characteristic
function of a sum of independent random variables, which is a function of
only one variable ». :

Just as in the one-dimensional case, the joint density function p, can
be regained from M, by the inverse Fourier transform; in matrix notation
this is written :

1
(2m)"

The only essential difference between single and multidimensional Fourier
transformations is the amount of labor required to evaluate the integrals.

pale) = f" M, (Ve =" dy, (3.61) |

Moments. In addition to their role in establishing limit theorems, joint
characteristic functions are useful in calculating moments. This property
has already been exploited in connection with one-dimensional char-
acteristic functions. The general k-dimensional case is a straightforward
extension. We first note from the definition of Eq. 3.59 that if we define
the complex random variable w as

w A uxT = (i, + vema + 4w, (3.622)
then

M, (v) = &, (3.62b)




158 RANDOM WAVEFORMS

If the moments exist,T we can expand e" in a power series to obtain

w2

= WP
€ =E|:1+w—|—z+§+ :\
2 o3

w w
— 27 _+_._| . 3
=tV T (3.62¢)

Let us examine the second term in the expansion. From Eg. 3.62a

W=} E + vEs + o+ nE), (3.62d)

which involves only the means of the {z;}. In the derivation of the multi-
variate central limit, we shall be concerned with zero-mean random
variables, Therefore, we now particularize to the case in which the means
{z,} are all zero. Letting 0 denote the vector each component of which is

zero, we have
Eix] 2 (Fp, .. .- 2) = (0,0,...,0) = 0.
The second term in Eq. 3.62¢ is then ul = 1.
Let us next examine the third term, w?/2. Since
. E 2 E B
wh = 12(2 "s‘”s) = — 3 D urE;
i=1 F=13=1 .

taking the expectation yields

Ay = T, T=%5=0
Thus
— Bk
wh=— 3 2k (3-625)
i=1 =1

and 7,z may be evaluated by determining the coefficient multiplying »,», in
the power series expansion of M (v).

Similarly, examination of w® and higher order terms shows that the
coefficient of any term such as (v,; - * - ;) in the power-series expansion of

el
< f iei‘"‘Tl Plee) do = 1, the characteristic

— 0

+ Since [Mx(W)| =

R |
f eive’ (o) dot

function is finite for all v. If only the first J moments of w exist, it follows that ¥ may
be expanded in terms of wi, 1 € j < J, plus a remainder term that vanishes as v - 0.
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M,(v) is proportional to the corresponding mixed moment (xz; « - - z).
Thus all moments that exist may be evaluated by expanding M{(v) in a
power series,

rhe covariance matrix. The form of the expression for w2 in Eq. 3.62¢
can be simplified by using matrix notation. Recognizing that the double
summation is a quadratic form (¢f. Eq. 3A.19), we can write

Wi = —vA VT, (3.63)

for which we define the matrix

2‘11 /112 Alk
/121 j'22 AZFE

As | (3.64)
by A o A

A, is called the covariance matrix of x. Since 4; = 4;; foralliand j, a
covariance matrix is symmetric about its principal diagonal.

The covariance matrix plays a central role in the multidimensional
central limit theorem. Observing thatt

2 s
5 R 2% T4y,
Zp Ty Tt T Xy
T - _ .
X xX= (g, 2, ..., %) = - , (3.65)
Ty By Epry ol

we can write A, in the compact form
A, = E[x" %] = X"x, (3.66)

where the expectation E[A] of a matrix A with elements {g,;} is defined as
the matrix whose elements are {7,;}. With this notation and the fact that

I
wl =3 9 = Xv7, (3.67a)
i=1

L .
T Since xxT =x+x = zxf, Eq. 3.65 is a good example that matrix muitiplication is
not commutative. i=1

I A S
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we observe that Eq. 3.63 may also be derived directly by the sequence of
equalities

w® = B[(jvx")"] = —E[(vx")(xv7)]

= —yxT xvT = —vA V. (3.67b)

Central Limit Argument

The development of the multivariate central limit theorem which
follows exactly mirrors the development of the corresponding one-
dimensional theorem in Chapter 2. The only distinction is that the use
of matrix notation now permits us to treat a sum of random vectors
rather than just a sum of random variables. :

Let us consider the vector z = (2, 2y, . - - , #,,) defined as
1 X .
Z= -:2xi. (363)

We assume that each X, is a k-component vector that is statistically
independent of all others:
N
Prymar g = L1 Pre . (3.69)
- =1

Also, we assume that each x, has the same density function, say py, with
zero mean, covariance matrix A,, and characteristic function M,:

Px, = Px
E[x,]=0
[.] f=1,2,..., N (3.695)
E[X'L‘T xi] = -A-a:
Mxi = Mx
Thus we have )
Elz} = 0. (3.709)

The normalization of z by the factor 1 ,I\/XT in Eq. 3.68 is such that

== ] (37) (3

1 N N N
= E[Z x4+ 2 2x] Xa':\
N L i=1 =1
(374
il
==Y EIxx]=A. (3.70b)
i=1 .
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Here we have used the fact that x, and x, are statistically independent to
evaluate
Elx x,] = E[x,"1 E[x;] = (0); J#L

in which (0) denotes the matrix each element of which is zero.
We now take up the limiting form of the characteristic function of z:

M,(v) £ E[¢*]

=E [exp (‘i" ﬁg XiT) }
= E[]Jl exp (i '\‘/%“XJ)]

Since the random vectors {x,} are statistically independent, so are the

random variables {exp (j v x,7/v/ M)}, and the mean of their product is
therefore the product of their means: ‘

M (V) = f% E|:exp (j J—ﬁ xiTﬂ
-t )= el

Taking logarithms on both sides, we have

In M,(v) = N In MX(L). (3.70)
VN

The limiting behavior of the right-hand side of Eq. 3.71 can be deter-

mined by expanding first Mx(v/\/ W), and then In Mx(v/\/ N), in a power

series. We assume for simplicity that all moments ﬁ, j=12,...,are

finite. The proof may be extended to the case in which only W is finite by

expanding in a power series with remainder. If w? is not finite, the central
limit theorem is not valid. From Egs. 3.62 and 3.70

TE 3
M) =14+ + 5+

where

z
[

A N

v T — 3

xT =j 2 v,
i=1

=0,

E:ol =

— T T
= —vA M = —vA "
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Thus
M(L) —1-Loayry L f(i__) - (3.722)
JN. 2N NETNN :
where
1 A E VF B
7 (___) A [_ I } (3.72b)
VN 31 41N ‘

is a continuous function of +/ N that for any fixed v approaches the con-
stant w?j6 as N becomes large. By taking N large enough, we can make

12-+ lf(L)
2N NHEPMAYN

as small as we wish. It follows that for sufficiently large ¥V we may invoke
the expansion

2 3
ln(1+u)=u—“5+%—---; lul < 1
and write
v 1 _ 1
in M, \/_j_V = —;VVAZV +]F/§fv 7_1\; + {other terms).

Since the “other terms” invelve powers of N more negative than N—%, we
have, for any fixed v,

limin M (v)=1limNInM

()
N=w § N=ea x .\/N

4
= lim N]:— = Ay + -3 ( ) + (other terms):|
N—row 2N /é f \/N (
= — lvszT.
2
From the continuity of the exponential function
lim M,{(v) = exp (—4vA V), (3.73a)

N0
Equation 3.73a is our desired result. For any px the characteristic
function M,(v) of a normalized sum z = (I /\/ N)Ex of identically dis-

=1
tributed zero-mean random vectors {X;} approaches exp [—4vA,v']. This
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limiting function involves only the covariance matrix A, = A,. Note that,
when &k = 1 Eq. 3.73a reduces to

lim M (»} = exp {—}vd;;») = exp (— 576" (3.73b)

N—=ow

and is in accord with the one-dimensional central limit resuit of Eq. 2.178.

Ganssian Random Variables

In Chapter 2 we called a single random variable “Gaussian” if its
characteristic function had the form of the right-hand side of Eq. 3.73b.
We now generalize the definition to & variables by saying that any zero-
mean random vector y is Gaussian if and only if

MAv) = exp(—3vA 0. (3.74)

Alternatively, we say that the components {y,} of y are “jointly Gaussian,”
Equation 3.73a states that M (v) approaches the Gaussian form as N — 0.
The density function of a zere-mean Gaussian vector y is determined by
taking the inverse Fourier transform of M,. However, just as in the one-
dimensional case, we must refrain from claiming that the density function p,
of a normalized sum z necessarily converges to Gaussianform as ¥ gets large.
Whenever p, does not contain impulses, the convergence occurs. However,
if p, contains impulses, so does p,. As in Chapter 2, it is only the dis-
tribution function F, that always becomes Gaussian (provided A, exists).
The definition of “‘jointly Gaussian™ is extended to vectors with nonzero
means in an obvious way. If x is a k-dimensional vector with mean

Exl=m, = (&5, ..., 5), (3.758)
then x is called Gaussian if and only if the zero-mean vector
Yy=X— m, (3.75b)
is Gaussian; that is, if and only if ‘
M,(v) = exp (—3vA V") (3.75¢)
We therefore have
O & = TN
= M y(v)ej\"“"’T

= exp (—3vAN" + jvm,T).

Since, in accordance with the definition of Eq. 3.37, the covariance 4,; of
x; and #; is
A _ —
Aoy = El(m; — m)(a; — %) = Elwy,l,
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the covariance matrices of x and y are the same:

A=A,

(We again note that central moments are invariant to transformations.

involving only the addition of constants.} We conclude that the general
form of the Gaussian characteristic function is

M (v) = exp (—ivA " + jvm.T), (3.76aj

where \
mm é (El: EZ’ RS | Ei«:)s (3.76b)
A, 2 E[x — m) (x — m)l. (3.76¢)

Filtered Impulse Noise Process

The appropriateness of assuming that samples n(t) = (a(r,), n(t2), . . .,
n(t,)) observed from a filtered impulse noise source at any set of times
{t,} are modeled mathematically by a joint Gaussian density function
hinges on the multivariate central limit theorem, Let h, be the random
vector obtained by sampling the plate response to the ith current impulse
in Fig. 3.16 at times #), #5, . . . , !

b 2 (Bt — ), hts — ), - Rt — 7)) . (3.77a)

Asin Eq. 3.25, A(?) is the (known) filter impulse response, and the random
variable 7, is the arrival time of the ith impulse. Whenéver the impulse
arrival times {r;} are substantially independent and the average number
of impulses arriving during the effective duration of the filter’s impulse
response is extremely large, the central limit theorem implies that the
density function of

n(t) =>h, - (3.77b)
is closely approximated by the joint Gaussian density function.

Properties of Gaussian Random Variables

Before considering the form of the multivariate Gaussian density
function, it is instructive to observe certain properties implied by the
definition of the Gaussian characteristic function. We now show that any
set of k jointly Gaussian random variables, say x = (&1, %, . . .. %),
exhibits the four properties claimed on p. 156.

Property 1. The joint density function of the {z.}, py, depends only on
the means m, and the central moments d,;,i = 1,2,....k; j=1,2,... k.
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Proof follows from the fact that the Gaussian characteristic function
M, depends only on m, and the covariance matrix A_, with elements
{A;}. Thus p,, the Fourier transform of A, also depends only on ihese
quantities.

Property 2. Any subset of the {z,}, say x, 2 (. 3, ..., 7,), where
1 < { <k, is also jointly Gaussian.

-

Proof follows from noting that, if v, = [ AR

A i N
Mxo(vu.) = E[el(\'111+vzmz+ +vm:;)]

— E[ei(v1$;+vzwg+ srrdypmt 0 w0 a:k)]

=My, Vs ...,7,0,0,...,0) (3.78a)
From Eq. 3.76
1 k& k .
M v) = exp (— Ez vl + 12 wim,;). (3.78b)
=] j=1 =]

Substituting Eq. 3.78b in Eq. 3.78a and discarding terms that are equal to
zero, we again have the Gaussian form

1 3 1 T
Moo =e (=13 Snap 4130w} G789

As a special case, we note that each component »; of a Gaussian vector x
is individually Gaussian, with variance ¢,> = 1,; and mean Z,:

M, (v} = ML0,0,...,%,...,0) =exp (—%vizo’f + jriw). (3.78d)

Property 3. The {z;} are statistically independent if their covariance
matrix is diagonal; that is, if all covariances {1,;} are zero for j = i:

Ay = o2 0y {3.792)
in which we use the Kronecker delta, defined by

y a {I; forj =1, (3.79)

T0; forjsid

Proof follows from substituting the diagonal covariance matrix

A, = S (3.80a)
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in the expression for the characteristic function:

Mx(“') = exXp (_%VA:CVT + jvmmT)
1 E k

= eXp ("’ - Z Viza'iz + jz 1’:'55)
2i=1 i=1

k E
=TT exp (—#».%0" + juz) = T M, (). (3.80b)
i=1 i=1

- Taking the inverse Fourier transform in accordance with Eq. 3.61, we
obtain '

1 «® _jval
ple) = (gﬂ)k J;m MM dv
k .
= H M, (v)e e dy,
i=1 2t
E
= IT P, (3.800)

which completes the proof. Equation 3.80c states that any set of (not
necessarily Gaussian) random variables is statistically independent when-
ever their joint characteristic function factors. For Gaussian variables the
factorability of the characteristic function is guaranteed by the condmon
that the covariance matrix be diagonal.

Property 4. Let y = (41, Y2 . .+, ) be a set of random variables
obtained from x by means of the transformation
y = Ax' + a', (3.81)

where A is any & X k malrix. Then y is also jointly Gaussian.

Proof follows from showing that the joint charactensuc function of y
has the Gaussian form of Eq. 3.76. By definition,

A T eiv(AxT+aT)

M,v)=c¢e
= gvAIxT gival
= M (vA)eh'
Since M (v} is Gaussian,
M, (v) = {exp [—3(AIA(VA) + [vAIm,T} &

= exp [—Iv(AAATW + MAmMT + a7)]. (3.82)
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We now identify (Am," + a”) and (AA A7) as m,T and A, respectively.
First, from Eq. 3.81,

C= Am," + a'. (3.83a)
Second, from Eq. 3.76,

A, = BT — m )y — m)].

Y —mS = (A" +a") — (Am,” + 2"} = A" — m,T),

But

and transposing yiclds
' y —m, = (x — m)A",
Thus

A, = E[AxT — m,){x — m)AT]

= AAAT, (3.83b)
Substituting Eqs. 3.83a and b in Eq. 3.82, we have
M,(v) = exp (—IvAN" + jvm,T).
We conclude that y, the result of a matrix transformation on the Gaussian

vector X, is also Gaussian.
A spemal case of Eq. 3.81 is the particular (k X k) transformation

apn Qyp dyy * " i

o 1 0 --- 0

0 0 1 -+ 0
A= i . , a=10, (3.84a)

6o o 0 --- 1

Then

an x; (3.84b)
Y; = T;] J 7 1. (3840)

It follows that y;, hence any arbitrary weighted sum of the jointly
Gaussian random variables {z,}, is Gaussian whether or not the {z;}
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are statistically independent. (Note that we had previously established ir '

Eq. 2.142 the restricted result that a sum of independent Gaussian variables
is Gaussian.)

In matrix algebra®® it is shown that for any nonsingularf covariance,

matrix A, a reversible transformation By" = x" exists such that

A, = BAB" (3.85)

is diagonal. Thus an arbitrary nonsingular set of Gaussian random

variables {y;} can always be transformed into a set of statistically inde-
pendent Gaussian random variables {x,}. Conversely, the transformation
A = B applied to the {z} regains the statistically dependent vari-
ables {y;}. A diagonalizing transformation B also exists when A, is
singular, but in this case B is irreversible. :

The Multivariate Gaussian Density Fumction

The form of the joint Gaussian density function is easily obtained by
first considering a set, say X = (&, %, . . . , %), of statistically independent
zero-mean Gaussian random variables:

[i] & 1 Y R
piler) = 11 Do) =11 E gt a2 2 (3.86a)
i= i=1 i
In matrix notation
e bad,Meh), 3.86b
px(a') = (277_);‘.]2 EA |1/2‘ exp (—Eu x ): ( . )
where A, is the diagonal matrix
gy
o2 0
Ao = . (3.866)
0 .
a2

T As in Appendix 2A, we say that A, or v, is singular whenever the determimant
|A,| = 0, which implies that the inverse matrix A, ! does not exist, In this case some
of the component random variables comprising y are equal to linear combinations of
the others, so that p_ contains impulses. A singular random vector y results when a
nonsingular random vector z is transformed by an irreversible matrix C; that is, when
¥T = Cz7 and |C} = 0, so that z cannot be regained from knowledge of ¥.

1
t
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with inverse

1
o,®
1 0
Go°
A= ) {3.86d)
0
1
O
and determinant
A, = 02052 -+ o (3.86e)

Next, let us consider the (Gaussian) random vector obtained from x
by the reversible matrix transformation

y = xAT + m, = f(x), (3.87a)

Here, the notation f( ) is that of Appendix 2A. The inverse trans-
formation is defined as '

x £ g(y) = (y — m,)B", (3.87b)
where B is the matrix inverse to A:
B=A"1 (3.87¢)

It follows from Eq. 2A.7 that
PB) = p(2@N I, » (3.88)

where |J,(B)| is the absolute value of the Jacobian of the transform-
ationg (). .
By definition, the (i, j)th element of J (@) is

_ agi(ﬁ')
Jig = maﬁ,- . ‘ (3.89a)

g(®) = (B — m,)BT

2 (&®) 0. - .. 5(B).
Denoting the (7, /) element of B by b,;, we have

From Eq. 3.87b

e

&8 = Zbul6, — 7 (3.89%)
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and
9By _ 4 (3.890)
%, -
We conclude that the Jacobean is just the determinant of the malrix B, N
JAB) = B, (3.89d)

and is independent of .
Substitution of Eqs. 3.86b and 3.89d in Fq. 3.88 then yields

1 &12% T T —L T_- T
P(B) = (21'1')’“’2(| Ax|) exp [— (8 — m,)B"A,”'B(B" — m,")].

The last step in determining the general form of the multivariate
Gaussian density function is identification of terms. Since B = A and

A, 2 E[y" —m")(y — m,)] = E[Ax"xAT] = AA AT,
invoking Eqs. 3A.28 and 3A.30 we have
BTA, B = (A )TA, A1 = (AA AT = A,
Using the well-known results for determinants*® that
|AT| = |A]
and that for any two (k x k) matrices

[CD| = [CI |D|,
which implies .
| = |A7Al = |AT Al =1
or

we have
|B|? _ 1 N 1 1
1A, TATIAAT]  JAAAT Al

Accordingly, p, may be written concisely as

1 -
Wexp [-3@ — m)A (@~ m)']. (3.90)
Equation 3.90 is the general form of the nonsingular Gaussian density
function. We observe that it depends only on the mean vector m, and the
covariance matrix A,. That Eq. 3.90 represents the most general form of
the nonsingular Gaussian density function follows from the fact that any
such set of Gaussian variables may be obtained by matrix transformation

py(p) =
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from a statistically independent set. As a final point, we note that, since
py and M, are Fourier transforms of each other, the righthand side of
Eq. 3.0 is the inverse transform of

My(v) = exp (—pAN + jvm,). (3.91)

As an example of Eq. 3.90, consider the two-dimensional case with

covariance matrix
0-2- Po-?.
A, = ( ); il <L

po?  g?
Then
[Ayl = o¥(1 — p®

quzi( o* —P52)= 1 2(1 —P)'
A, —po®  of ol —p0—p 1

I m, = (0, 0), we have

PrulBo B = 5 Jll__Pz oxp [262(;1_ 6 (! - /) (g)}

and

-p
- - _ 1812 — 2pPifs + ﬁzﬁ
2mat\[1 — Pze P [ 2641 — pB) }

This density function has already been studied in detail in Section 3.2.

34 THE GAUSSIAN PROCESS

Consider a random process a(z), and let x(t) = (@(ty), =(t), .. ., 2(4))
denote the random variables obtained by sampling «(¢) at the set of k time
instants {z;}. If the variables x(t) are jointly Gaussian for every finite
set of observation instants {z,}, then =(r) is called a Gaussian process.

The conditions that a process must meet in order to be Gaussian arc
stringent. The one-dimensional central limit theorem of Chapter 2 has
been used, however, to argue that the output of a filtered impulse noise
source, observed at any single time #,, can be adequately modeled mathe-
matically by a Gaussian random variable, More generally, the multi-
variate central limit theorem justifies the assumption that k output samples
observed at any set of times {r,} can be adequately modeled by & random
variables that are jointly Gaussian. The important condition for the
validity of such a mathematical model is that the values of the observed
samples depend on the sum of a large number of relatively independent
perturbations. Since there are many circumstances, such as thermal
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noise in resistors, diffusion noise in transistors, spontaneous emission
noise in masers and intergalactic noise in radio astronomy, in which this
condition is met, Gaussian processes are of the utmost practical (as well as
mathematical) importance. -

Specification of Gaussian Processes

We have seen that an arbitrary random process is considered specified
if and only if a rule is implied for determining the joint density function of

samples taken at any finite set of time instants {#;},i=1,2,..., k. One

of the important properties of a set of jointly Gaussian variables, say’

X = (&1, @y - - - » %), is that p, depends only on the mean values
Exi2m, =G5, ... %) (3.922)
and the set of covariancest {A;h i=1,2,.... &k j=1,2,..., k, in
which .
hus 2 El(x, — )z, — 5]
= &, — T3, (3.92b)
Letting x; denote the random variable z{t), i =1, 2, ..., k, we see that

a Gaussian process »(?) is completely specified by knowledge of how the

eans and covariances depend on the sampling instants {7,

The mean function. To be able to specify m, for any set of instants
{t,}, it is necessary and sufficient that we know a function m(#), called
the mean function of z(f), defined by

m () = E[z(1)]- (3.93)
For example, since «; and z; denote the random variables obtained by
sampling the process at times 4, and #,, respectively,
7, = myt) (3.94a)
T, = mufty). (3.94b)

The covariance function. Similarly, in order to be able to specify the

set of covariances {A;} for any set of instants {z,}, it is necessary and

sufficient that we know a function Z,(¢, 5), called the covariance Sfunction
of z(r), defined by

2. s) 2 El(2(8) — m (0 a(s) — mu(s))] (3.952)

+ We refer generically to the A, as “covariances,” even though terms for which j = i
- are variances.
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Then for samples =; and ; taken at 1, and ¢;, respectively, we have

Ay = Lt 1) (3.95b)

(3]

In interpreting -%,(#, s), we think of observing each sample function
#{w, ) of the process first at some particular time ¢z and again at some
time s, as shown in Fig. 3.18. The product of these two samples (with
means subtracted) is [a{wm, £) — m (Olx(w, 5} — m,(s)]. The covariance
function £,(1, s) describes how the_expected value of this product, over
the F;lsemble of points w in £2, varies as a function of the sampling instants
t and s.

x{eg, T}

| |
|
| o 2o, t) = 2 I
E N
| |
I x(teg,8) = = g
|
|

1 3
x{wy, 7} wfwy, =1 :
| |
_—— | xfwy,s) =3
T
|

=1
Pleal = 5 \\_/ |
| .
|

| x(we,t) =3
#fon 7) N; -4
Plws) =0

!
|
\
L
- ~— 0
|
I
I

A\

T

M

Plecol

|3

T

x{wg, T)

I xlwg,s) =2
\ /\EQ
~N i I T
|
|
semd=-2 |
T=

!

t

!
=1

S

Plews] =

T 5

Figure 3.18 Interpretation of the covariance function. For this particular ¢hoice of
¢ and 5 we see that my(f) = 1, m{s) = 0. Let z be a random variable defined by
) £ [u(ew, 1) — 1]fe(w, s)].  Then

slwg) = (2 — IN—8/3) = -8/}

o) =0 —-DH =20

z(w) =3 — D) =8

#(ws) = (—2 — 1){2) = —6

and #,(z,5) = Efz] = —7/3.

0
Lt a)= 2lwole PLcd + 2lwyPLu] + 2w
o __Q J. ..a..l-f.-r_\.._....j_-

(8]
Pluoy) + 2leay) Pl
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Example. Suppose it is known that a random process «(f) is Gaussian
and

m,(t) = sin =i, (3.96a) N
L1, 5) = eI (3.96b)

The set of covariances of two samples 2, and #, taken at times £; = 1 and’
iy = 2is
ot A g et
A 1 fg—
o Rl = =,

A — {4t —4
ol) P1a010: = Az = A = € Ml = ™%

The vector of the means is
m = (m(1), m{t)) = (0, —1).
it follows from Eq. 3.47 (or Eq. 3.90) that the joint density function is
1
Doyt B) = 2':1\[1?371

X exp [— Effefl)l}z — J_zg“(ﬁ +1D+B+ 1){”.

The Correlation Function

In addition to the covariance function of a random process z(7), we
frequently encounter the correlation Junetion, denoted R, (7, s), and
defined as

R (1, 5) = E[=(2) 2(s)] = =) x(s). (3.97)

From Eq. 3.95 we see that R.(7, §) and &,(¢, 5) are related by

1, 5) = [2(t) — mAD]x(s) — ma(s)]

AP = T #(5) — mad) 7() — mf) a() + m (1) myfs)
"K(s) = ‘(R’m(ts S) - mm(“") mx(s) (398)

It follows that a Gaussian process is completely specified by knowledge of
m (1) and either Z.(1, 5) or R.(1, 5). -

Finally, it should be noted that ail three of these functions—say
m(2), L1, 5), and R,(z, s)—may also be defined for any process y(¢) that
is not Gaussian. In the non-Gaussian case, however, knowledge of these
functions alone does nor imply that the process is completely specified.
For example, consider the two random processes y(f) and z(7) shown in

Ry= 1 beoee Jov o)

2y plont) o LB -
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Fig. 3.19; in both cases every sample function is a constant, and it is
clear that

m(f) =mt}) =0

R, 5 = R, 8) = 1.
But, for any observation instant { = #;,

Py (@) = 1[5.(oc — 2) + 26(a) + 8ot + 2,
whereas
Patsp(e) = 36(a — 1} + d(e + 1)}

Stationary Ganssian Processes

To be stationary an arbitrary random process must be such that all
joint density functions are invariant to any translation in time origin. For
a Gaussian process «(f), the joint density function p, of & samples f;}
observed at times {#,}, i = 1,2, ..., k, depends only on the st of means
{%;} and covariances {4,;}. Thus p, is unaffected by a translation 7" in time
origin if and only if

m.(&) £ Efo(t)] = Elx(t, + T) 2 m,(t, + T) = Z = a constant
(3.99a)
and also

Ay = Lt 1)) = El(ty 2(1,)] -7
=E[t, +Da(t, + TN — 2 =L+ T, + T)  (3.99)

for ali #,, £;, and all 7. In particular, if we cheose T'= —{; in Eq. 3.99b,

we have
Ay = E[=(t; — £) x(0)] —72

for all ;, #,, which implies that
Lt ) =Lt — 50 (3.99¢)

for all 7 and 5. The covariance function must depend only on the interval
(t — 5) between observations and not directly on these observation
instants themselves. A Gaussian process is stationary whenever Egs. 3.99a
and c are satisfied. In order to simplify notation, it is conventional to
drop the second argument in Eq. 3.99c and write #,(¢ — s) instead of

TZ(t =5, 0). The conditions that a Gaussian process must meet in order

to be stationary are then
m,(f) = T = a constant (3.100a)

L1, 5) = Lot — ). (3.100b)
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An example of a covariance function meeting this condition is Eq. 3.96b. _

= = " n | Given that Eq. 3.100a is satisfied, a requirement equivalent to Eq. 3.100b
o : (with the same notational convention) is
I N\ :
R, 5) = Rt — 35). {3.100c)
‘é" Notice that these conditions are nof sufficient to guarantee stationariness
Bs for random processes that are not Gaussian. The following random
. = = - - £ process is a counterexample. Let (X contain five sample points, and let each
g 12 g<f—1° 29 ! ’% =l =3 point be assigned probability 3. Let #(z) be the process whose sample
2 % 1 < " 8 functions z{w, f) are
% #wq, f) = —Zcost,
2
E Hws, 1) = —~/2 sint,
§ g, £) = N2 {cos ¢ + sin 1), (3.101)
E , z(e0,, £) = (cos 1 — sin D),
g :
o #(ws, ) = (sin ¢ — cos £).
&5
- - - - = It can be verified by direct calculation that
i 5 — 13
| | 2 2(f) = =Y wlw,, £y =0;  foralit
I I 1 I 8 Si=1
] - I I 1 8
i 2 a. N 1 5 6
= 2() 2(s) = S > #lews, B 2wy, 5) = 5 o8 (t — s).
s ‘ : =
o o
= g = - = % 5 Thus the conditions of Eq. 3.100 are met.
3 = 3 = 3 °— 3 = - | On the other hand, it is casy to show that 2(f) is not stationary. For
- - = = 2 instance, consider the two random variables z; and 2, obtained by ob-
'Z serving #(7) at times t; = 0 and 4, == /4. We have directly from Eq. 3.101
45 = - -
””‘ ! - P = 0o + VD) + (@) + 8o — D) + 8 — 1) + 8+ 1]
[=)
I ' ' , - P o) = 326(x + 1) + o — D) + 280}
% Thus p,, # p.,-
2
”}f rﬁ’ —T‘;’ élf Gaussian Processes through Linear Filters
3 B E 3 We have argued in Sections 3.2 and 3.3 that filtered impulse noise
e o o o becomes Gaussian when the number of impulses per second becomes

large. More precisely, we require that the average number of impulses
occurring during the effective duration of the filter’s impulse response be
large (as indicated in Fig. 3.16) and that the arrival times of the impulses be
176 . substantially independent of one another. In general, it follows from the
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yY(t)}—=Gaussian for
. NAg>>1
'?(_t)-ma—Gaussian for 1
: Impulse noise { NA > 1\ i
L ! Ra(t) - holt) —t—
N = average number of | |
impulses per second | I
e 1
h{t}
¢
b A1—>|

hatt)

Ra(t) = ha{t)= halth

Ag

‘Figure 3.20 Two smoothing filters in cascade. The dashed box may be considered
either as a single filier with impulse response A.(z) and effective duration A; or as two
filters in cascade. [The effective duration A of any filter response /(z) containing
impulses is zero; the cutpui of such a filier is also impulsive and obviously does not
become Gaussian as N — c0.]

same argument that the output of a second filter connected in cascade
behind the first, as shown in Fig. 3.20, also becomes Gaussian. All that is
required is that the effective duration of the over-all impulse response of
the pair of filters in cascade should again be sufficiently long. 7

The preceding arguments suggest that the output of any linear filter is a
Gaussian process whenever its input is a Gaussian process. Although formal
proof of this fact is mathematically involved, the observation that the
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input and output processes #(f) and () in Fig. 3.20 are related by

y(1) =f a(e) ho(t — o) da (3.102)
provides further substantiation. Approximating this integral by a sum,
W) ~ X a(a) h(t — o) Ao,
we note that the conclusion that y(¢) is Gaussian is consistent with the
property that a weighted sum of Gaussian random variables is Gaussian.

As mentioned in connection with Eq. 3.10, Eq. 3.102 is an example of
specifying a new random process by means of applying a stated operation
[convolution with Ay(f)] to the sample functions of a given process. The
relative mathematical ease with which Gaussian noise can be handled in
communication problems stems from the fact that a Gaussian input to a

linear filter yields a Gaussian output. This, of course, is not true for non-
Gaussian inputs.

3.5 CORRELATION FUNCTIONS AND POWER SPECTRA

‘We have seen that the random process at the output of a lingar filter is
Gaussian whenever the input is Gaussian. Since any Gaussian process is
specified by its mean and correlation functions, the effect of the linear
filter on a Gaussian input is described com-

pletely by the effect of the linear filter on the z(t) ¥t
mean and correlation functions. We now h®
consider how to calculate these functions;  {z(w. 8} {y(w,t}}

the resuits are valid whether or not the input

process is Gaussian Figure 3.21 The random proc-

ess ¥(¢) with sample functions
{w(w, )} results from passing
the random process =(f) through

The Expectation of an Integral
the linear filter A(#). [

In Fig. 3.21 we show a linear filter A(7)
whose input is an arbitrary random process z(t). The sample functions
of the random process y(f) at the filter output are related to the sample
functions of z(r) by the convolution integral

ylw, ) =fm 2(w, o) h(t — o) doe;  all win L. (3.103)

From Eq. 3.93 the mean function of y(?) is

m,(1) = E[y(t)] = EUm #e) hit — «) do{\. (3.104)
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Simplification of Eq. 3.104 is straightforward when the number of
points in the sample space L is finite. Let us assume that there are k-
points {w;}, i =1,2,..., k, to each of which is assigned probability P,. .

Then
I R =]
my(f) = 3 Py y(w 1) = 2, Pz-f 2w, ) h(f — @) dee. (3.1052)
i=1 =1 —c0

By interchanging the order of summation and integration in Eq. 3.105a, we
obtain

m,(f) = "’ i‘Pi 2(cw;, o) Bt — &) da

— f ° A h(t — o) da. (3.105b)

Under these conditions the autocorrelation function of #(#) may be
obtained by a similar procedure:

Ry, 8) = B y(s)
= E[J:O (o) h(t — o) de f :O 2(8) h(s — B) dﬁ}

] w -]
3P f o 9 e — ) da f_mz(wi, 8) k(s — B) dp

= gklpi fj’w f:o (e, o) 2{ew;, Y Bt — o) A(s — Byde df.
(3.106a)

Again interchanging the order of finite summation and integration, we have

wito=[" [ [ 3 piaton s, 0] — 16 = pasap _'

= 7 7 cramae - whe B dudp.  (3.106b)

The mathematical issues involved in interchanging the order of integra-

tion and expectation become sensitive when the sample space becomes:
infinite. Both the interchange and the resulting input-output relations

mff) = ch mfe) k(t — o) do, (3.107)

R (1, 5) = fw fm R, B) bt — o) h(s — f).dedf, (3.108)

" remain valid, however, whenever the double integral of Eq. 3.108 is finite
for'all ¢ and 5.2
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For neither of these equations do we require that =z(¢¥) be Gaussian.
When z{t)—hence #(f)—is Gaussian, however, evaluation of these two
integrals completely specifies the process ¥(f).

Power Spectrum

Important additional insight into the effect of filtering a random proc-
ess z(f), which again need not necessarily be Gaussian, can be gained from
Eq. 3.108 in the special case in which R(#, s) depends only on the interval
(r — s) between the sampling instants ¢ and 5. In particular, if this con-
dition is satisfied, we shall find it possible to investigate the distribution
of mean power in () as a function of frequency. Accordingly, in the rest
of this section we shall assume that

Rt 5) = R(7), (3.109)
where :
T 2 t—s
and the notation is that of Eq. 3.100.
Equation 3.109, when substituted in Eq. 3.108, implies that

Rt 8 =F Jw Rfo — BY h(t — &) k(s — f) de df.

Making the change of variables » = ¢ — o, p = 5 — f§, we obtain

R,(1,5) =j J Rt — 5+ g — v) h{p) h(¥) du dv.  (3.110a)

Since the right-hand side of this equation depends only on (£ — 5), we see
that whenever R(r, s) is a function only of 7 = ¢ — 5, so also is R,(¢, 5):
Rft, 5) = R(7) = R (¢, 5) = R (7). (3.110b)

~ Equation 3,110a can be simplified if we introduce the Fourier transforms
of R,(7) and R(7), say 8,(f) and 8,(f):

S,(f) ér R (r)e " dr, (3.111a)
s&[" wmerran e

It follows by inverse transformation that

R =fw S,(f)et " df - (3.112a)
and o :

R () =£° 8,(f)etr df. (3.112b)
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* When T is substituted for ¢ — s and Eq. 3.112b is used to express
R (r %+ pu — ») in terms of §,(f), Eq. 3.110a becomes

= [ 77 s no 1) df d o

= [ sapemr ar[” e [ nore e an

The integral on » is recognized as the filter’s transfer function H(Y), and
the integral on g is recognized as H*(f). Thus

R =[ SVHOI T df, (3.113)
and, comparing Eq. 3.113 with Eq. 3.112a, we have
8,(f) =8, (N IH)E (3.114)

We may interpret Eq. 3.114 as follows. First, we note that the mean

square value of the filter output process y(t) is independent of time .

whenever Eq. 3.109 is satisfied:

PO = Rft, ) = Ryt — &) = Ry(0). (3.115)

Next, we consider (r) as an ensemble of voltage or current waveforms
applied across a 1-Q resistor, so that y*(w, ?) is the instantaneous power
dissipated in the resistor at time ¢ by the waveform associated with sample
point . We therefore interpret R,(0) as the expected value of the power
dissipated in the resistor at any instant.

From Egs. 3.112a and 3.114 we have

ro=[" sna=[" somnry  cue
If we now let H{f) be the particular filter, shown in Fig. 3.22, for which

H() = [1; for A< | fI < Ser (3.1170)

0; elsewhere,
we obtain

w0 =["sar+| s (3.117b)

We shall soon see that 8,(f) is always an even function of frequency
Since Eq. 3.117 implies that the mean power delivered by 2(z) in any
narrow frequency band of width Af centered on f’ is approximately
28,(f"y Af, as shown in Fig. 3.23, 8,(f) describes the distribution of

e i

nr
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Hf}

g i e f

Figure 3.22 Ideal bandpass filter. Although not physically realizable (the impulse
response is not identically zero for ¢ < Q), ideal rectangular filters are useful for
purposes of analysis.

mean power with frequency in the process z(¢). For this reason 8,(f) is
called the power density function of 2(t).

Wide sense stationariness. It is essential in the derivation of Eq. 3.117b
that R.,{t, 5) = R,(r — 5); if this condition is not met, the Fourier trans-
formation of Eq. 3.111 cannot be made and the power density function
8,(f) is not defined.

Since knowledge of §,(f) at the output of a linear filter implies knowl-
edge of R,(r), Eq. 3.114 (together with the relation between the mean

functions given by Eq. 3.107) completely describes the efiect of a linear

flier on a Gaussian Input process. When z(t) 1s #of Gaussian, this is not

the case, although Eqs. 3.115 and 3.116 still permit us to calculate the total
mean square instantanecus power out of the filter. The ability to do this
and to talk about the power density of a random process is sufficiently
important in its own right that processes z(¢) which meet the conditions

m,(f) = constant (3.118a)
Rft,8) = R0t — 9) (3.118b)
820/

Tl(—Af —>] [«Af

-7 P
Figure 3.23  The mean power delivered by 2(2) in a frequency band of width Af centered
on [’ is equal to the shaded area.
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are given the special name wide-sense stationary.t Stationariness, as we
defined it in Section 3.1, is often called strici~sense stationariness in order
to avoid possible confusion. '

Any strict-sense stationary process is wide-sense stationary, but the

converse is not true. The process of Eqs. 3.101 is a counterexample. . 4
wide-sense stationary Gaussian process is also strict-sense stationary, since
all of the conditions of Eqs. 3.100 are met.

Properties of 8, (f)and R, (). Since the power density function §, (N

of a wide-sense stationary random process 2(¢) is the Fourier transform of:

the correlation function R,(7), the properties of the two functions are
intimately related. First, we note that R.(r) is a real, even fanction of :

RA—1) = R (7). (3.119
This follows from the definition of Eq. 3.97; =(¢) is real, and
Rofr) = Ryt — 5) £ 2 (5)
=20 = Rfs — 1) = Ry ~—7).

Equation 3.119 implies that 8,(f) is a real, even function of f. We
prove this by observing that, since R,(r) is even and sin 27f7 is odd,

f RA7) sin 2afr dr = 0.
—o
But

fw R, (F)e " dr =fw R (7N cos 2afr — | sin 2afr) dr,

hence
84N =J‘°° R, (7} cos Zufr dr. (3.120}

Since the right-hand side of Eq. 3.120 is an even function of £, the proof is
" complete.
Next, we claim that §_(f) must also be a non-negative function:

5,(NH=0; for all f. (3.121)

This is clearly a necessary condition for the interpretation of 8,(f) as
power density to be meaningful. Proof follows by noting that if Eq. 3.121
were not true an f; and £, could be chosen for the rectangular filter in
Fig. 3.24 such that

f "s(ndar<o. (3:122)

f1

t In many texts, processes satisfying only Eq. 3.118b are called wide-sense stationary.

!
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5240
| /\ | | o
1 N7 '
Lo [Hp|® P
i | ] |
| |
+1
=fo —h : n f

Figure 3.24 Proof (by contradiction) that a power density function cannot be negative.

But, from Eq. 3.117 and the evenness of 8,(f), this integral is one half the
expected value of the square of the filter output %(¢) and thus Eq. 3.122
would be in contradiction to the fact that y2(7) must be non-negative.

The fact that §,(f) is nen-negative does not imply that R,{7) is also
non-negative. It does imply that the correlation function of any wide-
sense stationary process 2(f) satisfies the inequality

| R (7)] <R (0); for all =, (3.123)
since

|Re(D)] =

J‘oo Sz(f)egafrfr df‘

< f_ 8. 1€ df

- f_ " 50 dr= 2.0

Equation 3.123 permits interpretation of the conditions under which the
filter input-output relations of Eqs. 3.107 and 3.108 are valid. For wide-

'sense stationary processes,

IRyt )| = Ryt — 5)] < Ry(0) = #7(1),

s0 that requiring the double integral of Eq. 3.108 to be finite is equivalent
to requiring that the mean power of the output process be finite for all 2.
It can be shown that this requirement suflices even when y(z) is not
stationary.
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Jointly Gaussian Processes

We have already emphasized that one of the most important properties

of joint Gaussian random variables is that new random variables obtained -

as a result of linear operations performed thereon are also jointly Gaussian.
As we have seen, one application is that samples taken from the output
y(f) of a linear filter whose input =(¢) is a Gaussian process are always jointly
Gaussian, which in turn implies that »(¢) is also a Gaussian process.

A second application concerns the situation in which =() is the input to
two (or more) linear filters connected in parallel, as shown in Fig. 3.25.
Congider the vector of samples

w = (Y1), ylte), « oy, ), s, - -5 #(s) (3.124)
obtained by observing the output y(f) of the first filter at times {z,} and

Hy () ¥ (&)

x(t) —>—

H:{f) . z{t

Figure 3.25 If =(f) is a Gaussian process, then the processes #(¢) and 2(#) are jointly
Gaussian.

the output 2(¢) of the second filter at times {s,}. Since w results from linear
operations on (), w is Gaussian for any {r,} and any {s;}. The statement
remains true if' w results from sampling N rather than just {wo filters con-
nected in parallel. We call N processes Jointly Gaussian if every vector
such as w formed from these processes is jointly Gaussian.

Two jointly Gaussian processes y(¢) and z(¢) are individually spec1ﬁed
whenever their mean and correlation functions are known. In order to
specify the joint density function of vectors such as w, however, we must
know the covariances associated with every pair of components. Thus, if
y(#) and 2(¢) are to be jointly specified, we must also know the covariance

Ely(z,) 2(s;)] — my{t,) m.(s;) (3.125)

for any pair of observation instants {f,, s). The additional knowledge
that we need is embodied in the function

R, ) 2 By o(s)];  alltands, (3.126)

JOINTLY GAUSSIAN PROCESSES 187

which is called the crosscorrelation function of the processes y(f) and 2(z).
For the case illustrated by Fig. 3.25, the crosscorrelation function is
readily obtained from (f) and the two filter impulse responses 4,(¢) and

B(2).
R = 5570 = B[ [ ati— o) s ats = py () a]

=f f w1 — o) 2(s — P) hy(a) h(B) do df

=J‘°ﬂ fw Rt — o, 5 — ) h{e) h () de df. (3.127a)

If 2(¢) is stationary, this simplifies to
Rty =" [ Rt =5+ = ) @) (P da 0
- J N f T s (el () hgB) dc df df

=J‘°° gw(f)eiznf(i})f"’ h_y(m)e—izﬂm de‘“’ hz(ﬁ)e.mﬁﬂ dp.
” h - (3.127b)

Recognizing the integrals on « and f§ as H,(f) and H *(f), respectively,
we have

Rt =9 = [ SNHD HHDE D af. (129)

Equation 3.128 is our desired result. Since R,.(%, 5), as well as R, (¢, &)

and R.(z, 5}, depends only on (¢ — 5) when %(f) is stationary, we observe
that the density function of any vector such as w is independent of time

origin whenever the input #(7) is a stationary Gaussian process. In this

case ¥(#) and z(r) are called “jointly stationary.”}
An important particular case occurs when H, (f) and H,(f) are non-
overtapping, as shown in Fig. 3.26. Equation 3.128 then states that

Rt —8)=0; for alt ¢ and ». (3.129)

In addition, x(f) stationary implies #,(r) a constant, so that m, () m_ (1) = 0.
(At least one of the filters must have zero response to a constant (dc)
input if they are nonoverfapping.) Thus any covariance involving both

T If =) is statlonary only in the wide sense, y(¢) and z(r) are called ‘jointly wide-sense
statlonary
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H (0] |z (6]
-
yd N ,—’/ ™
/ N / N
\ \
{ ] F

Figure 3.26 The filters H/(f)and H(f) are disjoint in frequency.

() and 2(£), as in Eq. 3.125, must be zero. For «() Gaussian as well as

stationary it follows that

Pv = Pywas = Py Pas (3 1 30)

Y(t) = (y('fl), "J(Iz)’ rem y(tk))
2(s) = ((sy), 2(sa), - -+ » 2(sD)-

When Eq. 3.130 is satisfied for all {z;} and {s,}, we say that the processes
y(t) and =(1) are statistically independent.

for any vectors

White Gaussian Noise

When dealing with a Gaussian process, say x(?), it is frequently con-
venient to decompose the process into the sum of its mean function and a
zero-mean noise term, say #(f). Thus we let

2(£) = m, (1) + n(t), ’ _ (3.131a)
where n(z) is a Gaussian process with zero mean:
D) = a(f) — m(H)=0; - forallt. (3.131b)

In most applications of interest, such as the shot noise of Eq. 3.26, the
mean funcéion m,(f) represents a known (nonrandom) signal term, and
the Gaussian noise process n(z) is (strict-sense) stationary. Since n(/) =
the covariance function %,(¢,s) is then (from Eq. 3. 98) equal to the
correlation function:

LAt ) = R (t,8) = Ro(r); 7=1—s. (3.131¢)

Thus the Fourier transform of R®,{7), that is, the power density func‘uon
8, (f), completely specifies the zero mean process #(1).

In many communication applications we are confronted with physmal
noise sources in which the Gaussian noise added onto the desired signal
has a power spectrum that is essennally flat up to frequencies much
higher than those that are significant in the signal 1tse1f In such cases
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Egs. 3.115 and 3.116 imply that the mean square value of the noise inter-
ference can be reduced (without adversely affecting the desired signal) by
passing the sum of signal and noise through a filter H{f) that passes the
signal without important change but eliminates much of the noise, as
shown in Fig. 3.27. Insofar as the power spectrum of the noise at the
filter output is concerned, it makes little difference precisely how the input-
noise power spectrum approaches zero outside the passband of H(f).
Accordingly, one frequently assumes that this input spectrum is flat for
all frequencies and introduces the concept of white Gaussian noise,

Signal plus Htp Signaf plus
input noise output noise

Magnitude of

2 signal spectrum
|H€f)| Inpuit noise
T TN N _/ power spectrum

LY

avoa - aus

Figure 3.27 Wideband Gaussian noise at the input to a narrow band filter. The filter
output is substantially the same as it would be if the input noise were white and Gaussian.

denoted n,(#) and defined as a stationary, zero-mean Gaussian process
with power spectrumf

S.(f) & 'N"’

—w < f< . (3.132)

Actuoally, white noise (whether Gaussian or not)} must be fictitious
because its total mean power would be

0 ——f $,(f)df = e, (3.1332)

which is not meaningful. The utility of the concept of white noise derives

from the fact that such a noise, when passed through a linear filter for
which

f_w [H(NIPdf < oo, (3.133b)

produces at the filter output a stationary, zero-mean noise n(f) that is

1 The dimensions of o are watts per cycle per second, or joules. We shall always
define power spectra on a bilateral frequency basis, — oo < f < 0.
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meaningful. From Eqgs. 3.114 and 3.132 we have

$.0) =% \HCHI, (3.1343)

and thus
S N ® 2 ;
n(t) = > |[H(O df, (3.134b)
which, by Eq. 3.133b, is finite. The correlation function at the output, fro
Eqgs. 3.120 and 3.134a, is :
Ny ® 2
R )= Py [H()|* cos 2afr df. (3.135

An alternative derivation of Eq. 3.135 follows directly from the cor-
relation function of white noise. We note that :

w :
Su(f) = % =f_ 'N—z-"’ (r)e " dr. (3.136a)

Thus, in accordance with Eq. 3.111, we ascribe to z,{f)} the correlation
function

R (T} = J%" o(r), (3.136b)
which is again a nonphysical but useful result. Equation 3.136b implies
that any two samples of white Gaussian noise, no matter how closely
together in time they are taken, are statistically independent. In a sense,

white Gaussian noise represents the ultimate in “randomness.” Sub-
stituting Eq. 3.136b in Eq. 3.110a, with  — 5 = =, we have

Rp(7) = Xy w, ) d(r + u — v) h{p) B(¥) du dv
2 —00 —00

X f_";h(w — =) k() . (3.137)

Expressing A() as the inverse Fourier transform of H(f) and interchanging -

the order of integration again leads to Eq. 3.135. The integral in Eq. 3.137
is frequently referred to as the “correlation function” of the (deter-
ministic) function A().

As an example of the application of these results, consider the ideal
lowpass filter shown in Fig. 3.28, whose transfer function is given by

W(f) £ AR (3.138)
0; elsewhere. '
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Awlt) nft)
Wi
Wi
|_1
-W W f

Figure 3.28 White noise into an ideal lowpass filter.

When the input to this filter is white Gaussian noise, n,(¢), the mean
function m,(f) of the output n(¢) is

() =fiﬁm_.(-o?) h(t — o) de,

But, from the definition of »,(),
nfe)=0; foralla,
so that
m, (1) = 0; for all ¢, ) (3.139)

The correlation and covariance functions at the output, from Eqgs. 3.131¢
and 3.135, are

P = R = 5D W cos 2mfr

1
= L&J‘ cos 2afr df
‘ 2/
. w .
_ Ny sin 2mfr — WN, sin 2o Wr . (3.140)
2 2@t | 2mWr

Hence
Z0)=R,0) = i = WNy; for all ¢. _

Now consider k& samples {#;} taken from the output process n(s) at the
time instants {¢,} given by

ti=2—[+T; i=1,2...,k (3.141a)
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where T is any constant. It is interesting to note that the {n;} are statisti-
cally independent with zero mean and variance WiN: ‘

n; = ]E = mn(ti) = 0, (3141b)

i—j
Ay =T =L, — 1) = gn(ﬁ)
i P — § WNy; fori =j,
= e, Sri= D) [ ’ (3.141¢)
(i — j) Q; otherwise.

Thus the density function of the k& Gaussian random variables {n;} is -

1 ( 1 & 2)
g)=——""™—=F6exp|l———— 2% ).
P (2m W )/ P 2W.N’.,,§1
APPENDIX 3A MATRIX NOTATION

Matrix notation simplifies dealing with linear transformations. Con-
sider, for example, the set of linear equations

¥y = Gy + Gy + 0ty + oy
Yo = dg®y T Gpas + Gy + 1y

Y = @y + G + 0 A T e (3A.1)

We may say that the variables {z;), i=1,2,...,k, are linearly trans-
formed into the new variables {y;}, j = 1,2, ..., k. In matrix notation
these equations would be written more concisely as

y = AxX" +m’. (3A.2)
Definitions

In order to give explicit meaning to Eq. 3A.2, several definitions are '

necessary.

1. An (n x k) matrix B is defined as an n-row, k-column array of
numbers such as

by b - by,
boy by v by

B= : . (3A.3)
bnl an b'ﬂk
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2. The (4, j)th element, by;, of a matrix B is the number that is located at
the intersection of the ith row and the jth column.

3. The transpose of an (n % k) matrix B is the (k X ») matrix, denoted
BT, obtained by interchanging the rows and columns of B. An equivalent
statemnent is that the (7, /)th element of B” is the (j, {)th element of B. The
transpose of matrix B in Eq. 3A.3 is

by ‘b21 coe by
big by -t by

B = ) . (3A.4)
by by v ba

4. We call a 1 x k (single-row) matrix a vector. For example,

= (2, 2%, .- -,2) (3A.5a)
The transpose of a row matrix z, denoted z', is a k x 1 (single-column)
" matrix,
2
%2
=] " (3A.5b)
2

5. Two matrices are said to be equal if and only if every pair of cor-
responding elements is equal. Thus the equation A = B implies

@y =b;;  foralliandj. (3A.6)

6. The sum [A + B] of two (n x k) matrices A and B is the new
(n % k) matrix C whose elements are given by

cy=ay+ by, foralliandj (3A.7a)
Thus
C=A+B : (3A.Tb)

if and only if Eq. 3A.7a is satisfied. Matrix addition, like arithmetic
addition, is associative and commutative. The sum of two matrices that
do not have the same dimensions (# X k) is not defined.
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- 7. The scalar product of an (r » k) matrix A by a constant ¢ is the new
(rn x k) matrix B whose elements are given by

by = cay;  foralliand j (3A.8a)

Thus .
B =_cA (3A.§b)

if and only if Eq. 3A.8a is satisfied. Scalar multiplication is associative
and commutative.

8. The matrix product AB of an (n X k) matrix A by a (k X m) matrix
B is the new (n x m) matrix C whose elements are given by

M=

6;; = 2 agby;;  forall iand j. (3A.9a)

4

1
Thus

C = AB ‘ (3A.9b)

if and only if Eq. 3A.9a is satisfied. If the number of columns in the first
matrix, A, is not equal to the number of rows in the second matrix,
B, the two matrices are said to be nonconformable and the product AB is
not defined. Thus the matrix product of two vectors is not defined; but
the matrix product of a k-component vector x and a k-component frans-
posed vector y* is identical to the vector dot product of x and y:

&
xy' = 12 zy, =X-¥. (3A.10)
=1

Equation 3A.10 is an important relation which we shall use frequently.
It is immediately helpful in visualizing the meaning of Eq. 3A.9a. As
shown in Fig. 3A.1, we can think of ¢,; as the dot product of the vector
a;. that corresponds to the ith row of A and the vector b.; whose transpose
corresponds to the jth column of B. Thus

cy= 2. by (3A.11)

The notation a,. and b., is mnemonic in that the dots indicate indices
ranging over the dimension of the vector; for a k-column matrix A and

an a-row matrix B, a,. = (@, @, - - -, @y and by, = by, bysy oo, by3).

Equation 3A.11 may be visualized in terms of picking up the jth column
of B, laying it horizentally over the ith row of A, multiplying the super-
imposed mumbers by pairs, and summing the products. As an example,

03 61

31 2 15 20 26 14

_ A7 12 3)= )
20 6 24 36 30 26

4 5 3 ' '
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an ap v Gl b biz e | byj | o Bim
gl a2 vt &%k bgr bag e b bgi| e bom
c-
a;. .
@pl Qp2 v Gnk bir bpg - | Bgi | o Bim
: Ny
==
/\I bUI
] bg' I
I
Ib |
a;.—7 | Bai |
-

Cy = Ay = by = @by + Gubay + - - @abis}
Figure 3.A.1 Matrix multiplication. The matrix C = AB is an n X m matrix with
elements {e;;} that may be obtained as shown.

which may be readily verified by inspection; for instance, the (2, 3)
element in the product is computed

2. =2 0
= 6)c23=12+0—|—18=30.
by=(6 2 3)

The foregoing definitions are sufficient to explain the meaning of
Eq. 3A.2. We take the matrix A to be the square (k¢ x k) matrix whose
elements are the coefficients {a;;} in Eq. 3A.1 and let

Y1 £51 ny
Ya L mq

yi=] " "} x={ | m=]" L (3A.12)
Y e i,

The product Ax" is therefore a (k x 1), column matrix, and equating
corresponding elements on the right- and left-hand sides of Eq. 3A.2
reproduces the set of equations in Eq. 3A.1.

Matrix notation is especially helpful when one is confronted with a
sequence of linear transformations. For example, if the & variables
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¥y = (¥, #a, . . ., 4} in Eq. 3A.1 are subsequenily transformed into / new

variables z = (21, %3, . . ., #)) by means of a linear transformation
by by by,
by boy - bzk )
B=| ° , (3A.13a)
by by by
then
z' = By (3A.13b) -

If we wish to find the 2’s in terms of the 2’s, we substitute Eq. 3A.13b in
Eqg. 3A.2 and obtain

7' = B[AX' 4+ m']. (3A.13¢)
Properties of Matrix Multiplication

The definition of matrix multiplication (Eq. 3A.9} implies certain prop-
erties that are important.

1. Matrix multiplication and addition are distributive; that is,
AB 4+ C) = AB + AC. - (3A.14)

This can be verified directly from the definition.
2. Matrix multiplication is associative; that is,

(AB)C = A(BC). (3A.15)

This can be verified, with some labor, by showing that the (Z, /)th element,
say dy;, of the triple product is given by

di; = 3.3 ybimCos (3A.16)
i om

regardless of which multiplication is carried out first.}
3. Matrix multiplication is rot generally commutative; that is,
AB = BA. (3A.17)

Indeed, two matrices conformable in one order need not be conformable

+ Use of these first two properties permits us to simplify Eq. 3A.13c still further: we
may write 2T = CxT <4 nT, where C == AB and 07 = Bm". Thus a sequence of linear
transformations is a linear transformation,
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in the other. Even in the case of two (k X k) matrices, however, multi-

plication is not usually commutative. For example,

1 0\/1 1 11 1 11 0 2 0
= # = .
1 0/ 0 P 1 0 0/\1 0 0
4, The transpose of a matrix product is the commuted product of the

transposes; thatis
(AB)T = BTAT. (3A.18)

This property is easily proved. First consider the left-hand side of
Eq. 3A.18. The (i, /)th element of (AB)" is the (j,i)th element of AB,
which by Eq. 3A.11 is a,. + b.;. Next consider the right-hand side: the ith
row of BT is the ith column of B, and the jth column of AT is the jth row
of A. Hence the (j, /)th element of B’ATis also a,.* b... As an example,

[ ]
o ) =le ol

3. A number b cqual to a double sum of the form

b=

Ve

B
Exiaijy.’i = Bt + Bl + 0+ Tyl
=1

i=1

i

+ Tola¥y + Talagls - -7t Tty

d ln + Tl o+ Wy, (3A192)
can be written succinctly

b=xAy =2 ¥ za,y, (3A.19b)
i s

where X = (3, %y -« -, %), ¥ == (Y. Y20 - - -, ¥p), and A is the (b x k)
matrix with elements {a,}. This type of sum is called a bilinear form.
When y = x, it is called a guadratic form. Expressions of this kind are
useful in Section 3.3.

Inverse Matrices

The last matrix concept we shall consider is that of an inverse. The
inverse of a square (k X k) matrix A is written A~ and is also a (k x k)
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matrix, If the set of  equations .
¥ = Ax" (3A.20a)

can be solved uniquely for the k 2’s in terms of the & 3’s, A™! is the matrix-
of coefficients in the resulting equations. Thus, if Eq. 3A.20a implies that

x' = By', (3A.20b)
then -
B = A (3A.20c)
Combining Egs. 3A.20c with Egs. 3A.20a and 3A.20b, we have both k
¥ = A(BYT) = (AA-Y)y" (3A.21a)
and i
X" = B(AX") = (ATAX". (3A.21b)
1t follows that
AA T =ATA =1, ) {3A.22)
where I is the diagonal matrix
1
1 0
= b (3A.23)
0

in which all off-diagonal elements are zero {symbolized by the large 0’s),
and all principal diagonal elements (of the form c;;) are unity.

The matrix 1 is called the identity mairix and has the property that it
transforms any matrix into itself:

CI=IC = C. (3A.24)

Equation 3A.22 is taken to be the definition of imverse: the matrix A
inverse to A is that matrix which, when premultiplied or postmultiplied
by A, yields the identity matrix. It is clear from the definition that

(A1 = A, (3A.25)

When matrix A does not correspond to a reversible transformation
{that is, if the 2’s in Eq. 3A.20a cannot be uniquely determined from
knowledge of the y’s and vice versa), the matrix inverse to A is not defined
and A is called singular. This must always be the case when A is not
square, When A is square, it is singular whenever the simultancous
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equations of Eq. 3A.20a are linearly dependent, which implies that the
determinant of A, denoted |A|, is zero:

|A} = 0<=- A is singular. (3A.26)

Otherwise, A is nonsingular and A~ exists.

The clements comprising A1 are given directly by solving Eq. 3A.20a
to obtain Eq. 3A.20b. If B = A%, then we know {rom the elementary
theory of determinants® that

r 1A
b, = (—1)+ =25
w= (O™
where A,; is the matrix obtained from A by deleting the jth row and ith
column, and |A,;}is its determinant. Note that the order of the indices f and
j is different on the two sides of Eq. 3A.27.
As an example, the inverse of the matrix

(3A.27)

11 0
A=1{2 1 3|, |Al==10
1 4 1
i3
11 1 -3
a1 1
A== -1 -1 3
10
—7 3 1

Tt can be readily verified that Eq. 3A.22 is satisfied.
The last result we shall need is

(ABY ™ = BAL, (3A.28)
This follows directly from the equation
(BA ) AB) = B{A*A)B = BB = L (3A.29)
Finally, taking B = A~* in Eq. 3A.18 yields
(AT = (AT (3A.30)

PROBLEMS
_3.1. An elementary random process comprises four sample functions, to each
of which is assigned equal probability.

w{wy, 1) =1 (g, 1) = sin =,

w{wy, 1) = —2 #{wy, 1) = cos .
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v a. Is the process stationary?

s b. Caleulate =(¢) and (¢} 2(fa).

~ ©. What is the probability of the set of sample functions passing through the
windows of Fig. P3.1¢7—Fig. P3.167

| s
I 13 T : T e -|— :
Bl T S Loet
[
(a) )

Figure P3.1

3.2 Let x = (x;, #p), where x; and d @, are zero- mean Gaussian random vari-

ables. Assume for (a) and (b) that = = = 1 and that », and ®,are statisti-
cally 1ndependent

~ a. Evaluate |x12, [xl
b. For each of the four accompanying figures, express the probability that x
lies in the shaded region in terms of the function O(=), where

Q) & fmvlzz b gp.

c. Repeat (b) for Fig. P3.2z and b, with @2 = 1, ?22 =2, 2 = —3.

.,
=

(a) (b}

x2

-2 1 * x
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Figure P3.2

3.3 Letx = (,, %, %) be a zero-mean Gaussian vector with covariance matrix
33 0
A,=1|3 5 0
006
(This is a concise way of writing =2 = @ = 3; 232 = 5} 2% = 6; zymy =
wywg = 0.)

¢ a. Give an expression for p,. [Observe that «; is statistically independent of
the pair (xy, ©).]

v b, Iy == + 2wy — 25, determine p,.

Lo Ifz== {21, 29, 73), determine p,, where

7y =32y — 3oy — s,

Zy = —ay + 3z — 2,

73 =@ + %3

d. Determine p, (o | 2z = B).
3.4 A channel is disturbed by two zero-mean jointly Gaussian noise processes,
1y (£) and my(r). Tt is known that
S ——— L
j{x(‘r) = nt(’:) nl(t - T) 5 i=12

T

sin w7
Znr

Ryo(n) & mB) e —7) =

Write the joint density function of the three random variables @, %z, and @,
where A
%y = ny(f) |imes

. A :
wy = m(t) |t=1,

g £ nyfe) fi=0-
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3.5 Let () and y(z) be statistically independent, stationary random processes
and define 2(¢) = a(t) 4(¢). Is 2(7) stationary? Show that o

8:() = 8:(f) * 8,4,
where, as usual, the symbol * denotes convolution.

3.6 Let x{s), a Gaussian random process with mean function m ,(r) and
covariance function %z, 5), be passed through the filter shown in Fig. P3.6.
Is the resulting process y{¢) Gaussian? What are the mean and covariance
functions of y(¢)? Is y(¢) stationary if #(t) is stationary?

x(t} @ it}

T second delay

Figure P3.6

3.7 A stationary zero-mean random process is the input to three linear filters,
as shown in Fig. P3.7. The power density spectrum of =(¢) is 8,(f) = Ny/2,
The filter impulse responses are

P 1; 0t <,
1) =
(1) 0; elsewhere.
P 270 0 £,
) =
a(f) 0; elsewhere.
. Visin%t; 0 <2,
) =
o) 0; clsewhere.
] rift)
ha(t}
x(t) m yalt)
Ca (2,
[ yalt}
hy(t)

Figure 3.7
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a. Determine y,(t) and (¢} fori = 1,2, 3.
b. Is there any pair of output processes for which y{#),(t) = 0 forall ¢?
¢. Isthere any pair of output processes for which y,{f) y,(s) = 0 for all ¢, 5?

3.8 A stationary Gaussian random process =(#) with mean m(t) = m, and
covariance function #,(v) is passed through two linear filters with impulse
responses A(t) and g(¢), yielding processes #(¢) and z(¢) as shown in Fig, P3.8.

- ¥
—{ |

Figure P3.8

x(t)

a. What is the joint density function of the random variables y, 2 y(t,) and
Zp = #(tg)?

b. Evaluate y(r}«(t — 7). To what does this expression reduce when =(r) is
white noise?

¢. What conditions on k{#) and g(f) are necessaty and sufficient to ensure that
y(t) and =(z) are statistically independent ?

d. If m, =0 and Fu(7) = (sin #r)%/(=+)?, find the imstantancous power of
y(¢) when A(¢) is an ideal filter with transfer function

i E<Ifi <,

1
H( =
2 0; elsewhere,
3.9 A zero-mean stationary Gaussian process with spectral density 8.(f) is
the input to a linear filter whose impulse response is shown in Fig. P39, A
sampie, y, is taken of the output process at time 7. The random variable y is
often referred to as the T-second time average of the process x{¢).

At}

3

e 1

Figure P3.9

a. Calculate g.
b. Calculate 0,% in terms of §,(f) and T.
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¢. Upper bound v,? under the conditions 8,(f) < & for all £,
. d. Derive a tight upper bound on P[ [y — 7| > €] and contrast with the weak
law of large numbers.

3.0 Iiis desired to generate a stationary random process with the correlation
function -
g{a:(T) = e_lrls (1)

hence the power spectrum

. 3 .
8.f) = T+ agr @

We propose doing this in two ways:

I. By setting «(t} = A cos (2nft + 0), in which 4, £, and 0 are statistically

independent random variables.
II. By taking

(5 =fmh(a) n(t — =) do,
1]

in which #(¢) is white noise and k(¢) is some appropriate impulse response.

a. Specify density functions for p, p;, and p, that yield the desired power
density spectrum of Eq. 2. Do you need to specify the density functions for
A, f. and 8 completely or is specifying less statistical information about them
sufficient ?

b. Pick Ay} to yield the spectrum of Eqg. 2 via method IL.

¢. Sketch a typical sample function generated by method I; by method I1.
Do you expect them to look similar? Explain.

3.11 Let = and y be statistically independent Gaussian random variables, each
with zero mean and unit variance, Define the (Gaussian) process

2() = x cos 27t + y sin 27t.

a. Determine the covariance function of z(¢) and express p, . in terms of
it, where z; £ 2{t;) for i = 1, 2. Is the process (1) stationary?
b. Define » = Va?® + 42, 8 2 tan xfy, and determine p_,. Note that
2(f) = r sin (2wt + ).

¢. Consider three random variables obtained from =(#) by sampling at times
t =0, %, $. Determine the covariance matrix of these variables. Does the
inverse matrix exist? Explain. Use impulse functions to write the joint proba-
bility density function of these variables.

3.2 Determine the correlation function R.(z, 5} of the random process

() = i w; w(t — il — 1),

F=—t0
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where the {w,} and - are statistically independent random variables with
Pue) = 30 + 1) + 6 — 1] all,

1
=, 0€a<T,

Py = (T
0!

elsewhere.

The waveform «(f) is shown in Fig. P3.122 and a typical sample function
appears in Fig. P3.125.

u(t)
1
T £
(a)
Typical sample function .
---1--—---~—| +1 DI i I
| 1 1
T L] t
1
-1
(b}
Figure P3.12

3,13 The general expression for the mixed moments of N zero-mean jointly

Gaussian random variables zy, ,, . . ., ¥y is
0; ‘ L odd,
x; z;, = Py shigs, - Ay s s Leven,
T 'z all distnet ~° 1
pairs of
subscripts

) : A ——
where, as usual for zero-mean variables, A; =z, For example
wyaty®y = Aphgy + Arates + draden,
2y, =0,

If some.of the variables appear in the moment with a power of 2 or higher, the
formula is to be applied by treating each repeated subscript as if it were distinct;




206 RANDOM WAVEFORMS

thus
m12m2m3 = lptay + Awhis + Aty = Andey + ZAphy;
#t = 34,% = 3054
a. Bvaluate x,%z,? and =%z, directly and by use of the formula.
b. Apply the formula to @ zyTsw.m 7.

¢. Verify that the number of terms entering into the formula for mz, + - @ L; L
even, is '
L — 1)L o
- -3 () = e -
(= DE =3 O = sy

d. Using (c), evaluate c? and x,%z,t
¢. Note that

N L N ¥ Liz
(zyixi) = [z > ”i(xixk)”k:| ;  Leven
i=1 i=1%=1

) N
and prove the moment formula by expanding both exp (]2 vz-:ng-) and
i=1

18 &
exp (_5 >3 viau.yk) in a power series. First equate terms to obtain
i=18=1

N L
(E vimi) =0; Lodd
2

i=1
z ’ L! N N L2
(1;1 v"x”) = 2ZR(L2)! (g} k; %Asm) ;L even.

Next equate coefficients of terms such as »w, - --v, on both sides of this
expression. '

3.14 In the circuit shown in Fig. P3,14, 2(f) is a Gaussian random process with
zero-mean and correlation function

2sinwfr — 3)
a(f — s}

Find expressions [in terms of /(¢} or H(f)] for m,(t) and F (2, 5). Is y(z)
wide-sense stationary? Hins. Use the results of Problem 3.13 and the con-
volution «— multiplication theorem of Fourier analysis.

x(t} @ x2(r)

Figure P3.14

:Rvm(ts §) =

(%)

i |
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3.15 The process
w(t) B Y A — 1)

i=—w

is called a “Poisson impulse train” when the {r,} are random variables so dis-
tributed that the probability P(n, T) of exactly # impulses occurring in any
interval I of duration T is

(m)®

Pr,T) = o™= n=012...,

independent of the number of impulses arriving during all time intervals dis-
joint from £, We assume without loss of generality that vy <745, all i, as
indicated in Fig. P3.15. The parameter m is a positive constant.

x(t}

A

T_aT_§T_g . T—1 T0 [r1 7273 TAT5 TG

b))

I -,
T’?“

Figure P3.15
a. Verify that

i P, T) =1.
n=0

b. Let 7 consist of two subintervals with durations Ty and Ty, and let #, and
ny denote the number of impulses occurring in these subintervals. Use character-
istic functions to verify that

Ploy +n=n] =Pn, 11 + T).

¢. Let the random variable N denote the number of impulses oceurring in any
interval of T seconds duration. Evaluate N and oy”
d. Define the random variable

A
L =y —
Thus /; is the length of time between the occurrence of the ith and (¢ + 1)st
impulse. Determine /,, 1%, and the probability density function p, . Hint. First
determine P{/; < «.
e. Repeat (d) for the random variable

I & -
k= Titk T3y

in which k is an arbitrary positive integer.
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3.16 The Poisson impulse train =(1) of Problem 3.15 is applied as input to a
linear filter, as shown in Fig., P3.16a. When A(t) is chosen as shown in Fig.
P3.16b, the output process is
) A
y(1) =A_z At — 7)) =KNA5

i=—c

in which N, is the number of impulses occurring in the interval [t — A, t].

h(t)
1
" (t) A |
x(t} Ho ¥ .
L2 A
(a) ()

abiruti e e

t
= mod & -4 n (-8 &
17l €A Irl >4
(@ ()

Figure P3.16

a. Show that for this A(r)

A2
AE (Ny + NN + Na); [ < 4,

WD v = Ru) = |,
—A_z N4N 51

Il > 4,

in which = 2 t, — t,and N; (i = 1,2, 3, 4, 5)is the number of impulses occurring
in the corresponding intervat I; shown in Fig. P3.15c and 4.

b. Use the results of Problem 3.15¢ to reduce the expression for R () to
the form

2F 42 T _H . A
mzAz; |T[>A.

c. Observe that the process #(¢) tends to the process z(t) as A— 0 and

verify that
C 8 = md? + mPA®&(f).

Prove as a consequence that, for a general filter A{t),
8,(f) = mA® |H()|? + [mA HOP ().

This result, known as Campbell’s theorem,is exploited in (d) and (e).

e

-
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d. The process x(z}, with 4 specialized to the electron charge ¢, is a good
model for the emission of electrons from the cathode of a vacuum diode as long
as the electrons do not interact with each other, which is a reasonable approxima-

2]
tion with temperature-limited operation. Let gh(s), withJ () di = HO) =1,
0

denote the plate current increment due to a single electron emitted at = 0.
Then (1) is the total diode current.
Let {y, dencte the de current and show that

y(t) = Lye + A1),
where 7(?) is a zero-mean noise process with power spectrum

8a(f) = qllal

over the range of f for which H(f), the Fourier transform of k(#), is approxi-
mately constant. Argue that an implication is that the noise in a vacuum tube
amplifier is not strictly signal independent except in the limit of arbitrarily small
signal dynamic range.

¢. Both forward and reverse currents tend to flow simultaneously across the
diffusion layer of a solid-state diode (or transistor) when bias is applied. In
normal operation the forward current is composed chiefly of one type of carrier
(say holes) and the reverse current of the other (say electrons). The Poisson
impulse train x(r) provides a good modei for both the forward and reverse
diffusion individually, with A specialized to +¢ and —gq, respectively. The
resulting terminal current may be written

y(t) = I; — I +nl2),
in which I, and I, denote the dc value of forward and reverse current and #(z) '

is again a zero-mean noise process. Assume that the forward and reverse
diffusion processes are statistically independent and show that

S = qL| + ILD)

over the range of ffor which the Fourier transform g H(f) of the diode’s response
to the diffusion of a single charge-carrier at ¢ = 0 is approximately constant.

3.17 Determine the expression for Campbell’s theorem (cf. Problem 3.16) for
the case, illustrated in Fig. P3.17, in which the filter input

(1) =2‘.Ai 8t — 7

x(t}
A_s 4o
A_g Ay Ag a
- 5
| gl BE T ,
i T I 1 T aald
I A—ZI A, 1 l A ‘
Ay Az 7 Ag
Ag

Figure P3.17
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is a Poisson impulse train with random amplitudes {4;}. Assume the {4} are

idehtically distributed random variables, with mean A4 and second moment 4%;-

which are statistically independent of each other and of the {+;}. Hinr. Show
that -

ylty) w(ty) = A—ZE[Z Aty — v Rt — ‘Tz'):|

e E[z S (ty — ) bt — n-)]-

i e
3.18 Property 4 on p. 156 states that every weighted linear sum of jointly
Gaussian random variables is a Gaussian random variable.

a. Prove the converse statement that if

is a Gaussian random variable for every (nonzerc) conmstant vector a =

(a1, as, - - - , @), the {w;} are jointly Gaussian, Hint. Calculate the joint charac-
teristic function of the {z;} by noting that

M (v} = M D oo, = o'

and compare with Eq. 3.76 after evaluating «,% and g,
b. The converse statement may be taken as an alternate definition of jointly

Gaussian random variables. Prove properties 2 and 4 (p. 156) directly from: this

definition without recourse to the multivariate characteristic function, Observe
that with this alternate definition the multivariate central limit theorem can be
reduced to a single-variable theorem.

4

Optimum Receiver Principles

The concepts and methods of random processes studied in Chapter 3,
together with the a posteriori probability viewpoint of communication
discussed in Chapter 2, provide the background necessary to treat the
problem of optimum communication receiver design. In this chapter
we apply this background to the particular communication system dia-
grammed in Fig. 4.1. Here one of a discrete set of specified waveforms

ny (t)

(‘(t)= s{t) +ny (2

{mi
{PImil]
Figure 4.1 Communication over an additive white Gaussian noise channel.

{sifth [ma}

{80}, i=0,1,..., M — 1, is transmitted over a channel disturbed by
the addition of white Gaussian noise, so that the received signal process is
() = s(f) + n,(2). 4.1

Which waveform is actually transmitted -depends on the random
message input, m; when m = m;,, the transmitted signal is s{¢). Thus
the correspondence

m = m; <=5(t) = 5,(t) (4.2)

defines the transmitter. _The a priori probabilities {P[m;]} specify the

input source,

The first part of this chapter is devoted to investigating how the received
signal r(f} should be processed in order to produce an estimate, 1, of the
transmitter input m that is optimum in the sense that the probability of
error

P[€] = Pl 5 m] (4.3)
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is minimum. The investigation results in the determination of the optimum.

receiver structure; that is, in the specification of what operations to per-
form on r{?).

In formulating the optimum receiver design problem, we assume that
the a priori probabilities {P[m,]} and signals {s{(#)} are knmown. The
chapter concludes with a discussion of how the minimum achievable
probability of error depends on the choice of these a priori data. In
particular, certain signal sets of pracﬂcal importance are evalnated and
compared.

In Chapter 7 we extend the results of this chapter to the design and
evaluation of optimum receivers for certain channels that disturb the

transmitted signal in ways more complicated than by the simple addition -

of white Gaussian noise.

4.1 BASIC APPROACH TO OPTIMUM RECEIVER DESIGN

In Chapter 3 we have seen that the transmitted signal s(z), the disturbing
noise ,(f), and the received signal #(¢) in Fig. 4.1 are random processes.
In addition, we have seen that a random process is specified in terms of
the joint density functions that it implies. The key to analyzing com-
munication situations such as that in Fig. 4.1 is to find some way to
replace all waveforms by finite dimensional vectors, for which we can then
calculate the joint density function. We show in Section 4.3 and Appendix
4A that this replacement is permissible. As a preliminary, however, it is
convenient first to establish the operations performed by an optimum
receiver under the assumption that the replacement of waveforms by
vectors has already been accomplished.

4.2 VECTOR CHANNELS

The N-dimensional vector communication system diagrammed in Fig.
4,2 is a straightforward extension of the single random variable system
discussed in Chapter 2 in connection with Fig. 2.34. The transmitter is
defined by a set of M signal vectors, {s;,}. When m = m;, the vector s, is
transmitted,

S; = (Sp1s Sizp « - - > SN )5 i=01...,M—1. (4.4a)
The vector channel disturbs the transmission and emits a random vector
r=(F, ¥ FN) (4.4b)

We consider a vector channel to be defined mathematically if and only if

the entire set of M conditional density functions {p |s =s)}is known,

For brevity, we follow the usage of Eq. 2.104c and denote this sct by Prls
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For our vector communication system the optimum receiver is specified
as follows: given that any particular vector, say r == p, is received,
where

p = (Pls Pas v - PN)’ (4.5)
the optimum receiver must determine from its knowledge of p,,,, {s;}, and
{P[m,]} which one of the possible transmitter inputs {m;} has maximum a

posteriori probability. More precisely, the optimum receiver sets #t = my;,
whenever

Plm|r=p] > Plm,|r=1p]; fori=0,1,..., M —Li#k (4.6

Proof that such a maximum a posteriori probabilify receiver is in fact
optimum follows from noting that when the receiver sets #1 = m,, the

Disturbance

~

m 5 r . m
—)—'Transmitterl—)——I Channel

m} s} ) {maf

iplmi] E pr| -]

Figure 42 A vector communication system.

conditional probability of a correct decision, given thatr = p, is

P[C|r = p] = P[m, | r = pl. (4.72)
The unconditional probability of correct decision can be written
pie1 = Pie|x = o pe) de. (470
Since -
e 2 0

it is clear that P[C] is maximized by maximizing P[C | r = p] for each
received vector p. If two or more 1, yield the same a posteriori probability,
the receiver may select 7 from among them in any arbitrary way—for
instance, by choosing the one with the smallest index—without affecting
the probability of error.

Determination of the a posteriori probabilities {Pfm, | r = p]} follows
from the mixed form of Bayes rule, Eq. 2.103a:

Plm]p{p I m,) .

Plm;|r=p] = (4.8a)

pp)
Since the event m = m, implies the event s = s, and conversely, we have
rdp|m)=pde|s=s) (4.8b)
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Finally, since p,{g) is independent of the index i, we conclude from Eqgs.
4.6 and 4.8 that the optimum receiver, on observing r = g, sets W= my
whenever the decision function . :

Plm]plp|s=s) i=01L....M—1, (4.9)

is maximum for i = k.

A receiver that determines 7 by maximizing only the factor p,(p |s = s;)
without regard to the facior Plem,] is called a maximum-likelihood receiver.
Such a receiver is often used when the a priori probabilities {Pim]}
are not known. A maximum-likelihood receiver yields the minimum
probability of error when the transmitter inputs are ail equally likely. -

Decision Regions

The nature of the optimum vector receiver may be clarified by con-
sidering the two-dimensional example shown in Fig. 4.3a, wherein the
vectors are described in terms of coordinates g, and ¢, We assume
three possible input messages, with known a priori probabilities Plm,],
P[m,], and P[m,]. The corresponding transmitted vectors are assumed to
be

_ s, = (1,2),
s; =4{(2,1), (4.10)
Sy = {, -2).

If we now receive some point r = g, as shown, the receiver ¢an calculate
Pim.] ple [ s = s;) from knowledge of the functions p,, which define the
channel and thereby determine s in accordance with the preceding
discussion. :

We note that this calculation can be carried out for every point p in
the (g, @o) plane and that each such point is thereby assigned to one and
only one of the possible inputs {m;}. Thus the decision rule of Eq. 4.9
implies a partitioning of the entire plane into disjoint regions, say {I;},
i=0,1,2, similar in general to those shown in Fig. 4.3. Each region
comprises all points such that whenever the received vector ris in I the
optimum receiver sets 7 equal to m;. The correspondence

rinl,<=wm=m, (4.11)

defines the optimum receiver.
The regions {1;} are called optimum decision regions and are a natural
extension of the decision intervals considered in Fig. 2.35. We note for
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future reference that the optimum receiver makes an error when m = m,
if and only if r falls outside f;.

It is clear that the concept of decision regions, which for simplicity we
have illustrated for a two-dimensicnal plane, extends directly to the case

w2
2-———%
|
AN A B
™ 1 |
\\ I
\\ | |
| l I l 1
-2 -1 1| 2
|
AN
|
I
—2f———\g,
(a)
)

(b) é

%
F.lgure 4.3 A three-signal vector communication problem: (a) three two-dimensional
signal vectors and a possible received signal p; (4) decision regions.

of an arbitrary number of possible inputs {m,} and to corresponding
sigqals {s,} that are defined on an arbitrary number of dimensions. The
decr:-;ion function of Eq. 4.9 then implies a partitioning of an N-dimensional
received signal space into M disjoint N-dimensional decision regions {,}.
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Additive Gaussian Noise

The actual boundaries of the decision regions in any particular case
depend by Eq. 4.9 on the a priori probabilities {P[m]}, the signals {g}, '
and the definition of the channel p,,. In some instances the CBICl:llatlon
of these boundaries may be simple; in most it is exceedingly dlﬁ.icult.
Fortunately, many situations of practical interest fall into the simple
category. . )

To illustrate a relatively straightforward situation, consider the case in
which the channel disturbs the signal vector (as shown in Fig. 4.4) simply

Receiver

{ i } [ 5 ] { m; l
{Plmi]| _
Figure 44 An N-dimensional vector communication system.

by adding to it a random noise vector

n= (s, fy, - - - » Ax). (4.12)

The random signal vector s = {5y, 5y, . - ., Sy) and received vector r are
then related by

r=s+n=0(s+n,5%+ . .., 5N+ (4.13)

Since Eq. 4.13 implies that r = p when s ='s; ifand only if n = p — s,
the conditional density functions p,, are given by

plpls=s)=plp—s|s=s) i=01....,M=1 (414

We now make the often-reasonable assumption that n and s are
statistically independent (cf. Eq. 2.104):

Pujs = Pur (4.152)
Hence
polp —s:|s=s)=ple —s); 2L (4.15b)
The decision function of Eq. 4.9 is therefore
P} pale — 8O- (4.16)

In order to simplify the decision function still more, v\fe must specify
the noise density function p,. An especially simple and important case
is that in which the N components of n are statistically independent,
zero-mean, Gaussian random variables, each with variance 0% From
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Eg. 3.57 we then have

1 1 N
Pol(@) = (2ot %P (—— 5 glocf). (4.17a)

The notation can be contracted by observing that the squared-length of
any vector o is defined to be the dot product of e with itself. In the familiar
case of N = 2 or 3 we have -

hY
o) = ot oo = Dar? (4.17b)

=1
where the {,} are the Cartesian coordinates of e For larger N length is
defined in the same way and Eq. 4.17b remains valid. Thus Eq. 4.17a can
be written
1 2, 2
—_— — o]/ 2e
Paler) = e e . (4.17¢)
Substituting Eq. 4.17c in Eq. 4.16, we see that for this p, the optimum
receiver sets ¥ = m, whenever

Plm,] e~ie—sd%2s? (4.18)

is maximum for i = k. [The factor (2702~ is independent of / and its
discard entails no loss of optimality.] Finally, we note that maximizing
the expression of Eq. 4.18 is equivalent to finding that value of i which
minimizes
e — ;)2 — 20%1In P{m,]. (4.19
The decision function of Eq. 4.19 is easily visualized geometrically.
We recognize that the term |p — ;|2 is the square of the Euclidean
distance between the points p and s;:

RS
lp — sid* = > (p; — 55"
)

Whenever all m, have equal a priori probability, the optimum decision
rule is to assign a received point p to m, if and only if p is closer to the

_point s, than to any other possible signal. For example, consider the

two-dimensional signal set of Eq. 4.10. 1f all three messages are equally
probable, the decision regions are those shown in Fig. 4.5a; when the
three messages have unequal a priori probabilities, the decision regions
are modified in accordance with Eq. 4.19, as indicated in Fig. 4.55.

Once the decision regions {/;} have been determined, an expression for
the conditional probability of correct decision follows immediately:

P[C | m,] = P[cin [, | m;] = f 2o | s =s) de. (4.208)

I
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Figure 4.5 Optimum decision regions for additive Gaussian noise: - (a} the boundaries
of the {I;} are the perpendicular bisectors of the sides of the signal triangle whenever
Plm] = Pim] = Plmal; () the boundaries of the {f;} are displaced when Plm] >

Plm,] > Plm:].
For additive equal-variance Gaussian noise this becomes

PG| m]= fp,,(p —s;}dp

I

! —lo—s:]* f20" -
= —— e | e (4.20b)
(2mo®)

I;
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The over-all probability of error is
M-t

P81 2 1 —P[Cl=1— 3 P[m]P[C|m}. (4.206)

In Section 4.4 these expressions are evaluated for certain (important)
situations in which the decision regions are such that the integrals can be
easily calculated or approximated.

Multivector Channels

In the “diversity” communication system shown in Fig. 4.6, in which
the transmitted vector s is applied at the input of two different channels
and the receiver observes the output of both, it is natural to describe the

Channel | T!
No. 1
px']I !s
m s m
Receiver —TE——
. -
jmi i}
{P[m"” Channel |__¥2
No. 2
pr2 s

Figure 4.6 A “diversity” vector communication system. [In many situations the
vectors s, ry, and 1, all have the same number of components, but this need not be so.]

total receiver input r in terms of vectors r; and rp that are associated
with each channel individually. Thus we write

r= (1'1, r'Z) é (rlla Fras - =« s Fags Fo1s Faos o ¢ v rm), (421&)

where
1= (g P - o o0 Fiids (4.21b)
rp = (o1, Fazs - - -5 Far)- (4.21c)

Given that vectors 1y = p, and 1, = p, are received, the a posteriori
probability of the /th message is

Pim,|r = pl = P[m; [r, =iz = gl (4.222)

where p 2 (p., p2)- With this notati-on, the optimum decision rule of
Eq. 4.9 is written: set 1 = m, if and only if

Plm]ple]s=s)=Plm]p., (o0 2|5 =8) (4.22b)

is maximum for / = k.
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The theorem of irvelevance. In many cases of practical importance a
channel presents some data at its output which an optimum receiver can
ignore. For instance, consider the arbitrary vector channel in Fig. 4.7,
in which two inpuis r; and r, are available to the receiver. Letus determine
the conditions under which the receiver may disregard r, without affecting
the probability of error.

The optimum decision rule is again given by Eq. 4.22b. If we factor the
right-hand side of this equation in accordance with Bayes rule (Eq. 2.103),

41 .
m s ) i
Channel " Receiver
! i}
i} s
{P[mi]} prl,l‘ﬁls

Figure4.7 An arbitrary vector communication system described in terms of two output
vectors.

we see that an optimum receiver sets # = nm, following the observation
T, = P, Iy = @, if and only if the decision function

Pl p. (o1 ‘ § = Si)prz(P‘Z‘ 5 =85, = @) (4.23)

is maximum for i= k. If r, when conditioned on 1, is statistically
independent of s, then for every value of p,

Pef@e] 8 =550 = o1} = pr(pa| 11 = 1)
= a number independent of i. (4.24)

When this is so, the knowledge that r, = p, can never enter into the
determination of which value of i maximizes the expression of Eq. 4.23;
an optimum receiver may therefore totally ignore ry. Thus we have the
important theorem of irrelevance: an optimum receiver may disregard a
vector 1, if and only if :
Profers = Prory (4.252)

Equation 4.25a is a necessary and sufficient condition for ignoring r. A
sufficient condition is that :
Prolrys = Pry- (4.25b)

The meaning and utility of this theorem may be demonstrated by
considering three examples, each of which involves two additive noise
vectors m, and n, that are statistically independent of one another and of
s. The first example, shown in Fig. 4.8, illustrates a situation in which
Eq. 4.25b is valid: the received vector r, is just the noise m,, which is
statistically independent of both n, and s, hence of s and 1, = n, + 8.
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Transenitter

D

Receiver r————o0

rz=ng
y

Figure 4.8 The vector r, is irrelevant becanse Pryjrys = Prye
Accordingly,
Przlrl,s = Pr2 ) (4-26)
and r, is irrelevant, which is obviously sensible.

The second example, shown in Fig. 4.9, illustrates a situation in which
Eq. 4.25a is valid but Eq. 4.25b is not. We have two vector channels in
cascade and a receiver that has access to the intermediate output r, as well
as to the final output r,. Since r; is a corrupted version of r;, hence

Channel No. 1 Channel No.2

[ 7
| ] e
m , 5 1 [, oL, ! | )/ __,._ﬁ
——{ st} >— (@)L
Ll L Receiver
Pp=s+4n;

Figure 4.9 The vector ry is i =
g 2 Is irrelevant because pryr. s = Pryjry-

depends on m only through r,, we feel intuitively that r, can telt us nothing
about s that is not already conveyed by r,. We prove this formally by
noting that, since r, = r; + n;, when r,; is known r; depends only on the
noise my, which is independent of s, Thus for all g, and {

Pr2(92! F=p,8=8)=p,(p: — p1) = Prz(Pz l I = @)
The condition of Eq. 4.25a is satisfled, and the theorem of irrelevance
states that 1, is of no value to an optimum receiver. :
The third example, shown in Fig. 4.10, illustrates a situation in which
1, cannot be discarded by an optimum receiver, We have
Pr2(92| = Pn s = s;) =Pr2(92| l"11 =p —6,5=8)
=Pn2(9_2 — s | m=p; —8,8=5,)
= Pn2(92 — p1 s
}vhich does depend explicitly on /. Thus Eq. 4.25 is not satisfied and r,
is nnot irrelevant, even though r, and s are pairwise independent. This is

. }
a "My

“>L

=

L4 1

— - S - "‘l > -
My ® p.r[p,—n;) =P Y AL

vl
= P
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m © s ri=s+m

%

Receiver

Figure 4,10 The vector ry is not irrelevant,

clearly sensible, since (as an extreme casc) knowledge of 1, provides a good
estimate of ny, hence of s, when p, is such that with high probability n,
is very small compared to ;. '

The theorem of reversibility. An important corollary of the theorem
of irrelevance is the theorem of reversibility, which states that the minimum
attainable probability of error is not affected by the introduction of .a
reversible operation at the output of a channel, as in Fig. 4.11a. As
indicated in Fig. 4.114, an operation G is reversible if the input r, can be
exactly recovered from the output r,. In such a case it is obvious that

Pryfrys = Projrye

so that Eq. 4.25a is satisfied, rp may be discarded, and the theorem is
proved. An alternative proof follows from noting that a receiver for r,
can be built which first recovers r,, as shown in Fig. 4.11¢, and then
operates on 1, to determine #.

] T T
e Kl
(a} '

{b}

E3

1 ra
s ry r o1 ry Optirpum
—>—[Channel i er J Gt I receiver

for re

Cptimum receiver for xy

Figure 4.11 Insertion of a reversible operation, G, between channel and rteceiver.
The operation inverse to G is denoted G For example, G might be the addition, and
G- the subtraction, of a fixed vector a. -
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4.3 WAVEFORM CHANNELS

The foregoing discussion of irrelevance provides the analytic tool that
is required in order to replace the waveform communication problem of
Fig. 4.1 by an equivalent vector communication problem. We therefore
return to consideration of this figure, in which the received waveform r(7)
is given by

(1) = s(6) + n,(5) (4.27

and n,(} is a zero-mean white Gaussian noise process with power density

SN ="2; —w<f<om (4.28)

We firsi represent the signal process s(¢}.in an equivalent vector form and
then show that the relevant noise process may also be represented by a
random vector,

Waveform Synthesis

A convenient way to synthesize the signal set {s:(1)} at the transmitter of
Fig. 4.1 is shown in Fig. 4,12. A set of N filters is used, with the impulse
response of the jth filter denoted by @{#). When the transmitter input is

m;, the first filter is excited by an impulse of value s,,, the second filter by
an impulse of value 5,5, and so on, with the Nth filter excited by an impulse
of value s, The filter outputs are summed to yield s,(z). Thus the
transmitted waveform is one of the M signals

I\f
s(y=2s;pt);  i=01,...,M—1 (4.29)
J=1

s, Ot}

L]
- Impulse
i=0,1,%, M=1 generators

v .
Transmitter

Figurc 4.12 Signal synthesis. The output 5,(t} depends oni through the choice of the
impulse weighting coefficients {s;;}. :
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For ease of analysis we assume that the N “building-block™ waveforms
{@,(1)} are orthonormal, by which we mean

® _ =t
["wopoa={5 12 (4.30)

foralljandl,léj,léN. _ _ )
We shall soon see that the error performance which can be achieved
with signal sets generated in this way is completely independent of the

z TOTOTHTT ™
R P I
2|EITEIEE! 1%
=T E) By ol | &l
Bl § 8 & 88 | &
1 1 1 1 1 1 1 t
Nt
—3e| T |
i,
a (a)
w1t
21T
T

N

waft)

/\
\ARVA

‘F AWAWA
VAVAVAVARS

{2
Figure 4.13 Examples of arthonormal waveforms: {g) orthonormal time-translated
pulses; (b) orthonormal frequency-transtated pulses.

actual waveshapes chosen for the {pLD}; only the coefficients {s;;) and

the noise power density /2 affect minimum attainable P[&]. T-hus
the {p,)} may be chosen for engineering convenience. In application,
one frequently encounters the set of time-translated pulses

g =glt—jn; j=LZ....N (4.31a)
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shown in Fig. 4.13a, where g(f) is the unit energy pulse

I
g(i) = A/Z o Trse<h, (4.31b)

0: elsewhere.

A second common example is the set of frequency-translated pulses

2.
=sin 27 = t; 0Lr<T, |
@) = “/; T = J=12,...,N (432

0; elsewhere,

shown in Fig. 4.13b. It may be readily verified that both sets of waveforms
satisfy the orthonormality condition of Eq. 4.30. [The prefix “ortho”
comes from “orthogonal,” meaning that the integral of @#) ¢, (f) is
zero whenever j # I; the suffix “normal” means that the integral is unity
whenever j = L]

It may seem restrictive at first to consider only waveforms {s,(1)} that
are constructed in accordance with Eq. 4.29. This is not so: any sef of
M finite-energy waveforms can be synthesized in this way. This and the fact
that the number of filters required to do so never exceeds M, is proved in
Appendix 4A. Tt follows that there is no loss of generality entailed in
considering only transmitters that operate as shown in Fig. 4.12.

Geometric Inferpretation of Signals

Once a convenient set of orthonormal functions {p«(7)} has been
adopted, each of the transmitter waveforms {s,()} is completely determined
by the vector of its coefficients:

8 = (i Sigs -+ Seds i=0,1,...,M— 1. (4.33)

As usual, we visualize the M vectors {s;} as defining M points in an
N-dimensional geometric space, called the signal space, with N mutually
perpendicular axes labeled @y, ¢, . . ., gy If we let ¢, denote the unit
vector along the jth-axis, j=1,2,..., N, ¢ach N-tuple in Eq. 4.33
denotes the vector

;== S + Sppe + 0 T+ S P (4.34)
The idea of visualizing transmitter signals geometrically is of funda-

mental importance. For example, Fig. 4.3 (which we have already
considered) represents a two-dimensional space with three signals: N = 2,
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w2

50

L 1)

Figure 4.14 Four signals in a two-dimensional signal space. Each vector s; is Tocated
a distance V' E, from the origin.

M = 3. Asanother example, consider the set of two orthonormal functions

"%(t) _ A/;% sin 2mfyt; 0t T (4.350)
0; elsewhere
ﬁcos 2arfot; 0t <T

pult) = T (4.35b)
0; elsewhere,

where £, is an integral multiple of 1/¥. If we choose

s0=(0,VE,) |

s; = (—VE,, 0) (4.36)
s, = (0, —VE))

s = (VE,, 0),

the vector diagram of Fig. 4.14 represents the set of four phase-modulated
transmitter waveforms

7E i
—§c02(t+—); ot T
(1) = ~/T Ay =

0; elsewhere

i=0,1,2,3, (437a)

where’

&

o
E =J s(ody;  i=0,1,2,3 (4.37b)

B 1_.‘-. oi‘ L
A.;j(bé"" Boit, ¥ Por P, = G-, ES\F;MLEF '

o TT o bet = 2B am okt 3)
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is the energy dissipated if 5{¢) is a voltage across a 1-ohm load. Similasly,
if @,(7) and @.(7) are two nonoverlapping unit pulses, the vectors of Eq.
4.36_and the diagram of Fig. 4.14 represent the four entirely different
waveforms shown in Fig. 4.15. The actual waveforms {s,(/)} depend on

1
; 7
s |g |
g § |
|
T 2r ¢
sgft} s1ft)
i x E,
’V"Dx‘" % J; 0 T I .
' 27
h'l'tj [¢’|‘;o go"
-
o) ' t B
0 T 27 —F
£2(2) saft)
T 27 ¢ %
— /B :
T 0 T 27 ¢

Figure 4.15 Another set of waveforms correspanding to the vector diagram of Fig.
4.14.

the choice of the {@,(#)}, but their geometric representation depends only
on the {s;}.

Recovery of the Signal Vectors

So far we have considered the synthesis of the signal waveforms {s,(1)}
from corresponding signal vectors {s;}. It is also straightforward to
recover the vectors from the waveforms. We observe that by virtue of
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the orthonormality of the {@,(1)}

fi s{0) g2) dt =£):D |:§1 834 apj(r):l'qaz(z) dt

N w0
= _21 s | el g dt
= —w

N

=3 80 = Sus (4.38)
i=1
in which we use the Kronecker delta '

1; I=j
Sy = / (4.39)
0; [ # j.

Cérrying out the multiplication and integration for each epl(i), 1IN,

we obtain
s, = (812 Sgzs - -+ 5 Sen)-

The procedure can be implemented as shown in the block diagrﬁm of
Fig. 4.16. Tf s(f) is applied at the input, the output is a vector

A
§ = (Sl’ Sgs e e uy SN) (4'403)
with components :
Af® .
8 =f s(t)y @ 0) dt; ji=12,...,N. {4.40b) .
—00
If 8(t) = 5,(2), then s = s,
@1t
& .
wa(t)
st}
o .
|
l e (8
1
® ”
Figure 4.16 Extraction of s =(s;, 5, . . ., 8y) from s(t). Each of the integrations

extends over the duration of the g;(r) with which it is associated.
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Irrelevant Data

Now suppose that the input to the bank of N multipliers and integrators
in Fig. 4.16 is not s(¢), but rather the received random process r(?) of
Fig. 4.1. In this case the integrator ouiputs, say

rs éf P ptyd;;  j=1,2,...,N, (4.412)
are random variablest which together constitute a random vector
r =y P T (4.41b)
Since (&) = s(f) + n, (1), we have
rn=s+n, : (4.42)
where
= (ny, . - -, Hy) (4.432)

is the random vector with components

ol
n, = f D e Hdt;  j=12,...,N. (4.43b)

‘We assume that n,(¢), hence n, is statistically independent of s.

‘Were it not for the noise vector n, we have seen that r; would coincide
with whichever one of the {s;} was actually transmitted, When the
presence of m cannot be neglected, this, of course, is no longer tfrue.
What is true, however, is that the vector ry in and by itself does contain
all data from r(?) that is relevant fo the optimum determination of the
transmitted message. The objective of this section is to prove this
important fact.

The first step in the proof is to note that the waveform equation
corresponding to the vector equality of Eq. 4.42 is

R0 23 1,000 = 50 + ), (4.442)
in which = |
N
W =2 s, pA0) (4.44b)
n(f) é_ﬁvj n; (). (4.44¢)

+ The value r(w) assigned to any point e of the sample space on which r(f) is de-
4]

fined isf rlw, 1) @) di.

O
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“The next step in the proof is to note that in terms of these random
processes we may write

r(f) = ri(8) + rt), (4.45a)
where :
) = 1) = rfd)

= [s(£) + ()] — [s(2) + ()]
= n{t) — n(f) (4.45b)
is a random process that is independent of the signal transmitted. The

fact that r(f) is not in general identically zero implies that the noise
process #,(f) cannot be represented with complete fidelity by the finite

orthonormal set {g.(1)}.

We have succeeded in Eq. 4.45a in decomposing the received waveform
#(7) into two waveforms, ri{f) and ry{), the first entirely specified by the
vector r; and the second independent of the transmitted signal. We now
show that the optimum receiver may disregard ry(?) and therefore base
its decision solely upon the vector r; =s + n.

Observe that any finite set of time samples taken from ry(z), say

1y = {6, ra(te), - - ., ralE ), (4.46)

depends only on n,(f). Since this is true also of n, the vectors ry and n
are jointly independent of s. As a preliminary to invoking the theorem of
irrelevance (Eq. 4.25b and Fig. 4.8), we observe in consequence that

_ Pra.n,s

Przh’ps = Prns = Pas

=PI'2-I1P5
Pnps

=Prz|n'

Thus r, may be discarded by the optimum receiver provided that it is
also independent of n. Since a random process is completely described
by the statistical behavior of finite sets of time samples, it follows that the
entire process r,(f) may be discarded whenever the statistical independence

of r, and n holds true for every possible finite set of sampling instants

n 1= 1,2,...,q In other words, the random process r,(f) may be

ignored 1 1L 15 statisticatly independent of the process a(s).

The required proof of statistical independence rests on the fact that
both #(r) and r(¢) result from linear operations—integration, addition,
and subtraction-—on the Gaussian process 7,(f). Thus n(t) and ry() are
jointly Gaussian processes, so that by analogy with Eq. 3.130 any two
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random vectors obtained [rom n(¢) and ry(f), respectively, are statistically
independent if the covariance

E[n(s) ()] — E[n()] E[ro(5)]

vanishes for all observation instants ¢ and 5. In particular, since n,(f),
hence n{s) and ry(f) as well, are zero mean, it suffices to show that

Efn(s)ri{6)] = 0; for all 7 and s. (4.47a)
From Eq. 4.44c we have

‘\f
E[n{(s) ro(t)] = E[rg(t)zn ; qu-(s)] -
. 9={‘

N
= Z; @(5) Eln; r(0)], (4.47b)
i=
so that we need prove only that
mrat) = 03 for all j and 7. (4.47¢)
In order to verify Eq. 4.47¢, we note from the definitions of Egs. 4.43
and 4.45 that
ngrs(t) = nyln, (8} — n(0)] = np,(8) — na()
o N
=" ROR@ e da— 3 Eme0). @Gz

—o

The integral can be evaluated with the help of Eq. 3.136b:

[ momm ok o= ot~ o) e da

—0

=X st — @) oy doe =0 g,
= ZJ—w 8(t — o) o) dor = 3 @;(f). (4.48b)

Evaluation of the sum follows from the fact that
w = [ ST o) 940 4o df

— ‘%J:: Jj:o 3o — B) @) @) da dﬁ_

lN) o
=22[" @ pipras = 300, (4.450)
Thus
N - 'Nao
S 00 =22 00, (8480)
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Substituting Eqs. 4.48b and 4.48d into Eq. 4.48a, we have

nra(t) = i\g—" @) — J% p{t) =0; for all j and ¢, (4.486)‘

which was to be shown.

This completes the proof that the process r4(z) is statistically Lndcpendent
of n(f). We conclude that the vector r; defined by Eqs. 4.41 does in fact
contain all data relevant to the optimum determination of # for the
communication system of Fig. 4.1, '

Joiﬁt Density Function of the Relevant Noise

In addition to the result that ry(f) is irrelevant, the foregoing analysis
yields valuable information about r,. First, Eq. 4.42 establishes that the
relevant effect of the additive white Gaussian noise #,(¢) is to disturb the
transmitted vector s by the addition of a random noise vector n:

rp=s-+n (4.49a)

Second, the discussion leading to Eq. 4.47 implies that n is a set of &
jointly Gaussian random variables, {n;}, each of which has zero mean:

m=0; j=1,2...,N (4.49b)

Third, Eq. 4.48c establishes that the {n,} have zero covariance and equal
variance:

Yoo -
=12 (4.49c)
0; 1],
Thus the joint density function p,, in the notation of Eq. 4.17, is
1 el v
@)= ————¢ ) 4.49d
Pale) (N (4.49d)

which implies that the {n;} are statistically independent. In particular,
we note that p, is spherically symmetric, that is, that p (e} depends on
the magnitude but not on the direction of the argument vector e.

Invariance of the Vector Channel to Choice of Orthonormal Base

Since a receiver need never consider the process ry(t) of Eq. 4.45, we
shall henceforth disregard it and designate the relevant received vector
simply by r rather than by r,. - '

Once provision is made for calculating the vector r, the remaining
receiver design problem is precisely the same as the vector receiver
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problem which we have already considered in connection with Fig. 4.2
and Eqs. 4.13 and 4.17, with the variance o2 set equal to N°yf2. The
relationship between the vector and waveform channels is illustrated in
Fig. 4.17, in which we break both the transmitter and receiver into two
parts. The “vector transmitter” accepts the inpui message m and generates
the vector s; whenever m = m;; the “modulator” then constructs s,(z)
from s, and the waveforms {p,(f)}, which we call the erthonormal base,
At the receiver the ““detector” operates on the received waveform r(¢) and

Transmitter Dpttmum receiver
A A
I AN . N
m L] s(t) rit} r 7
Vector Waveform Vector
Source  [5— iransmitter Fa— Modulator = channel o= Detector |5~ receiver —
{mi} isi} fsitol it
A"
— —
Vector
channel

Figure 4.17 Reductiofl of waveform channel o vector chamnnel. The modulator
converts s to s(¢) by the mechanism of Fig. 412, The detector exiracts the refevant
received vector r from r(¢) by the mechanism of Fig. 4.16.

produces the relevant vector r; the “vector receiver” then determines
which message is most probable from observation of r and knowledge of
the {s;} and {P[m.]}.

We have already noted that a particular gcometnc configuration of the
signal vectors {s,} may be converted to many different sets of waveforms
{s,(} by appropriate choice of the orthonormal base. In addition, we
now note that the derivation of p, relies only on the fact that the {p,(£)}
are orthonormal and depends in no way on the specific waveshapes of
these functions. Thus, as claimed earlier, whenever their vector rep-

resentations {s,} are the same, systems with different sets of transmitter

signals {51}, i=0,1,..., M — 1, reduce to the same vector channel
and yield the same minimum probability of error, P[§]. The expression
for P[&] is given in Eq. 4.20, with ¢® specialized to JV,/2 in accordance
with Eq. 4.49¢. .

4.4 RECEIVER IMPLEMENTATION

We have seen so far that the optimum receiver in Fig. 4.17 performs
two functions: first, the receiver calculates the relevant data vector

r= (rh LTSI r_V): (4.503.)
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where

r, =f (B g d;  j=1,2,...,N. (4.50b)

Then, in accordance with Eq. 4.19 (with ¢ = N'y/2), the receiver sets
# = my, if the decision function

ir — )2 — N, In P[m,] (4.51)

is minimum for i = k. In practice, squarers arc avoided by recognizing
that

N
ll‘ - Sit2 =j21(rj — S'L'j)2

N
= = 2 s = IFP = 2res; + s’ (4.522)
=1
in which ’
AN
Fes; =% 7Sy (4.52b)
=1
is the dot product of the vectors r and s,. Since |r|* is independent of
a decision rule equivalent to Eq. 4.52 is to maximize the expression

(r-s)+cs © (4.532)

where .
62 MN mPm]— sl i=0,1,...,M—1 (453b)

Correlation Receiver

When the relevant received vector r is obtained from the received
waveform by the bank of N multipliers and integrators shown in Fig. 4.16,
the teceiver is called a correlation receiver. When M is not large, the

numbers

N

res,=ors; i=01...,M—1

=1 .
can be obtained from r and knowledge of the {s,} by attaching a set of
M resistor weighting networks (with weights proportional to the {5, to
the integrator outputs or by other analog computer techniques. When M
is very large, digital computation of the {r- s;} becomes preferable. A
block diagram of an optimum correlation receiver is shown in Fig. 4.18.

Matched Filter Receiver

If cach member of the orthonormal base {¢ (1)} is identically zero
outside some finite time interval, say 0 < ¢ < T, the use of the multipliers
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Figure 4.18 Diagram of the correlation receiver. The bias terms {¢;} are given by
Eq. 4.53b.

shown in Fig. 4.18 can be avoided. This is desirable, since accurate
analog multipliers are hard to build. Consider, for instance, the output
u(t) of a linear filter with impulse response A,(t). When r(z) is the filter
input, we have

u; (D =f o) Bt — o) det. (4.54a)
If we now set "
h{t) = @T — B, {4.54b)
the output is
u{f) =f (o) (T — £ + o) dev. (4.54¢)
Finally, the output sampled at time ¢ = T'.is
wD =] @) oy an L 7, (4.54d)

where the second equality follows from Eq. 4.50b. Thus the optimum
decision rule of Eq. 4.53 can also be implemented by the receiver shown
in Fig. 4.19, '

A filter whose impulse response is a delayed, time-reversed version of a
signal g,(7) is called matched to ¢,(f) and the optimum receiver realization
of Fig. 4.19 is a matched filter receiver. The requirement that ¢,(f} vanish
for 2> T is necessary in order that the matched filter may be physically
zealizable, that is, in order that 4(s) =0 forz < 0.

For both the correlation and matched filter optimum receiver realizations
we note that the “bias™ terms

¢; = 3(NpyIn Plm;] — Is;/®
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represent a priori data that are available to the receiver independent of -

the received signal (). In the particular case in which the bias term is
the same for every i (in particular, when |s;|% is constant and P[m,] = 1/M
for all ), these bias terms do not affect the choice of index { that maximizes
the decision function of Eq. 4.53 and may therefore be deleted from the
receiver diagrams in Figs. 4.18 and 4.19 without loss of optimality.

€o

r(t) |
-] I €1
N | ¥ -7
a(t) re Weighting Select
\T\o—>— matrix largest N
| . i
| Ny
| ] :
| ETJ Sij
=1
1 Cafu )
(i) E ™~ FrS-t
b
Matched
filters Sample att = T'

Figure 4.19 'Diagram of the matched-filter receiver.

A simple example of a matched filter occurs when the signal to be
matched is

- Izc0527rfjt; 0LigT
T (4.55a)

0; elsewhere,

D) =

where f; is an integral multiple of 1/27. Then
hy(t) = @T —__1')

+~/£cosz-nf§t; 0Lt T
T (4.55b)
. 0; elsewhere,
as shown in Fig. 4.20a.
The voltage response of the infinite-Q parallel tuned circuit shown in
Fig. 4.20b to a unit impulse of current 1s

)= tcos—=: 0L t< o,
c VIC
where we have assumed that the initial energy storage in L and C at time
= 0 is zero. It is clear that when 1;'\/LC = 2nf; and 1/C = \/2,’1" the
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impulse response h(f) coincides with A{f) over the interval 0 < ¢ € T,
although it does not do so for ¢ > T. Thus the matched filtering operation
for ¢,() can be instrumented as shown in Fig. 4.20c. The parallel switch
closing briefly at time 7= 0 dumps any residual energy in the filter,
ensuring that signal energy received earlier than ¢ = 0 does not contribute
to the output at time t = T. The series switch closing briefly at t = T
samples the filter output at the proper time. The entire cycle can be
repeated during the interval T < ¢ < 27, although care must be taken to

\/_}\(p,;)\(h (8 = (T —
/\ .
. 0] ¢
\ ; \ .r C= ~Tf2

S AN

. Sampleatt=T
i(t) r{t)
+ (current)
Close
L Z=C  ufl) ey /L =g w(T)
t=0
(b) {c)

Figure 4.20 TIntegrate-and- dump filter. In application the resonant c1rcu1t may be
lossy, so long as its time constant is much greater than T,

be sure that the desired output is always sampled just before the filter is
dumped. A matched filter of this sort is called an integrate-and-dump®
circuit. Such a filter is not time invariant, but it does give the desired
impulse response as long as the timing of the switches is properly
synchronized with respect to ,(¢).

Parseval relationships, The vector decision function of Eq. 4.53 can be
interpreted directly in terms of time functions by means of the followmg
Parseval relationship. Consider an orthonormal set {g, (D)}, j = 1, 2,.

N, and any two waveforms defined by

N
O gl 0] (4.56a)

N
g = > & 0, (4.56b)



238 OPTIMUM RECEIVER PRINCIPLES

with corresponding vector representations

f=(fufo- . n) (4.57a) .

g= (81: gz’ AL ] gN)' (457b)
Then '
N N
J HOFIOF1 —f E 2 Figo o) p{0) dt
N N
= _Z > fig) %(t) @(t) dt

.
I
-
3
-

fjgl Jl_zfggg =f- 8-

.

I
HM<
\IM./

Thus the well-known Parseval equatmn62 from Fourier theory,
[Tswawai=["rnema,

where F(f) and G(f)} are the Fourier transforms of f(¢) and g(#), can be
extended to read

[roswa=["rpena=rs @
In particular, when g(r) = f(z), we have }
[“roa="rora = (855

Equation 4.58a states that the “correlation” of f{#) and g(7), defined as
the integral of their product, equals the dot product of the corresponding
vectors. Equation 4.58b states that the “‘energy” of f(¢), normalized to
a one-ohm load, equals the square of the length of the corresponding

vector f.
Equation 4.58b provides an immediate interpretation of the bias term
¢, in the additive white Gaussian noise decision rule of Eq. 4.53. We have

= LNy In Plm,] — E)), (4.59a)
where

E, éJ- s.2(f) dt = energy of the ith signal. (4.59h)
Moreover, from Eqs. 4.29 and 4.50 we also have
@ . : ] N
f r(t) s(0) dt =J. -r(t)[Esi,- tpj(t)] dt
—e -~

N

= z Si ]"(f) ‘P:(f) dt = _zlsiﬂ"j =TI-5;.
i=
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Thus, in terms of the complete received waveform r(f), the optimum
decision function of Eq. 4.53a is

fm r(e) s,() dt + ¢;. (4.60)

In view of Eq. 4.60, the matched filter (or the correlation) receiver can
be instrumented directly in terms of the {s()}, i=0,1,..., M — 1, as
indicated in Fig. 4.21. At first glance this might appear to eliminate the
need for the weighting and summing operations in Figs. 4.18 and 4.19,

co
ri{t)
— |

(24

I
Select

[
[
I M largest
|
|
|

F,

79— ]

Sample
att=71T

Figure 4,21 An optimum receiver with A filters matched directly to the signals {s,(1)},
which arg assumed to have duration 7.

Actually, of course, these operations are still being perforhled but now
occur within the M matched filters (or correlators), We have already
remarked (and prove in Appendix 4A) that the number, N, of orthonormal
functions required to express any set of M signals {s{(r)} in the form of
Eq. 4.29 is always less than or equal to /. When M 3> N, a situation
often encountered in practice, it is usually much less expensive to use N

filters (or correlators) matched to the {@(7)}, plus an analog or digital

computer, than it is to use M filters (or correlators) matched directly to

the {s{5)}.

Signal-to-ngise ratio. Wc may gain insight into the optimality of the
matched filtering operation by a signal-to-noise ratio analysis. Consider
the sitvation illustrated in Fig. 4.22, in which A(f) is an arbitrary linear
filter, I"is an arbitrary observation instant, and.g(#) is any known signal.
[In particular, we may choose g(#) to be one of the orthonormal base
functions.] The sampled output ¥ may be written

F=F+n, ' (4.61)
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r(2) = () +nu(t) r=F+n
= ) G%ﬁ
Sampleat =T
Figure 4.22 An arbitrary filter, the output of which is sampled at t = T.

where 7, the mean of r, depends on (7) and the noise term # depends on
n,(f). We now show that the maximum attainable signal-to-noise powet
ratio, defined as )
SIN = P2n?, (4.62)
cccurs when the filter is matched to p(f); that is, when

W) = (T — 1) (4.63)

In application, T is taken large enough that h(r) is realizable.

We prove that this A(f) maximizes §/N by invoking the Schwarz
inequality, one form of which states that for any pair of finite-energy
waveforms a(f) and &(t),

[ f;a(:) ) d:T < U_Zaz(z) dt:l Uj; B(1) dt]. (4.64)

The equality obtains if and only if b(t) = ca(t), where ¢ is any constant.

The validity of Eq. 4.64 is evident if we make an orthonormal expansion
of the waveforms a(7) and b() by means of the Gram-Schmidt procedure
discussed in Appendix 4A. We then have

a(t) = ay pi(t) + a2 (1)
B(£) = by pu(8) + by a(),
where J
F i) p, (O dt =8y  Lj=1,2

Figure 4.23 illustrates that the angle between the two vectors

as (a1, a) (4.652)
b = (bs, b2) '
is given by
a-b j a(t) b() dt
cos f = — ; (4.65b)

|a| |b] - [ -anm) drf;ba(t) dz:\ 7

The second equality above rests on the Parseval relations of Eq. 4.58.
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W

o)

o e
005 6 =Tal = a Tn]

Figurs 4.23 The angle between two vectors.

The Schwarz inequality (Eq. 4.64) results from recognizing that [cos 8} < L.
Furthermore, lcos 8] = 1 if and only if b = ca, that is, if and only if
alt) = ¢ b(1).

We now apply the Schwarz inequality to the maximization of S{N.
For the random variable » of Fig. 4.22,

r=| o=
and -

| o= E[ L ijonw(T — @) nu(T = §) h) H(B) d dﬁ}
= 20" 7 55 — ) o) 1(9) . ap

o e
- %ﬂf_mh%a) de.

From Schwarz’s inequality, for any /(7) we have

2 [ j Z (T ~ &) () docT

A —

(Nomf_ihg(a) da

I

2

8
N

fw (T — @) docjm Ko da fw @(a) do.
== . = . (4.66)
No/2

o2 | e
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Since the substitution of ep(T" — «) for Al«) satisfies Eq. 4.66 with the
equality, the ratio 8/ is indeed maximized when A(?) is matched to (), -

as claimed.

The frequency-domain interpretation of this result is instructive. Since
amplitude scaling affects the signal and noise in the same way, we need
consider only ¢ = 1. Then the transfer function of the matched filter is
given by i

H(f) =£:0<P(T — )¢ I dy

=J‘w (P(a)eijFf(T—l) de
—o

= g P O*(f), {4.67a)

where the signal spectrum is

o) = o e 2 |

@(De 277 dr. (4.67b)

Thus
H(f) = [B(f)] O (4.67¢c)

In accordance with the inverse Fourier transform,

o0y = [ aenerra, 468

we may interpret the filter input @(f) to be & composite of many small
(complex) sinusoids: the sinusoid at frequency f has amplitude [D(f)] df
and phase 6(f1). In passing through the filter this component is multiplied
by H{f1), which changes its magnitude to |®(f})|® and its phase to

0(f) — [8(f) + 27T} = —2af,T.
Thus the filter-output sinusoid at frequency £ is

(DI df 2t T,

which has a maximum at r = T. Since this is true for every f;, all of the
frequency components of @(f) are brought into phase coincidence and
reinforce each other at £ = T; as shown in Fig. 4.24, an output signal
peak is produced at this instant.

Appreciation of the effect of the spectral-amplitude shaping caused by
|H(f)| can be gained by contrasting the matched filter with an inverse
filter, which has the transfer function '
e 1 itetrens 71 (4.69)

o @)l

Figure 424 An example illustrating that the output of the matched filter is maxirum
at the instant ¢t = T.

|20

@]

Figure 4.25 The inverse filter has high gain at frequencies for which |@(f)| is small,
whereas the matched filter gain is proportional to |®(f)]. -

243
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The inverse filter also brings all components of ¢(¢) into phase coincidence.
As shown in Fig. 4.25, however, the weaker components of (?) are

accentuated by the inverse filter, whereas they are suppressed by the

matched filter. Since the noise spectrum 8_(f} is flat over all frequencies,

the inverse filter exalts the out-of-band noise and the matched filter
subdues it.

Component Accuracy

So far we have presumed that the receiver knows exactly both the
transmitter signal vectors {s,} and the orthonormal base functions {,(1)}.
In practice, of course, limitations on component accuracy render this
knowledge only approximate. Alternatively, in the interests of economy
we might wish to settle for a system that is somewhat less than optimum.

In general, calculation of the precise trade-off between error per-
formance and the precision of receiver instrumentation is both tedious
and unrewarding. It is more instructive to visualize the nature and extent
of the problem geometrically. For example, assume that there are two
equally likely transmitter signals, say :

s(t) = :E-S:l%(f)- (4.702)

The corresponding vector representation is illustrated by the black dots
in Fig. 4.26. The receiver’s approximations to these signals might be

§(1) = £[H1:(0) + Sapa(D)]. (4.70b)
w2
k.
— — ?1
o —
.

Figure 4.26 The effect of receiver approximation.

These approximations are represented vectorially by the open dots in the
figure. The second orthonormal function g,(¢) is introduced to permit
complete generality in representing the receiver’s approximation of @4(¥).
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A receiver matched to these approximate signals would employ the
decision boundary indicated by the dotted line in Fig. 4.26, whereas an
optimum receiver would use the gp-axis as the decision boundary. It is
clear that the degradation in error performance is small as long as the
receiver’s approximations of the {s,(r)} are sufficiently accurate that the
probability of the received vector r falling into the shaded area is small
compared with the optimum -P[§]. This condition is met in general
whenever

e — s,f* = f_ ® 1500 — s dt

is small compared with the square of each intersignal distance, |s; — s;/%,
for all i and & = i.

45 PROBABILITY OF ERROR

We have seen in Section 4,3 that the problem of communicating one
of a set of M specified signals {s(f)} over a channel disturbed only by
additive white Gaussian noise always reduces to a corresponding vector
communication problem. In particular, we recall that the transmitter
signals are represented by M points {s;} in an N-dimensional space and
that the relevant noise disturbance is represented by an N-dimensional
random vector, n, with the spherically symmetric density function

1 e
Pfe) = N [N, (4.71a)

In accordance with the discussion leading to Eq. 4.19, the optimum
receiver divides the signal space into a set of M disjoint decision regions
{I.}; any point p is assigned to I, if and only if

|@ = 8iff — NgIn P[] < |p — 8,2 — N In Plm,]; for all i 5% k.

(4.71b)
The receiver output # is then set equal to m, whenever the received vector
r=s-n 4.71¢)

lies in . Since the vector communication problem is invariant to the
specific orthonormal base {p{}.j=1,2,..., N, that relates the {s;}
and the {s,()}, the probability of error is independent of the waveshapes
ascribed to the {g,(0}.

In this section we evaluate the minimum attainable error probability
{Egs. 4.20, with ¢® = N/2) for certain important vector signal con-
figurations, Except for M = 2, we assume that all M a priori probabilities
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{Pfm,]} are equal. The assumption is justified from an operational point
* of view in the discussion of “completely symmetric signals™ at the end of

this chapter.

Equivalent Signal Sets

In addition to signal sets that are equivalent by virtue of the fact that
their geometrical configurations are identical, different geometrical
configurations may also be equivalent insofar as error probability is
concerned. Insight into this fact is gained by considering the geometry
of the decision regions,

Rotation and translation of coordinates. In Fig. 4.27a we show a
signal s; and its decision region.J,, Whenever s, is transmitted, a correct

2

D

(a)

w2

w1

Figure 4.27 Equivalent decision regions. The concentric circles represent loci of
constant p,.
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decision results if n + s, falls within 7;. The probability of this event is
unaffected if s, and J; are translated together through signal space. This
follows, in accordance with Eqs. 4.71, from the fact that the noise n is
additive and its density function p, is independent of the signal. More-
over, since p, is spherically symmetric, as indicated by the contours of
constant probability density in the illustration, the probability that n 4 s,
will fall in I; is also unaffected by a rotation of [; about s;. Thuss; and [;
may be simultaneously translated and rotated, as in Fig. 4.27p, “without

affecting the conditional probability of a correct decision, P[C | m,].

Minimum-energy signals. Although the probability of a correct decision
is invariant to translation, such a transformation does affect the energy
required to transmit each signal: in general, s, = s; — a implies

E, éf SO d= (s o s — al' = |/ 2 B, (472)

‘When there is a constraint, say E,, on the peak energy permitted for
any signal, the vectors {s;} are constrained to lie within a sphere of radius

N/ E, as indicated in Fig. 4.28. A somewhat weaker constraint is that the
mean energy £, defined as

— A M1 M-1
En.= 2 Pm]E; =3 Plm]ls{* (4.73)
§=0 i=0
be less than some fixed value. For a given configuration of signal points

the mean energy can be minimized, without affecting the probability of

@2

s3®

1

Figure 4.28 Peak energy constraint,
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error, by subtracting from each signal s; a constant vector a so chosen

that

M-1

> Plm]l(s; — af®
- . =0
S minimum,

How to choose a is obvious once we have recognized that the expression
for E,, is precisely the expression for the moment of inertia around the
origin of a system of M point masses, where the mass of the ith point is
PIm,] and its position is s, Since the moment of inertia is minimum when
taken around the centroid {center of gravity) of a system, it follows that
a should be chosen in such a way that the resulting centroid coincides
with the origin. Given a set of probabilitics {Pl»,]} and a set of signals
{s;}, the appropriate choice of a is therefore

M-1 ’
a= Y Plm]s, < E[s]. (4.742)

As proof, we note that for any other translation, say b, we have
E[is — b|*] = El|(s — a) + (a — B)|7]
= E[|s — alz] + 2(a — b) - (E[s] — a) + la — bj> (4.74b)
= E[ls — a|*] + [a — b[%,

where the last equality follows from Eq. 4.74a. The mean energy is
increased when b = a. If the mean energy still exceeds the allowable
maximum after the translation a is made, further reduction is possible
only by transformations such as radial scaling that do affect the probability
of error.

Rectangular Signal Sets

When the geometric configuration of M equally likely signal vectors
is rectangular, the calculation of the error probability is especially easy.
The simplest situation is that in which there are only two signals.

Binary signals. The general case of two signal vectors, each with
probability 4, is shown in Fig. 4.29a2. From the standpoint of error
probability, an equivalent signal set is that shown in Fig. 4.295, in which
the signal configuration has been rotated and translated in such a way
that the centroid coincides with the origin and the vector {s, — s;} lies
along the ¢, axis.

The optimum decision regions for Fig. 4.295 are determined by the
expression

2

min  {jp — s* — NgIn P[m,]}. 4.75)
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For equal a priori probabilities, this decision rule is just
min |p — s,%
i

It is clear from Fig. 4.29b that the locus of all points g equally distant
from s, and s, is the ¢, axis. Thus an error occurs when s, is transmitted

@2
S0,
Y
\,
AN
d
hY
N\
b 1
\\\
kY
5

()
@2

Boundary between
dacision regions
when P{mg] = Plmi]

4 1

(b)

Figure 4,29 Binary signal sets for which P[£] is the same. The signals in (b) are called
“antipodal”; each has energy E, = (df2)"

_if and only if the noise component ; exceeds df2, where d is the distance
between the two signals: -
g . P[&] m ] = Plpinly| mi] = P|:n1>g:l,
where

&2 s, — s ;fi[su(t) — (O dt. (4.762)
But #, is zero-mean Gaussian with variance LN_’UJ’Z, 30 that

® 1 N
PLE | my] =L;2\_/;_T_oe N do.
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Setting p = o N 2/ N, we have

BV J\”ofo

Since, by symmetry, the conditional probablhty of error is the same for-

either signal, we also have

P[S] = 21 P[m;] P[E | m;} = P[6] m,] = Q( E_). (4.76b)

V2,

The function O ) was defined in Eq. 2.50 and plotted in Fig. 2.36.
Equation 4.76b is the minimum error probability for any pair of

equally likely signal vectors separated by a distance d, ¢ jardiess of their

actual Jocation in signal space. When the signals have minimum energy

and are therefore antipodal as in Fig. 4.295, the length of each vecior is
JE,, so that d = 2VE, and

P[§] = O(v2E,/N';); cqually likely antipodal signals.  (4.77)

On the other hand, when the signals are orthogonal as in Fig. 4.30, we
have d = \/ 2E, and

P[€] = Q(\/ E.JNp); two equally likely orthogonal signals. (4.78)

L]

L

Figure 4.30 Two orthogonal signals.

It is common engineering practice to express energy ratios in units of
decibels (db}, where
E
E|. 2 10 logyy —
Ko lap Ny

RECTANGULAR SIGNAL SETS 251

For example

E, E,
Nn ‘N’D dbh
0.1 —10db
1.0 0db
2.0 3db
30 4.8 db
10.0 10 db
100.0 20 db

The probabilities of error for antipodal and orthogonal signaling are
plotted in Fig. 4.31 with E /N, in units of db. The figure illustrates that
antipodal signaling is 3 db more efficient than orthogonal signaling in
communicating one of two equally likely messages.

With binary signals, it is also easy to determine P[8] when the a priori
probabilities are not equal. As shown in Fig. 4.32, the decision boundary
is shifted from s, toward s, by an amount

N u!2 o 2lmal
4 Plmg

Equation 4.79a is derived from the decision rule of Eq. 4.75 by solving
the equation

A= (4.79a)

g — 55> — NyIn Plm ] = |p — 5% — Ny In P[]
for p = (py, p;). For any value of p, we then have
dy ay

(Pl + E) — N In P[my] = (Pl - 5)— Np In P{my]. .

Since A is the value of p, satisfying this equation,
Plm,] .
[in,]

2Ad = N, In

The resulting error probability is

—2A d-2A
piel = Bmlo(T522) + Pmio(TEE). o
Rectangular decision vegions. The ease of calculating the error proba-
bility for binary signals is directly attributable to the fact that an error
occurs if and only if one random variable exceeds a given magnitude.
A situation that is only slightly more complicated exists whenever the
decision region boundaries are rectangular., Consider, for example, the
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Figure 4.31  Probability of error for binary antipodal and binary orthogonal signaling
with equally likely messages.

o2
Boundary between
decision regions
I Iy
- - w1
g So
\ _ Mofz o Plm]
8= "3 10 i)

Figure 4.32 Decision regions for antipodal signals with distance 4 and unequal a
priori probabilities.
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signal s; and decision region I; shown in Fig. 4.33a. After translating s,
to the origin and rotating the configuration as shown in Fig. 4.33b, we
see immediately that s; + n falls within I, whenever, simultaneously,

(@, <nm <b) and (g, < 1y < by (4.80a)

But 7, and n, are statistically independent (cf. Eq. 4.49), and the density

®2 w2
bz
I b
o1 T 1 @1
[
(=) &
Figure 4.33 A single rectangular decision region.
function, say p,, of each is the same:
i} 1 N ;
n = p, = e ° = 1, 2. 4.80b
P (@) = pul®) N i (4.80b)
Thus - _
P[G’ m;} = Pla, < < by, ap < g < byl -
= Pla; < ny < by] Play < ny < by] )
by b
=f Pale) docf P} doc. (4.80¢)

The optimum decision boundaries are always rectangular when the
signal vector configuration is rectangular and all signals are equally
likely. A simple examplc is the rectangular configuration of six equally
Tikely signals shown in Fig. 4.34. We have

a/2 a/2
peimd = pds| p@da=( -2t @80

where p = Q(df\/ ?TN’,,) is the probability of error for two signals separated
by a distance 4. From symmetry,

P[C | mg] = PIC|#m,] = PIC|mj] = P[C | mg]. (4.81b)
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L. = - i.a — ',,
Similarly,
. /2 o
PLe| m] = Pie|ml = | pi(o)do [7 b
—ai2 —df2
=(1—2p)1 — p) (4.8%c)
Thus
L]
PC] = X PIC | m] Plm]
=1 —-pF+ 31 -2p1—p) (4.81d)

o1

Figure 4.34 Rectangular decision regions.

Vertices of a hypercube. A special case of rectangular decision regions
occurs when M = 2% equally likely messages are located on the vertices
of an N-dimensional hypercube centered on the origin. This configuration
is shown geometrically in Fig. 4.35 for N =2 and 3. Analytically, we

have

$; =S -5y i=0,1,..., N —1, (4.82a)
where
+df2
§;; =4 oOr for all i, j. (4.82b)
—df2
To evaluate the error probability, assume that the signal
A d d : d,)
sg=t—=,—=,....— = 4.83
’ ( 2’ 2 2 89

is transmitted. We first clajm that no error is made if

n; < g ; forallj=1,2,..., N, (4.84a)
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(b} N=3

Figure 4.35 Signals on the vertices of two- and three-dimensional cubes: (@) N = 2;
(5 N = 3. The decision regions I, are shaded.

_The proof is immediate. When r = p is received the jth component of

p— s;is
ng; ifs; = — g
(p; — 8:) = g (4.84b)
n,—d; ifsy;=+-.
: 2
Since Eq. 4.84a implies
. d—n;>ng allj, (4.84c)
it follows that
. N N
le —sl°= ZI(PJ - Sig')2 > Z”:‘z = |p — 50|2 (4.84d)
g= F=1
for all s; 5 s, whenever Eq. 4.84a is satisfied.
We next claim that an error is made if, for at least one j,
d
n>2 (4.85)

T e
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This follows from the fact that p is closer to s; than to s, whenever Eq.
4.85 is satisfied, where s; denotes that signal with components +d/2 in
the jth direction and —d/2 in all other directions. (Of course, p may be
still closer to some signal other than s, but it cannot be closest to s,.)
Equations 4.84d and 4.85 together imply that a correct decision is made

if and only if Eq. 4.84a is satisfied. The probability of this event, given

that m = my,, is therefore

P[G|mu]=P|:alln,~<§; j=1,2,...,N:|

N d
=irein <]

=1

= (1= per o

. . = (1 - P)Ns
in which,

)
= —r— 4,86
P Q( D (4.86)
is again the probability of error for two equally likely signals separated
by distance 4. Finally, from symmetry

P[C | m;] = P[C | mgl; for all i, (4.87a)
hence
P[C] = (I — p)*. {4.87b)

In order to express this result in terms of signal energy, we again
recognize that the distance squared from the origin to each signal s, is the

_same. The transmitted energy is therefore independent of /, hence may be
designated E,. From Egs. 4.58b and 4.82b we have

N d 2

sl = Zsi_fz =N—=E, {4.88a)

] 4

E,
d= 2/\/—5 , 4.38b
~ (4.88b)
and

2E
= £ ) 4.89
P Q( NJ\PO) ¢ )

The simple form of the result P[C] = (1 — p)¥ suggests that a more
immediate derivation may exist. Indeed one does. Note that the jth

coordinate of the random signal s is a priori equally likely to be 4-d/2-
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or —df2, independent of all other coordinates. Moreover, the noise #;
disturbing the jth coordinate is independent of the noise in all other
coordinates. Hence, by the theorem on irrelevance, a decision may be
made on the jth coordinate without examining any other coordinate.
This single-coordinate decision corresponds to the problem of binary
signals separated by distance d, for which the probability of correct decision
is1 — p. Since in the original hypercube problem a correct decision is made
if and only if a correct decision is made on every coordinate, and since
these decisions are independent, it follows immediately that

PIC] = (1 — p)*. (4.90)

Orthogonal and Related Signal Sets

Another class of equally likely signals for which the minimum attainable -

error probability is quite easy to calculate is the set of M equal-energy
orthogonal vectors. Closely related to them are the simplex and bi-
orthogonal signal sets. In treating these sets it is convenient to index the
orthonormal axes {,} from j = 0 to N — I rather than from j = 1 to N,
where N is the dimensionality of the signal space.

Orthogonal signals. When M equally likely and equal-energy signals
are mutually orthogonal, so that N = M and

:x_)
j ) s (D dt = 8,8, = E, 8,3  L,k=0,1,...,M~1, (491

the optimum decision region boundaries are no longer rectangular and
are difficult to visualize. It is easier to proceed analytically. Letting @,

- denote the unit vector along the jth coordinate axis and

552\/E<P5; . j=0,1,,_.,M—1, (4.92a)
we note that the squared distance from s, to the received vector r is

e — s, = [rl* + |8, — 20 - (VE, @)
=r|* + E, — 2rVE, (4.925)

where r; is the jth component of r.
When s, is transmitted, it follows that
Ir— 5,2 < [r—s,]% alli £ k (4.93a)
if and onty if - -
-2 E, < =2~ E,
ie. ‘

F < all [ # k. (4.93b)

j
%
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As shown in Fig. 4.36, when s, is transmitted we have .
ra=no + vE, (4.942)

ro=ng  i>0. (4.94b)
Thus
PIC | my, 1y = o] = Plmy < oty itp <ty ooy igpy < a]

= (P{m < )M, (4.95a)

in which the last equality stems from the fact that all », are statistically.

@1
(o= 1, 02=0)
Ve
» Sy //
7/
N A
/ /oobrm
/\/fs / rod
¥ Y @
/
/
Vo

Moo=z, 91=0)
@2
Figure 4.36 Three orthogonal signals. When s, is transmitted, a correct decision is

made if and only if 7, and r, are both less than & = VE, E, + ny. The heavy dashed lines
are the intersections of the decision boundaries with thc planes @, = 0 and ¢, = 0.

independent and identicaily distributed. Multiplying by

22 = pole —NE) (4.95b)
and integrating vields, for M equally likely equal-energy signals,

—1

vie|mi = [ pto— yEao] [ paprap]” s s
with :

A 1 —a" 1N
N [N o 4.96b
p (G) \/WnN)o'e ( )
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From symmetry,
P[C| m,] = P[C | m,] = P[C], (4.96¢)

so that Eq. 4.96a is also the expression for the unconditional probabﬂlty
of a correct decision.

The integral in Eq. 4.96a cannot be simplified further ‘but has been
tabulated®® as a function of M and E,/Ny; a plot of P[8] =1 — P[C]
is provided in Fig. 4.37.

Simplex signals. A useful application of the energy minimization ideas
discussed earlier is to A equally likely orthogonal signals. From Egs.

10

01

0.01

Error probahility

107¢

104

l
16 db

1075

10 log,, Es/Ho
Figure 4.37 Brror probability for M orthogonal signals.
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4.74a and 4.92a the minimizing translation is

1 M-1 \/E M1
a=FE[s]=— 35 =Y=2 - 4.97
[s] M z:;n .M z'gorp ( a),

The resulting signal set

()={si—a}y i=01,...,M—1 (4.97b)
is called a simplex and is the optimum®® (minimum P[&] set of M signals
for use in white Gaussian noise when energy is constrained and

Plm;] = 1/M for all i.) The simplex signals for M =2, 3, and 4 are °

shown in Fig. 4.38. Since

M3 M= : ‘
>s/=3%s5,—Ma=0, (4.98)
i=0 i=0
s1 1
@1 T %\
L5
2
Es Es
BB |
d @ 0
51 ,0 So 0 ———| S “o
s
6
fa) M=2
bi i @
{binary antipodal) Eioy PE,
Sz
w1 : f0) M= 3
s (equilateral triangle)

83 . {e) M=4
{regular tetrahedron)

Figure 4.38  Simplex signals. All s; are at distance V E(l — 1/M) from the origin.
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any one of the {.si'} can be expressed as a linear combination of the others,
The M simplex signals therefore span a space of ¥ = M — [ dimensions.
By virtue of the orthonormality of the {ep,}, for all 7, &

8/ 8 = (8, —a)-(s, — a)

=(s;-85) —a-(s, +s) + |ai2

E, E
= Sy — 2= =2
* M M
E3(1—~1—); fori=k
M
_ (4.99)
_ _E_S ; otherwise,
M

‘We see that each signal in a simplex has the same energy, which is reduced

- by the factor (1 — 1/M} from that required for the orthogonal signals,

with no change in error probability. (Translations do not effect P[§].)

When M = 2, the saving is 3 db; for large M the saving is negligible.
Equaiion 4.99 may be used as the definition of a simplex. We note

that a set of M vectors {s,'} satisfying Eq. 4.99 may be transformed to a

set of orthogonal vectors by adding a vector J E /M to each s;, where
 is any unit vector orthogonal to all of the {s;}.

Bigrthogonal signals. 'The final specific signal configuration considered
here is the biorthogonal set, illustrated for N =2 and 3 in Fig. 4.39.
This signal set can be obtained from an original orthogonal set of N
signals by augmenting it with the negative of each signal. OGbviously,
for the biorthogonal set

M =2N. (4.100)
@1 ?1
.8 33 ,
e
Ve
Ve
//
—% S0 o -85 | sp e
I
{
82
$—g; o + -81
(o} : )

Figure 4.3% Biorthogonal signals, all at distance V'E, from origin.




ry > 0. (4.101a)
Also, v is closer to s, than to s; if and only if
re>r;  i>0, (4.101b)
. and r is closer 10 8, than to —s, if’ and only if "
4.
oﬂ? i + 9§, o Fo > —Ty i>0. ) {4.10c)
XA “
7 P0= B
/
8 il
s
s
VEs e
s T o
0 \ Sp
~ i
N pp =T
h E
AN .
AN
N
N
Ngo= —w;
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We denote the additional signals by —s; 7j=0,1,...,N—1, and
assume each signal has energy E.. '

It is clear from Fig. 4.40 that the received message point is closer to s,
than to —s, if and only if '

Figure 4.40 Biorthogonal signals. When s, is transmitted, r is closer to s, than it is/
to s, if and only if #, and #; are such that one of the two heavy dashed lines is crossed.

It follows that the conditional probability of a correct decision for equally
likely messages, given that s, is transmitted and that

o Fo=ro + VE, =« >0, (4.102a)
1s just
P[C]| my, 1o = o > 0]
=P[—a < <a, —a <y < 0hyvnny =< By < o
= {P[—a < n < o]}V

=[] | (4.102b)
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The notation is that of Eq. 4.96b. Multiplying by p, (a) = p.(x — VEJ)
and integrating over o« from 0 to <o (because of the condition of Eq.
4.102a), we obtain

N1

pie | mi = [ pe— VED G| [ n@rap]. @09

Once again, by virtue of symmetry and the equal a priori probability of
the {m;}, Eq. 4.103 is also the expression for P[C]. Notingthat N — 1=
(Mj2) — 1, we havet

pel = [ pu(e— VED da| 1 - 2 "o as]* L @aow

The difference in error performance for M biorthogonal and M or-
thogonal signals is negligible when M and E,[N, are large, but the number
of ‘dimensions required is reduced by one half in the biorthogonal case.

Completely Symmetric Signal Sets and A Priori Knowlédge

Tn almost all of the specific cases we have considered—in particular,
the binary, orthogonal, simplex, biorthogonal, and vertices-of-a-hypercube
signal sets—the error probability calculation is greatly simplified by the
“complete symmetry” of the geometrical configuration of the {s;}- By
complete symmetry we mean that any relabeling of the signal peints can
be undone by a rotation of coordinates, translation, andfor inversion of
axes. As a counterexample, the signals of Fig. 4.34 are not completely
symmetric.

Given complete symmetry, the condition

P[m,] = ﬁ . foralli (4.105)

Jeads to congruent decision regions {£;} and thus to a conditional proba-
bility of correct decision that is independent of the particular signal

transmitted:
P[C | m;] = a constant;  foralli. (4.106a)

If such a congruent-decision-region receiver is used with message

probabilities {P[m;]} that are not all the same, the resulting probability

of correct decision is
-1
P[C] = > P[m] P[C| m,] = PIC| mql, (4.106b)
§=0
which is unchanged from the equally likely message case. Thus the error
performance of a congruent-decision-region receiver is invariant o the

¥ The integral of Eq. 4.104 is tabulated and plotted in reference 36.
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actual source statistics {PIm,]}. (Of course, if the source statistics are
known in advance, the probability of correct decision can be increased by
the use of a noncongruent-decision-region receiver designed in accordance
with Eq. 4.71b.)

Invariance to message probabilities can be exploited by a communication

system designer, who seldom knows in advance the exact input statistics -

of the source, If the transmitter is designed with completely symmetric
signals and an optimum receiver is designed on the assumption that all

messages are equally likely, Eqgs. 4.106 will be satisfied and the error’

probability of the system can be specified independent of the message
source to which it is connected. A receiver designed to be optimum under
the assumption of equally likely messages is called a maximum likelihood
receiver. (See also the discussion following Eq. 4.9.)

Minimax receivers. The foregoing discussion provides a powerful
argument in support of a design assumption that all a priori message
probabilities are equal. Even more cogently, with completely symmetric
signals this assumption leads to a receiver design that is minimax, a term
we now define. ‘

For a fixed transmitter and channel, the probability of error depends
only on the receiver and the message probabilities. For a given receiver
{with transmitter and channel fixed) the probability of error depends
only on the message source statistics and reaches a maximum value for
some choice of these statistics. This maximum value of the P[] is a
useful criterion of goodness for the receiver in the absence of a priori
knowledge of the {P[m,]}: it represents a guaranteed minimum per-
formance level beneath which the system will never operate, regardless

of the statistics of the message source to which it may be connected. With,

this criterion, the receiver with the smallest maxinwm P[8] is most desirable.
1t is called the minimax receiver.
The argument that the maximum likelihood receiver is minimax when

the {s,} are completely symmetric is very simple. First, this receiver

yields a probability of error that is independent of the actual {P[m,]}
with which it may be used. Second, by the definition of optimum, any
other receiver yields a greater probability of error when used with equally
likely signals, hence must have a larger maximum. This concludes the
proof.

Union Beund on the Probability of Error

An approximation to the P[&|m] for any set of M equally likely
signals {s;} in white Gaussian noise is obtained by noting that an error

occurs when s, is transmitted if and only if the received vector r is closer
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to at least omne signal s, k # i, than itistos. If §;is used to denote
the event that r is closer to s; than to s; when s, is transmitted, we have

PI&[m] =PlBo U 8 U - Ut a Ui Ve Ul (4107
From Eq. 2.10 the probability of a finite union of events is bounded above
by the sum of the probabilities of the constituent events, a result made

geometrically evident in Fig. 4.41. Thus
pr ]
P[8[ m] < X P8;). (4.108)
(7D
Note that P[§;] is not in general equal to Pl = m, | m,], because the
latter is the probability that r = s, + n is closer to s, than to every other

(doited line)
Figure4.41 Venn diagram. It is apparent that P{4 W B U C] < P[4] + PLB] + P[C].

signal vector. To emphasize that P[8;] depends only on two vectors, s;
and s,, hereafter we write Py[s;, s;] in place of P[8,). Equation 4.108
then becomes

-1
P8 | m] < 3 Pafsy ;] (4.109)
Pogee
We next observe that Pufs, s,] is just the probability of error for a

system that uses the vectors s, and s, as signals to communicate one of two

equally likely messages. The bound of Eq. 4.109, and this interpretation

of P,IS,, 5], holds for channels more general than that of additive Gaussian
noise. For the Gaussian channel, however, the expression for Py[s,, s
is particularly simple; from Eg. 4.76b, we have

8; — S
Pys, 5] = Q(*—\/—-—— W') (@.110)

The union bound of Eq. 4.109 is especially useful when the signal set
{s;} is completely symmetric, for in this case the unconditioned error
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probability P[] equals P[& | m,;] and most of the terms {Pyfs, s,]} are
identical. The following examples illustrate the application of the bound.

Orthogonal Signals:

P[6] = P[§ | m,] < (M — DOWNE,N). (4.111).

Biorthogonal Signals: , ,‘
P[E] = P[& | m] < (M — DOWEJNG) + QW2ESNe).  (4112)

In many instances the union bound is a useful approximation to the actual
P[§]. It becomes increasingly tight for fixed M as E fN, is increased.

APPENDIX 4A ORTHONORMAL EXPANSIONS
AND VECTOR REPRESENTATIONS

When one of M signals {s,()} is communicated over an additive white

Gaussian noise channel, the vector receiver to which the optimum wave- .

form receiver reduces does not depend on the specific waveshapes of the
N orthonormal base functions {g,(£)}. Only the vectors {s,} are important;
the particular set {g,(r)} used to generate the signals {s{#)} has no effect
on the decision rule (Eq. 4.53), hence on the receiver error probability.
In the design of communication systems for use in white Gaussian noise,
the problem is to choose a good set of vectors {s;} and a convenient set of
functions {p,(f)} that will propagate satisfactorily over the channel.

To prove that the transmitter structure of Fig. 4.12 and the correlation
and matched filter receivers of Figs. 4.18 and 4.19 are completely general,
we must show that any set of M finite-energy waveforms can always

-be expressed as

N
51} = 2 s g A0); i=0,1,...,M—1, (4A.1a)
izt

in which the waveforms {p,(t)} are an appropriately chosen set of ortho-
normal functions: :

J P p)dt =0, 1<Li<N (4A.1b)

In this appendix we prove the generality of Eq. 4A.1 and discuss some of
its implications.

The Gram-Schmidt orthogonalization procedure. One convenient way
in which an appropriate orthonormal set {g,(z)} can be obtained from any
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given signal set {s{2)} is by the Gram-Schmidt® orthogonalization
procedure described in the following sequence of steps.

1. First consider s,(7). If s,(r) = 0 (has zero energy), renumber the
signals. For s(f) 2 0, set

ROES j/“—fgi) (4A.2a)
where ’
E, ér sgX(P) dr. (4A.2b)

Then ¢y(?) is a waveform with unit energy. Since 5,(7) = N B_”U @,(1), the
coefficient sy, = N E,. The associated vector s, is shown in Fig. 4A.1a.

o2
| __ 51
|
I'ls
I 12
Sg s
0 ¥t 0% ,I : ©;
£01 8§11
{a) (&)
] w2
S 8]

22 (l _____ Sp

&21

®1

@1

{c}

(d)

Figure 4A.1 Vectors obtained by the Gram-Schmidt procedure: M =4, N =3,
Here s, can be expressed as a linear combination of ¢, and g, so that 8,(s) = 0.
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2. Second, define the auxiliary function &,(¢) as

0 = 5;() — s @a(8), (4A.32)
where R
Sn éf 528 gulD) dt. (4A.3b)
If 6,(8) £ 0, set . ‘
8,(8) :
olf) = ——=, 4A,
@0 NG (4A.3c)
where
Es, éfm 6,.%(1) dt. (4A.3d)

Then g{f) also has unit energy, and s, = N E_(,1 . Furthermore,

J‘“’ 1) (2} dt = 0, (4A.3¢)

which follows from the equations
\/Ee_l J; @a(1) p,(E) dt :f 6:() @u(1) dt
="t — su @l @t
—tp

- f_zsl(t) o) di — 51, J_z¢12(:) dt

=5y — s =0.

The vector s, is shown in Fig. 4A.1b under the assumption that 6,(¢) # 0.
If 6,(r) = 0, proceed to (3).

3. The general step in the procedure is as follows. Assume that (/ — 1)

orthonormal waveforms {2}, @), . - ., ¢;_3(#} have been defined

through the use of sy(2), 5;(2), . . ., 5,4(8). It is clear that ({ — 1) < &,
since each new signal introduces at most one new orthonormal function.
Now consider 5,(¢f) and define the auxiliary function

00 = su() — 254y 2.0, (44.4a)’

where

5y 2 f s o dt;  j=12...,1—1.  (4A4b)
. |
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If 0.(0 £ 0, set

(f) = %, (4A.4c)
where
E, 2 f " 021 dr. (4A.4d)

Clearly, @(t) has unit energy, and s5;,;, = \/ E_,;k . Also,

f o,(t) p.(t) dt = 0; fori<mgi—1, (4A.4e)

which follows from the equations

\/E_skf_w Pa(!) p(1) At =fm 0u() (1) at

=["[s0 - s 0] put

oo

=[50 gur @t =3 5[ 00 gut

—1
= Skm —jZ S5 Oum
=1

= Stm — Sem = 0; I1<mglI— 1.

The foregoing procedure can be continued until all M signals {s,(2)}
have been exhausted, as shown in Figs. 4A.1¢, d. There will then have
been established N < M orthonormal waveforms {p(¢)} with the equality
holding if and only if all M signals are linearly independent—that is, if
and only if no one signal can be expressed as a linear combination of the
others. The integer N is called the dimensionality of the signal space
defined by the {s(f)}. By the nature of the construction, it is clear that
each s(f), i=0,1,..., M — I, can indeed be expressed as a linear
combination of the {p,(t)} and thus that Eq. 4A.1 is satisfied.

A simple example of the Gram-Schmidt procedure is provided by the
four waveforms shown in Fig. 4A.2. Starting with s,(f), we have

E,=4+4+4=12
and

Solt) _ sot)

%(t)=\/E,_\/ﬁ’ So1 = +/12.
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t}

1 T

T M PR

faft) =0

faft) =0

Figu:re 4A.2 An illustration of the Gram-Schmidt procedure.

Next, introducing 5,(¢), we have

sw =[50 g @t = JE-1 =3+ D= —3

0,1y = 5,{1) + \/5 (3
= B

Eqy, =8,
L

P0) = NG 6,(1).

1
¥
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Introducing s,(f), we obtain

Sy = f " ) pud) dt = /3,

—x

S =f°° suli) @) dt = —/2,

0u(2) = 53(8) — /3 @u(1) + /2 ul®) = 0.

Finally, introducing 5,(¢), we have

S31 =f“’ Ss(t) ea(t) dt = -—\/.5,

S30 = | S3(D) @e{f) dt = —2\/5:

-—

By(8) = s5(1) + \/g o) + 2\/5 {1y = 0.

Thus the four signals {s,()} span a space of two dimensions, and the

vector representations are

sl = V12 (D)

(0 = =3 .() + V8 )
() = +3 @) — V2 (o)
() = =3 u0) — V8 @alt)

as shown in Fig. 4A.3.

so = (+/12,0),

5 = (—"\/E’a, \/2_3):
s, = (3, —V2),
55 = (=3, =V8),

¥z

Si———— 2+/2

|

N

| %

: d ®1

“Ii? V'? 23

| [ — 82

|

sg———{ —2+2

Figure 4A.3 A vector representation of the {s;(1)} of Fig. 4A.2.
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w2

Sp

52

1

83

Figure 4A.4 An alternative vector diagram for the {s,(£)} of Fig. 4A.2.

1”(t) wa"(t)

-

®3"(t)

Figure 4A.5 A third vector representation of the signals of Fig. 4A.2
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We have shown that it is always possible to represent a finite set of
signals {s,(£)} by means of at least one finite weighted sum of orthonormal
functions {p,(r)} and therefore that the derivation of the optimum
receivers of Figs. 4.18 and 4.19 is always valid.

Note that any given set {s(#)} can be expanded in many different
orthonormal sets, all of which ultimately yield the same receiver, hence
the same decisions and the same probability of error. For example, if the
Gram-Schmidt procedure for the signals of Fig. 4A.2 were carried out by
considering signals in the order s,(f), 5.(8), 54(1), 5,(¢), a different pair of
orthonormal functions ¢,'(z), ¢,(¢), and a different set of coefficients
{s;,'} would have been obtained. In particular, s, would lie on the @~
axis and s, would have a positive projection on the ¢,’-axis, as shown in
Fig. 4A.4.. Alternatively, a set {,"(#)} might be obtained without use of
the Gram-Schmidt procedure, although the resulting number of functions
might be larger than the dimensionality, N. Such a set is shown in Fig.
4A.5a and the corresponding vectors in Fig. 4A.55. Note that the four
signal points remain coplanar and have the same relative positions. The
important fact is that the signal points {s,} always retain the same geo-
metrical configuration, regardless of the particular set of coordinates in
terms of which they are described.

PROBLEMS

4.1 Therandom variable z in Fig. P4.14 is Gaussian, with zero mean. If one of
two equally llkely messages is transmitted, using the signals of Fig. P4.1b, an
optimum receiver yields P[§] = 0.01.

80 &
X X— 5
-2 +2

(a) (b}
Ny |31 52 8p 51 52 s
_x ¥ Ho—5  —X X X X—a 8
-4 |° +4 ~4 o+ +8
(e) . (@)
Figure P4.1
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.a. What is the minimum attainable probability of error, P[£]min, when the
channel of Fig. P4.1a is used with three equally likely messages and the signals
of (¢)? With four equally likely messages and the signals of (d)?

b. How do the answers fo part () change if it is known that # = 1 rather
than 07 ‘

4.2; One of four equally likely messages is to be communicated over a vector
channel which adds a (different) statistically independent zero-mean Gaussian
random variable with variance /2 to each transmitted vector component.
Assume that the transmitter uses the signal vectors shown in Fig. P4.2 and express
the P[] produced by an optimum receiver in terms of the function Q).

w2
P
8 ~ s
s N
II' \\Circle of radius VE;
! 45° 45° \l
i "I 1
\\ J
\ /
\ /
% \“‘-. .—/// ¥
Figure P4.2

:4,3 -1t is known that P[8]=in = g when the two ‘signal vectors s; and s, shown
in Fig, P4.3a are transmitted with equal probability over a channel disturbed by
additive white Gaussian noise. Compute P{[&]min in terms of g, 6, and ! when the
nine vectors indicated by x’s in Fig. P4.3b arc used as signals with equal prob-
ability over the same channel.

w2
P2 d
-
d (///\ *
/-//\,X\ 5
4 x’/ \ A
&% ) o A NN
Y, P Y 1
Sp S1 d\\_\ PRl Ay
e N ‘/,?x
Ay T
&) -
dNN
X
(2) (b)
Figure P4.3
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4.4 One of 16 equally likely messages is to be communicated over an additive
Gaussian noise channel with 8§,(f) = X2, The transmitter utilizes a signal
set {s,(¢)} whose vector representation is indicated by x’s in Fig. P4.4.

a. Draw the optimum decision regions.

b. Determine P{&]mir in terms of Q(z).

¢. Find a set of 16 two-dimensional signal vectors (not necessarily optimuni)
such that the traosmitted energy is never greater than E, but for which the
attainable P[8] is less than the answer to part (b).

w2
)-I:—_———'>=<—— — =X ———X
dy 1
| ]
R it I
' d{ ! ! )
SR VR WS N
I Il ) I
dy I I
cl 1
Hm — — R | X —— — =
| WS
d d d
Figure P4.4
4.5 One of the two signals s = —1, 5y = +1 is transmitted over the channel

stiown in Fig. P4.5a. The two noise random variables m, and n, are statistically
independent of the transmitted signal and of each other. Their density functions
are

Pnl(“) =Pn5(a) = %e—lgl‘

a. Prove that the optimum decision regions for equally likely messages are
as shown in Fig. P4.5b. Hint. Use geometric reasoning and the fact that
lpy — tl +1pe — 1| = @ + b, as shown on the next page in Fig. P4.54.

Tz
j\”l - ?E/hl/{/h//{/{//// Choose
r choice 83
E— Z -+
© | | r
g 2 -1 +1 1
PN -
3 Choose : /
s Enher/
; ither
(@) (5}

Figure P4.5
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ra2

Choose
51

r2

[ (
rz—-“T-‘x 1, 1)
b
{((m, p2)
r

<

-1

Choose
50

(c) (d)

Figare P4.5 (Continued)

b. A receiver decides that s, was transmitted if and only if (r; +r5) > 0. Is
this receiver optimum for equally likely messages? What s its probability of

error?
¢. Prove that the optimum decision regions are modified as indicated in

Fig. P4.5¢ when P[s;] > 3.

d. The channel may be discarded without affecting P[€lmin if Plsil > 4.

Evaluate 4.
m ] ri=s4+n
Transmitter

L m=mj<—>s5=3§ ~
m= m;-e—:a—s = s:, m Optimum m;

raceiver

no rg=ny+ng
(a)
i
"1+ | Threshold i

device

(b
Figure P4.6

]
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4.6 - Tn the communication system diagrammed in Fig. P4.6a, the transmitted
signal s and the noises n; and n, are all randem voltages and all statistically
independent. Assume that
Plry] = Plmyl = 4,

§1 = —8 = '\/Esy

e—utfzat

1
Pnl(‘x) _Pnz(“) = \/-2; p

a. Show that the optimum receiver can be realized as diagrammied in Fig.

P4.6b, where a is an appropriately chosen constant.
b. What is the optimum value of a?
¢. What is the optimum threshold setting?

d. Express the resulting P[¢] in terms of Q().
e. By what factor would £, have to be increased to yield this same probability

of error if the receiver were restricted to observing only ry.

4.7 The voltage waveforms x(¢) and y(¢), plotted below, have the properties
that when applied across a 1-ohm resistor

a T
f ) dt = J ¥t} dt = 16 joulss.
1] 1] .

T
J 2o yy(t)dr =0,
0

x(t)

AN

¥(t)

| ¢

ST

Figure P4.7
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These signals can be used to communicate one of two equally likely messaé_es
over a channel perturbed by additive white Gaussian noise with power density

of 4 watts/cyclefsec (on a bilateral frequency scale).
a. Calculate the minimum attainable probability of error when the two

signals used are =(¢) and —a(t).
b. Caiculate the minimum atiainable probability of error when the two

signals used are x(z) and y{r).

‘4.8 a. Calculate P[§]mia when the signal sets specified by Figs. P4.8a, b,and ¢
‘are used to communicate one of two equaily likely messages over a channel
disturbed by additive Gaussian noise with 8,(f) = 0.15.

b. Repeat part (a) for a priori message probabilities (f, .

solt) s1(t)

1 1 Y—cnsm
1

st} s1(t)

(b)
So(f) §1(f)

-1 1 f __|
2

[N
h

z
[S:{f), the Fourier transform of g;.(2), is pure real. |
(c)
Figure P4.8

49 Express P[] mia in terms of O(«) when the signal set shown in Fig. P4.9 is
used to communicate one of eight equally likely messages over a channel dis-
turbed by additive Gaussian noise with 8,(f) = Ny/2.
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s1(t) sz(2) T st

1—| 1— 1
L ; | I \ | |
1 2 3 1 2 3 ¢ 1T 2 3 t
s4(t) s5(t} sg(t)
i 1 1+
| l l £ | l ¢ | ¢
1 2 3 1 2 3 1 2 3
s7{t) sp (t)
i 11—
i | | | |
I 2 3 t 1 2 3 ¢
Figure P4.9

410 One of two equally likely messages is to be transmitted over an additive

white Gaussian noise channel with 8,(f) = 0.05 by means of binary pulse
position modulation. Specificaily,

sot) = pl#),
sl(t) 2]7([ - 2):

in which the pulse p(t} is shown in Fig. P4.10.

a. What mathematical operations are performed by the optimum receiver?

b. What is the resulting probability of error?

c. Indicate two methods of implementing the receiver, each of which uses a
single linear, filter followed by a sampler and comparison device. Method I
requires that two samples from the filter output be fed into the comparison
device. Method 1l requires that just one sample be used. For each method

plt)

2

2

Figure P4.10
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sketch the impulse response of the appropriate filter and its response to Pl
Which of these methods is most easily extended to M-ary pulse position modu-
lation, where s(f) =p(t — 2i),i =0,1,..., M — 1?

d. Suggest another pair of waveforms that require the same energy as the
binary pulse-position waveforms and yield the same error probability; vield a
lower error probability.

&. Calculate the minimum attainable probability of error if

sty = p(t) and s{8) =p(t — 1).
Repeat for
sq(ty = plty and s} = —plr — 1)

411 One of two equally likely messages, 1y OF 177y, is to be transmitted over an
additive white Gaussian noise channel by means of the two signals

28,
slt) = - cos 2nfif; 0T

0; clsewhere,

JEE 2a(fy + A, o <xT
sy = (N T SO A sEs

0; elsewhere,

where T = 2 rnséc, fi=1Mg, and A =250 cps. The noise has power density
spectrum N2, If [Ny = 6, calculate the probability of error to two signifi-
cant digits. Repeat for A = 500 cps.

412 Msignals sg(t), sit), . - -, syafrexistfor 0 < ¢ < T, but each is identical
to all others in the subinterval [£y, ], where 0 < £, < £, <T.

a. Show that the optimum receiver may ignore this subinterval. Equivalently,
show that if g, 8y, - - . , S37_1 all have the same projection in one dimension, then
this dimension may be ignored. Assume an additive white Gaussian noise
channel.

b. Does this result necessarily hold true if the noise is Gaussian but not white?
Explair.

413 Consider the multipath communication model shown in Fig. P4.134, for

which P[] = 3. Assume that the three paths are characterized by the following -

parameters:
Constant attenuation oy, = 0.2 wy = 0.4 og = 0.6
Constant delay 7, = 1 msec 75 = 1.5 msec T4 = 2 Msec.

White noise power density S”L(f) = 0.002 ‘Sna(f) = 0.006 Sﬂa(f) = 0.004,
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The three noi§e processes are Gaussian and statistically independent of each
other and the signal transmiited. The transmitter is defined by the mapping

3y -
m=mo<:>s(t)=so(f)={5c°52”10t’ 0<<3 %1070

; elsewhere,
m = my <= 5(1) = —5¢).

1 j\m {t)
Delay

X
%D, Ty 1), ri(t)
- na (1)
5
m i
m@” O (i)zg@—i)—
J\% na(s)
Onan Il man O mandills
(a)

(t - A
— | he ¥ Ty . —
Sample
att =14
(b)

() Delay

A

O+

=
)

2l o8 o (@ a9 oY o] Ot L
- Sample
/‘tla att= Ty
r3{t) Dela
X Y
NS A3

{c)
Figure P4.13

a Show that the optimum receiver can be realized in the form illustrated in
Fig, P4.135. Determine A,(¢), T4, and the specification of the decision device.
Suggest a reasonable implementation for A;(f). Calculate P[£] to two significant
digits.
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b. Now assume that the receiver has access to the three multipath.outputs
individually. Demonstrate that in this case (calle_d d.z'uersfty rec_:eptlo_n) the
optimum receiver can be realized in the form shown in 1_:1g. P4.13¢, in which tI’le
A’s are constant delays and the a’s are constant multl_phers. peterm.me the A’s,
the a’s, hyt), Ty, and the specification of the decision device. Calculate the
probability of error to two significant digits.

4.14 Specify a matched filter for each of the signals shown in Fig. P4.1’47 fm_d
sketch each filter output as a function of time when the signal matched. to it is
the input. Sketch the output of the filter matched to sy(f) when the input 18

5(2).
s1{2)

~Esf2

s2{t)

~Es/7

/7 —

Figure P4.14

415 Two signals,
' &t t =0,

0; elsewhere,

splt) = —sq(t) = [

are used with equal probability over an additive white Gaussian nc?ise channel.
The receiver bases its decision solely on observation: of the received process

F(t) = s(t) + (1)

over the restricted interval 0 < £ < 2. Express the minimum attainable Ft{ gl in
terms of Qfx). Contrast numerically with the performance of an optimum
receiver that observes all of #(z), —w <t < oo, :
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416 A transmitter uses the signals {s(f)} to communicate one of M > 2
equally likely messages over an additive white Gaussian noise channel with
power density N2, where for i =0,1,..., M — 1

F) == ’\/ ) 0<t< kanlntee
3 is

0; elsewhere.
a. Sketch the signal vectors and optimum decision regions for M = 3.

b. Use geometric arguments to show that the minimum attainable P[€] is
bounded by

P < PlE] < 2p,

B 2E, =
P—Q ESIHA—J .

[This very neat result is due to E. Arthurs and H. Dym.*]

where

4.17 Assume that a set {6,} of M vectors satisfies the equations

L e
ei.eg.:{ > T
P TER

a. Provethat I >p > — 1J(M — 1), where the right-hand equality is satisfied
by the unit-energy simplex. Hinf. Consider

M-1
> 8,

FI
i=0

2

b. Prove for any allowable p that the signal set {s;}, with s; = \/Ep 8, forall i,
has the same error probability as the simplex signal set with energy

1
Es = EP(I - M)(l _P):
hence the same error probability as the orthogonal signal set with energy
Ey = E(1 —p).
M—1

1
Hint. Consider the set {(s; — a)}, witha = - > s
. <o

4.18 FEither of the two signal waveform sets illustrated in the Fig. P4.18 may be
used to communicate one of four equally likely messages over an additive white
Gausstan noise channel. '

&. Show that both sets use the same energy.
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51(8) s3(£)
B f2 B2
i I i [
1 2 3 4 1 2 3 4
sa(t) s4(t)

ESIE——l ‘——l | z ~Es2 | I_l |—"‘| t
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s1.(8) s2(t)
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Figure P4.18

b. Exploit the union bound to show that the set of Fig. P4. 18b uses energy

almost 3 db more effectively than the set of Fig. 4.18¢ when a small P[] is

required.

5

Efficient Signaling

for Message Sequences

Preceding chapters have dealt with the problem of communicating a
single input message chosen at random from some finite set of possible
inputs. In practice, however, we are not often interested in communication
systems that transmit only a single message and then cease operation
forever, but rather In systems that communicate a scquence of messages,
one after another, for many years.

Of course, we might choose to consider the transm1331on of a sequence
of K inputs, each chosen from a set of A possible messages, as the trans-
mission of a single input chosen from a set of M¥ possibilities. This is
the single-transmission, or “one-shot,” approach. Alternatively, we can
reformulate the single-transmission theory considered thus far in such a
way that the sequential nature of the communication problem will be
explicitly reflected in our analysis. In doing so we shall gain rich dividends,
the concepts of channel capacity and communication efficiency. We shall
also gain insight into the interrelationships between time, bandwidth, prob-
ability of error, and signal-to-noise ratio. In this chapter we consider these
issues from a theoretical point of view. In the next we discuss certain
aspects of the problem of system implementation.

51 SEQUENTIAL SOURCES

Given a message source that produces a sequence of discrete symbols,
we are interested in characterizing how much transmission capability is
required to communicate the source output to a distant terminal. In the
simplest case we might have a source that produces statistically inde-
pendent binary digits, each of which is equally likely to be 0 or I, at 2
uniform rate of R digits/sec. During any time interval T that is an integral
multiple of 1/R, this source generates a sequence of RT binary digits, and
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each of the 257 possible sequences is equally likely to occur. For example,
if R =%and T =2, one of the eight sequences

o00 010 100 110
001 011 101 111

is produced, and each has a priori probability 5. Thus the transmitter
must be able to communicate one of

M = 25T ’ (5.1)

equally likely messages during each successive 7-sec interval.

Source Rate

For the situation just considered, we call R the source rate,
measured in units of hinary digits (abbreviated bits) per second. Simi-
larly, for other sources, not necessarily bipary, that produce one of a set
of M equally likely messages in any time 1.nterva1 T we define the source
rate in such a way that Eq. 5.1 remains valid:

R 2 Liog, M bitssec. (5.2)
T

As an example of the application of this definition, consider a source
that generates one symbol selected from an L-symbol. alphab{at each
1/R' sec. If the symbols are equally probable and successive ‘selectlons are
statistically independent, in time T the source effectively specifies one of

M =IFT (5.3a)

equally likely messages. The source rate is therefore

= 1 fog, M = R'log, L bits/sec. (5.3b)
T

To see that the rate of a source is a meaningful measure of the trans-
mission capability required to communicate the source outPut, we needf
only recognize that a set of M messages can_b-c converted into a sc?t.o
binary sequences simply by numbering the or1gma% messages and writing
these numbers in binary form, For example, we might have

Message Message No. Sequence Message Message No. chuenqe

a 0 000 e 4 100 - .
b 1 001 f 5 101
c. 2 010 g 6 110
d 3 011 h 7 111
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The identity of any input message can be specified by communicating the
associated binary sequence. When A is a power of 2 and cach message is
equally likely, successive binary digits obtained in this way are statistically
independent and equally likely to be O or 1, In this text we restrict our
attention to the problem of communicating such a binary sequence. It
can be shown™ that the restriction entaiis no significant loss of generality.

The deep significance of source rate (which is frequently called “infor-
mation rate”) is clarified by the following considerations. Assume that we
have two independent sources, the first of which produces one of M, and
the second of which produces one of M, equally likely messages during
each interval of T sec. If each source is connected to a separate trans-
mitter, the required transmission capabilities are, respectively,

R, = 1%Iog M, Dits/sec. (5.4a)
and

Ry = %log M, Dbits/sec. (5.4b)

On the other hand, if both sources are connected simultaneously to a
single transmitter, it must be able to specify one of M = M, M, messages
in time 7, hence must accommodate a rate of

| 1
=—logM = = log MM
T g T g fviqivig

= T%Iog M, + % log My == R, + R, bitsfsec, (5.4c)

The important potint is that, by virtue of the logarithm in the definition of
rate, the rate of the two sources combined is the sum of their individual
rates.

The utility of a communication system is measured by the (maximum)
source rate that it will accommodate: other things being equal, one
system with rate R can handle as much traffic as two systems with rate
Rj2. In contrast, note that a system capable of transmitting one of M
equally likely messages per unit time is not equivalent to two such systems,
each of capability M/2.

Transmitter Power

In Chapter 4, which dealt with the transmission of a single message,
we considered the selection of signals subject to a constraint on the trans-

- mitted energy, E,, We are now concerned with the transmission of a
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(possibly unending) sequence of messages, so that an energy constraint is
no longer meaningful. But it is both meaningful and instructive to impose
a bound on the average transmitted power, denoted P,. For a signal s(z2)
of duration T the average power is defined by

21 (%ema=t["0a=k
P, = TJ:} () dt = T _ws (1) dt T (5.5)
Thus, 2 constraint on P, implies that the available transmitter energy
increases linearly with time. '

If a source has rate R, it can be thought of as producing one binary
digit each 1/R sec. Subject to an average power constraint P,, the average
energy available per bit, say Ep, is therefore

E, = % joules/bit. (5.6)

The average energy per bit required by different communication systems to
obtain a given standard of error performance is a measure of their
relative efficiencies.

52 BIT-BY-BIT AND BLOCK-ORTHOGONAL SIGNALING

To see that different communication systems may yield drastically
different performances for the same value of E,, let us contrast the results
achieved when a sequence of

equally likely binary digits is communicated by two specific signaling
schemes. The first (a rather obvious choeice) transmits a signal consisting
of a sequence of K nonoverlapping pulse translates, cach of which’ has
the same waveshape but is positive when the corresponding bit in the input
sequence is 1 and negative when itis 0, as shown in Fig. 5.1. The energy of
each elementary puise is E,, and the total energy expended is KE,. The
second signaling scheme uses a signal set of 2% orthogonal pulses, each
having energy E, = KE,. The choice of transmitted signal is made by
observing the entire input sequence at once and transmitting the ith pulse
when the binary number specified by this sequence is £.

In many applications the entire K bit sequence must be transmitted
correctly. A naval fire-control system, in which a 1 for the jth digit could
designate that the target is above the surface and a 0 that it is below, is an
example. In such cases the sequence is considered to be communicated
correctly if and only if every one of its K bits is reproduced without error at

K= RT Y
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xolt}

t

T
f x2(t) dt = Ep
s(1)
xo(t — 470)
l J
T 270 37p 47y T=>57p
~xp{f - 37g)
0=1/R
K=5
E;=KEp=TF;

Figure 5.1 Bit-by-bit waveform for message sequence 11010.

the receiver output. We therefore compare our two signaling systems by
calculating the probability, which we again denote by P[], that one or
more bits will be received incorrectly when the transmission is disturbed
by additive white Gaussian noise.

Bit-by-Bit Signaling

For the first system under consideration the transmitted signal is given
by

K
S0 = 255 %t — Jra), (5.82)
where -

+1 if the jth bit is 1
5; = (5.8b)

—1 if the jth bit is 0

and z,(¢) is a pulse with energy E, and duration 74 = 1 {R. By letiing

f— i
@J(I)éM; J=1,2,,K, (59)

JE,
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we associate the M = 2F possible signals with the 2% vertices of a
K-dimensional hypercube. In Chapter 4 we noted (Eq. 4.87) that the
probability of at least one error with such a signal set is

Pigl=1—(1—pE=1—(1—p*, (5.102)
in which __ L
ol Bl [T) e

is the probability of error for a binary decision between two antipodal
signals of energy E, in additive white Gaussian noise with power density
N,/2. Since it was also pointed out in Chapter 4 that the optimum
receiver in this case can decide on each bit independenily of every other,
we characterize this signaling scheme as “‘bit-by-bit” transmission.

For any choice of R and P, Eqs. 5.10 state that the probability of error
tends to 1 as 7, hence K, becomes large. For fixed T and N’ the proba-
bility of error can be made small only by increasing the energy expended
per bit, E,, ¢ither by increasing the average power P, or by decreasing the
rate R, These results are intuitively agreeable; indeed, for many years
communicators assumed that decreased error probability could be achieved
only by increasing power or decreasing rate.

Block-Orthogonal Signaling

To see that this assumption is false, we need only consider the second of

our examples, in which one out of 2% orthogonal pulses is transmitted -
every T sec. For the particular example of the discrete pulse-position- - -

modulated (abbreviated PPM) orthogonal signal set illustrated in Fig. 5.2,
the transmitted signal can be written

s{t) =VE, gt —ir):  i=0,1,...,28—1, (511a)

where 7 is the binary number specified by the K-bit input sequence and
¢(t) is a unit-energy pulse of duration

T

Ty = T+
2K

We have seen in Chapter 4 (Eq. 4,111) that for any set of M equally
likely equal-energy orthogonal signals the probability of error is bounded
by

Pl&] < (M — 1) Q( A/%) < Mg BN, (5.12)

(5.11b) -
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sza(2}
ot}
Energy = E; = TP,
: INERNERI NN EAS NI ARREREENNY | SNEEE|

1 811 1671 241y T=327 ¢

T

f‘ﬂz(t)dﬁ‘-=l T3 =T/32

0 K=5

Figure 5.2 Block orthogonal waveform for messsage sequence 11010.

with the second inequality following from Eq. 2.122. A bound that is
sometimes tighter is derived in Section 5.6, but Eq. 5.12 suffices to provide
insight into the behavior of P[&]. '
By substituting
M =2% = 28T (5.13a)
and _
E,=KE, = TP, (5.130)

Eq. 5.12 can be rewritten in the form

P[§] < 2BT¢TP:2N0 = exp [— T(zirs’ —RIn 2)} (5.14a)

1]

We see that the probability of error approaches zero exponentially with
increasing T, as long as the rate R satisfies the bound

P, 1 P
L — 0722, 5.14b
2N lr 2 Ny ( )
Expressions equivalent to Egs. 5.14 are
P[§] < 2K KN — oxp [— K(zi —1In 2)] (5.152)

0

R<

and

E,
— >2In2 s 1.39. 15D
- Ny (5.130)
The conirast between the results obtained with bit-by-bit transmission
(Egs. 5.10) and those obtained when orthogonal signals are used to trans-
mit a whole block of K input bits simultanecusly (“block-orthogonal
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signaling””) is dramatic. In the first case increasing K forces the proba-
bility of error toward unity regardless of how large we make the energy
ratio per bit, E,/N,. In the second, by increasing K we can force the
probability of error to be as close to zero as we wish, provided that E,/N
exceeds 1.39. An aiternative statement is that the signal-to-noise power
ratio P,/ N, implies a bound on the maximum rate of communication;
at rates below this maximum the P[§] can be made as small as we wish by

choosing T sufficiently large.

Geometric Interpretation

The geometry of the signal-vector constellations for the two signaling
schemes just considered provides insight into the contrast between their
performances. As shown in Fig. 5.3 for bit-by-bit signaling, the distance
between nearest neighbors remains fixed as X increases, whereas the num-
ber of nearest neighbors and the number of dimensions occupied by the
signal st increase linearly with K. The probability that at least one of the

[~ 2VE; ]
2
17 2 “Ebj S2 S3
l ‘ 4 1 [}
S0 | 81 .
fa) K=1
Sp St
@2 {h) K=2
’<-2 By —] |si|? = KEp
Szl 53
T | [
[
Loy
[ e S——
v
A —_——1— — aSy

s l
/ -
84 4

{e) K=3

o3

Figure 5.3  Bit-by-bit signal geometry.
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K relevant noise components will carry the received signal vector closer to
a neighbor than to the transmitted vector becomes large as K increases;
there are K chances for this to happen.

On the other hand, in the block-orthogonal case the distance between

nearest neighbors grows linearly with VK, as indicated by Fig. 5.4.
When X increases from j — 1 to j, this growth in distance is achieved by
introducing a new dimension for each of the 2/~* additional signals and
rescaling in amplitude. Even though the number of nearest-neighbors
grows as 2 (all signals are nearest neighbors), the growth in the distance

VE;

|s;|2= KBy = Eg; all i

Figure 5.4 Block-orthogonal signal geometry. The geometry obtains for each pair of
signals (8, 8); 0<ij<2% 1, ;50

between signals dominates the probability-of-error behavior for large
values of E,J.N,. Conversely, for small E,/N°, we shall see that the growth
in number of neighbors dominates and that P[8] — 1 as K becomes large.

53 TIME, BANDWIDTH, AND DIMENSIONALITY

It might seem that the block-orthogonal PPM signaling scheme pro-
vides a solution to the general problem of accurate, efficient communi-
cation over a Gaussian channel. Unfortunately, such is not the case: for
R close to 0.72P,/ N, a very large value of T is required to obtain a
large negative exponent in the bound of Eq. 5.14a; however, very large T
in turn implies that the number 2%7 of orthogonal waveforms required
in the signal set is enormous. We shall see that a channel with a given
finite bandwidth cannot accommodate 277 orthogonal waveforms as 7
increases while R is fixed. All physical channels are characterized by a
finite-bandwidth constraint, hence no block-orthogonal signaling scheme
can be built for fixed rate and arbitrarily large T.
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Signal Dimensionality as a Function of T

A measure of the constraint imposed by finite bandwidth on the
dimensionality of a signal set can be gained from theorems due to Shannon
and to Landau and Pollak, which we state without proof.y

Dimensionality theorem.

Let {@p{£)} denote any set of orthogonal waveforms of duration T and
“bandwidth” W. More precisely, require that each @)

(1) be identically zero outside a time interval of duration T and

(2) have no more than 5 of its energy outside the frequency interval

—-W << W.

Then the number of different waveforms in the set {p (1)} is overbounded
(conservatively) by 2.4TW when TW is large. :

The definition of bandwidth in this theorem may seem somewhat

arbitrary, but any meaningful evaluation of the bandwidth occupied by a
time-limited, low-frequency waveform can be expressed as some constant
times that bandwidth, W, just large enough to incorporate 1} of the wave-
form’s energy.; Thus the theorem actually has unrestricted applicability.
The important fact is that the number of orthogonal waveforms (dimen-
sions) that can be accommodated by a “bandlimited” channel can grow
no faster than linearly with time, T, regardless of how “bandwidth™ is
defined.

The converse statement, that the number of dimensions (say N Yavailable
with a bandlimited channel can grow linearly with T, is easy to demon-
strate. We wish to show that

N = DT, " (5.16)

where D, the number of dimensions available per second, varies linearly with
W but is relatively insensitive to T. As a first example consider a pulse
() that is identically zero outside a time interval of duration = and
oceupies some (suitably defined) bandwidth W. Then T/r such pulses can
be placed without overlap into a time interval of duration 7. Since non-
overlapping pulses are orthogonal, this scheme provides a means of
obtaining D = 1/r dimensions per second.

Insight into the relationship between D and W is gained by considering
the inverse scaling that exists between the time and frequency domains;

t See Appendix JA. Dollard® has obtained the tighter result that if each ¢@4£t) has no
more than #,? of its energy outside of (— W, W), then the number of different wave-
forms is overbounded by 2TW/(1 — 7%} for all values of TW.

Appendix 5B,
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_ if the Fourier transform of 2(r) is X (f), the Foutier transform of a(at) is

J x(m)e—izm dt = lfw x(f)emjentf/a)g dE

—o o J =

= i" X (i) (5.17)

oL

Thus, if a pulse #(f) of duration 7 occupies a bandwidth W, the pulse
x(«t) has duration v/« and occupies a bandwidth «#W. It follows that
P = afT of the pulses #(wt) can be placed without overlap in a one second
interval, which verifies the fact that D is proportional to bandwidth.

As a second example of the converse statement, consider T-second
pulses of sine and cosine waves separated in frequency by 1/7 cps, such as

So(t) == 1 B

si(f) = /2 sin 27 %

- t
so(t) = /2 cos2m = \ —
2() =/ -

b [ =y
SRS

sa(t) = /2 sin dar 5":

5(8) = 2 cos dn—

U,
Each waveform is zero for |¢| > Tj2. Clearly, all such waveforms are
mutually orthogonal. The corresponding signal spectra are related to the
§pectrurp, So(f), of 5,(¥) as indicated by Fig. 5.5. It can be verified through
integration by parls and use of the tabulated sine-integral function® that

fHTIS neEdr>o9|” :
s> 09 [ s ar (519)

It follows from Eq. 5.18 and Fig. 5.5 that, when T% is an integer, a total
of 1+ 2[W(1/T)] = 1 + 2TW such signals can be accommodated in a
bilateral frequency interval of bandwidth (W + 1/T) with at least 90 per
cent of the energy of every signal contained within this bandwidth.

A difficulty in transmitting sequences of orthogonal pulses is that most
physical channels introduce distortion; pulses that do not overlap when
Fransmitted tend to be smeared together when they are received, as
indicated in Fig. 5.6. The result, called intersymbol interference, is that
strict orthogonality is lost and the value of D attainable in practice
reduced. A brute-force remedy is to provide sufficient dead time between
pulses that the interference is reduced to manageable proportions; elegant
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75 1Solf = /T) + So(f + b/ T)]
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he———— More than 90% of energy in this interval ————

(95% for large k)

Figure 5.5 Spectrum of T-sec cosine pulse at frequency k{T. The spectrum when
k = 0is Sof) = T(sinafT)f=fT.

approaches require careful waveshaping of the transmitted pulses andfor
elaborate filters. In practice, the maximum number of essentially orthog-
onal waveforms that can be transmitted in time 7' through a channel with
nominal bandwidth W is between 7% and 2 TW; the choice of definition
for W and the cost of implementation are the determining factors.

Transmitted Ref:eived
signal signal

;
i
T4 N2t 4
L ., /I XN N :
T 27\/31‘ V2 VST
\3

(a) &)

e
=T

Figure 5.6 Intersymbol interference. The solid curve in () is the composite received

signal, obtained by summing the responses (dashed curves) due to each of the three
transmitted pulses shown in {a). :

Bandwidth Requirements with Block-Orthegonal Signaling

Tt is now easy to show that bandlimited transmission channels pre-
clude the unrestricted use of block-orthogonal signaling. As we .have seet,
when a transmitter is connected to a source that provides input bits

i
:z
!
i
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at a rate R per second, the number of bits that must be transmitted in
time T is RT and the number of different signals required is M = 287,
If we insist that these signals be orthogonai, the dimensionality theorem
states that the number of orthogonal signals, M, and the bandwidth, W,
satisfy

M = 28T £ 2ATW, (5.192)
or
2RT
> 5.19b
24T (5.19b)

As T becomes large, W grows almost exponentially and therefore exceeds
the bandwidth of any physical channel.

The import of an exponential growth in bandwidth is made tangible
by the following example. Consider a system operating at the modest
rate of 100 bits/sec and assume thai R and PN, in Eq. 5.14a are such
that T == 1 sec is necessary to achieve the desired probability of error.

Then
2100 a0
W > — = 10°° ¢ps,
“ 24 P

which is clearly outlandish. Viewed in the time domain, Eq. 5.1%a states
that if we wished to realize this system by using a block-orthogonal
PPM scheme the number of nonoverlapping pulses per second would have
to be 2%, which implies a pulse duration of 107** nanosecond!

5.4 EFFICIENT SIGNAL SELECTION

In Section 5.2 we observed that block-orthogonal signaling over an
additive white Gaussian noise channel would yield a probability of error
that approaches zero exponentially with increasing block duration T for
rates R less than 0.72 P,/N°;. The drawback was that the bandwidth
requirement becomes exponentially large (substantially infinite) for large
T. We now show that it is possible to achieve a probability-of-error
behavior analogous to that of orthogonal signaling while simultaneously
meeting the bandlimited channel constraint that the dimensionality of the
signal space grow only linearly with 7.

A direct demonstration of this fact is not possible for two reasons.
First, unless some regular structure is imposed (as in the two examples in
Section 5.2), the mere task of specifying a set of M = 2%7T different
signals is enormous when Tis large. Second, even if the problem of signal
specification were manageable, in general we would be unable to analyze
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the PI&] that results from use of the specified signal set. Strangely |

enough, it is much easier to demonstrate that as T becomes large a great
many signal sets with linearly increasing dimensionality yield an exponen-

tially decreasing probability of error (for rates that are not too high) than

it is to exhibit a single specific set of signals behaving in this way.

Signaling with Sequences of Binary Waveforms

As a first example, Jet us consider a case in which the available number
of dimensions per second, D, exceeds the rate R:

D >R (5.20a)

For simplicity, we again (as in Section 5.2) restrict the signals to lic on the |

vertices of a hypercube. Since the number of vertices on a hypercube of
DT dimensions is 277 and the number of signals required is M = 257,
not all of the vertices need be used. In fact, the fraction of vertices that
we must use,

28 omr
7 =2 , (5.20b)

approaches zero as T increases. Thus there is a possibility that we can
avoid the convergence of the probability of error to unity with increasing

T which we observed in Section 5.2 as a consequence of the nearest-

neighbor structure when D = R.
Restricting the signals {s,(¢)} to the vertices of a hypercube implies that
each signal has the form

¥
s =2 sup80; fori=0,1,...,M—1, (5.21a)
where a_l_
sy= 2vEy; alliandj, (5.21b)

N 2 DT, the number of dimensions in time T, (5.21¢)

and FEy is defined as the available signal energy per dimension. As in

Chapter 4, {¢,(#)} can be any set of orthonormal waveforms:

J pA) gty dt = 6y;  allland .

For example, the {¢,(1)} might be successively delayed, nonoverlapping
replicas of some finite-duration, unif-energy pulse, as shown in Fig. 5.7.

SIGNALING WITH SEQUENCES OF BINARY WAVEFORMS 299

The constraint on the average transmitted power, P,, requires

N

E,=PT=3s,"= NEy, (5.22a)
i=1
or
E P,
= — == joules/dimension. 5.22b
N N D J / { )

For the {g,(£)} of Fig. 5.7 the signals {s,(¢)} are sequences of positive and
negative nonoverlapping pulses, cach pulse containing energy E,.

@) eift)  eelt)  @at) et os(t) wsld)
NANNANN

(Y

L\ i ;
— "‘

~r 2 “3r 4r By br

f gajz(t) dit=1
@t} = olt - jT)

Figure 5.7 Orthonormal (pulse position) waveforms.

The average probability of error. The problem of signal selection for
this particular example reduces to the assignment of the vectors of
coefficients {s;;} in Eq. 5.21a:

52 (s S - -, 8y)s  i=0,1,...,M—1, (5.23)
As we have mentioned, a good specific assignment is hard to find and hard
to analyze, These complications can be circumvented by bounding the
attainable probability of error by an ingenious indirect argument due to
Shannen,™™ The key lo the derivation is to consider not just one com-
munication system, but rather a whole collection of communication systems,
each consisting of a transmitter, channel, and optimum receiver. As shown
in Fig. 5.8, the systems are identical, except that each employs a different
set of signals {s;}.

There are 2V = 27 different vertices available on our N-dimensional
signal space hypercube and M = 28% signals {s,} to be assigned thereon;
it follows that there are (2¥)¥ = 2¥¥ distinct ways to assign the M
signals. We assume that each of these 2¥¥ signal sets is used by one (and
only one) of the communication systems in our collection, and that each
system uses a receiver that is optimum for its signal set. Following
common usage, we refer to the signal sets as codes, and to the signal
vectors as codewerds. '
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It is clear that each system in our collection has a definite probability
of error, say P, for the Ith system, I=1,2,...,2%% Some of the
systems—for example, those with codes in which all M of the vectors {s,}
are assigned to the same vertex—have a very large probability of error.
On the other hand, most of the systems have a probability of error that is

(2} Gaussian, zero-mean noise

8y {fy = Nof2
i Sm (tjllfg . A
18:k; = 150 815 s 81y | Optimum for {s;},

]
m sm(t)ll /-g ) ~

isid, I Optimum for {s;},
I I
| . ' .
| : :

sm(”{zl“%.g - ~

{Sebgnr Optimum for $8;}, xur

Figure 5.8 Cellection of communication systems, each using a different set of M
signals {8;}, / = 1,2,... , 2N

quite small, a fact that we shall prove by calculating a bound on the
arithmetic average, denoted P[&], over the entire collectjon:

oM

PIEl 2 — 3 P. (5.24)
fel :

Clearly, not all of the P, can be greater than P[E].

It may be surprising that one can bound the average probablhty of error
for a collection of communication systems when one cannot calculate the
probability of error of an individual system. Such was Shannon’s insight.

To calculate a bound on P[8], we first interpret Eq. 5.24 as a statistical
rather than an arithmetic average. Although this interpretation is not
essential, it simplifies the derivation by permitting us to use the notation
and results of the preceding three chapters, Consider a probability system

in which each point w of the sample space has associated with it one of the

-

SIGNALING WITH SEQUENCES OF BINARY WAVEFORMS 301

systems of Fig. 5.8 as well as a message, a noise waveform, and the
resulting received waveform. The probability assigned to the system
utilizing code {s;} is

P[{s;}] = 27¥¥, (5.252)

and is statistically independent of the message and the noise process.
if the code for the /th system is {s,},, we have

PL&]{s}]="P,. (5.25b)
By using Egs. 5.25, Eq. 5.24 may be rewritten
PE]=E[P]=_ 3 PE|{s}IP{s] (5.26)

We now bound ITS] When message m, is transmitted, the conditional
probability of error, P[§ | m,], averaged over the collection of codes is

PE[md=_3 PlsIPI5|me (s}) s5.27)

in which P[8&|m,, {s,}] is the conditional probability of error, given
m = my, for a specific code {s;}. Application of the union bound of
Eq. 4.109 to each specific code yields

P& | m,, {11 < 2 Pafs;: s¢l, (5.28)
(Hék)
where Pyls,, s,] is the probability of error when the two signal vectors s,
and s, are used to communicate one of two equally likely messages.
If it were easy to evaluate the right-hand side of Eq. 5.28, there would
be no need io consider the collection (ensemble} of possible communication

~ systems, This evaluation, however, requires both explicit knowledge of

the signal set {s;} and unlimited patience. The crucial advantage to be
gained by considering the ensemble of systems is that both difficulties are
avoided by an interchange in order of summations. Substituting Eq. 5.28
in Eq. 5.27, we have

—_— M1

P[§ | ml < Z P[{S 1 z Pyls;, 8.

{: qEM

Interchanging the order of summations yields

e— M-1

PE[mI< 3| 5 Pls)]Pulsosil
(z#i)
RIS

= E Pals;, s, (5.29)
(=0

(4 2=k)
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in which the bar denotes expectation over the ensemble of communication
systems. Thus interchanging the order of summations makes averaging
over the code ensemble the next step in the bounding of P{E].

For the additive white Gaussian noise channel, Py[s;, s,] depends only
on the Buclidean distance between s; and s,. In accordance with Eq. 4.110,

s — 5k|)
P S Sp| = (“*—-r“‘_““”" - 530)
alSp 5] = € Nag (
If s; and s, differ in & coordinates, the square of the distance between
them is

N J—
is; — 8° =52(s,,-,- — 5 =h (2\/EN)2 = 4hE,. (5.31)
=1

Over the ensemble of codes, the probability assignment of Eq. 5.25a
implies that s, is equally likely to be any of the 2% vertices of the signal-
space hypercube, independently of ;. Thus the probability that s;; equals
5,; is %, independently for all j=1,2,..., N. As a consequence, the
probability that s, and s; will differ in & coordinates is just the probability
of getting # Heads in N tosses of an unbiased coin:

e = ()" 5320

The expected value of Py[s;, 5] over the ensembie of codes is therefore

~Srino[ LT =S (ol J2E).

Since the right-hand side of Eg. 5.32b is independent of the indices /
and k, it is convenient to introduce the simpler notation

Pt & Pyfs, 5] (5.33)

With this notation we observe that

P& | m] < z Pals, 5l = (M — DP[E] < M P[E]

)
and

i P(& | my] Pl
< M P,[&]) Uz_ Plm,] = M P,[&]. (5.34)
¥=0

Bounding P[E] now reduces to bounding P,[&].
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Recalling from Eq. 2.122 that
Q) < €7,
we substitute in Eq. 5.32b and obtain

=0

P[] < %2—2\’ N g PENIN S — 2_1\’% N) [e—EN/N.)]n
FUET R h ‘
But :

N
[1+al =3 (g)“
h=0
which implies

By[6] < 27N[1 + e EnNap¥, (5.35)
This may be written more concisely as
By[E] < 27V P, (5.36a)

in which we introduce the exponential bound parameter R, identified from
Eq.5.35 as

2
R = on. (7 Frw)
=1—log,(1 + BNy antipodal signaling. (5.36b})

Finally, the combination of Egs. 5.34 and 5.36 yields the end result of
our analysis, the bound

PIE] < M Py[8]
< M 2 VEo, (5.37)

Defining R, as the transmitter rate in bits per dimension,

Ry AR R : blts./second ) (5.382)
D dlmensmns/second
so that
M =278 —3NEN (5.38b)
we can rewrite the bound in the convenient form
PE] < 27 N1Eo—Bn], (5.38¢)

Equations 5.38 state that as long as Ry is less than the exponential bound
parameter Ry, the average probability of error—hence the probability of
error for al least one code in the collection—can be made arbitrarily small
by taking N sufficiently large. The number of dimensions A is frequently
called the code block length.
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The parameter Ry is plotted in Fig. 5.9 as a function of the signal-energy- ‘
to-noise ratio per dimension, Ey/Ns. Since the maximum valie of R, is
unity (corresponding to Ey — co in Eq. 5.36), the exponent [Ry — Ry]
in Eq. 5.38 can never be positive for a rate Ry greater than or equal to
1 bit/dimension. This is consistent with the result given in Section 5.2 for
bit-by-bit signaling: when Ry = 1, we have R = D, which implies that
the required number of signals equals the number of available hypercube
vertices. Using antipodal signaling (binary codes) restricts the system
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Figure 5.9 R, for binary antipodal signaling. The units of R, are the same——bitsf
dimension—as those of Ry.

to operation at rates R less than D bits/sec if the probability of error is
required to be arbitrarily small.

Selecting a specific code. Although the class of all possible codes
(signaling sets) constructed in accordance with Eqs. 5.21 has been shown to
yield an average probability of error that decays exponentially with in-
creasing N when the bit rate per dimension is not too great, we have not
yet considered the problem of selecting a single, specific code. Itis evident
that this problem is not a sensitive one insofar as error probability is con-
cerned. The quantity P[&] is the average value of the positive quantities
{P,}, where P, is the probability of error for the /th code in the class. Since
only a fraction 1/4 of a set of positive numbers can be larger than A times
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théir average, at least 90 per cent of all codes in the coliection must have a

. P[&] no larger than 10 P[&], and 99 per cent of all codes must have a P{§]
“ no larger than 100 P[§].

For rates such that P[§] decays exponentialty with N, it is possible when
designing a system to choose N large enough so that 10, 100, or even

1000 P[&] will be as small as we like. For example, if N == ¥, is sufficient
to guarantee P[8] < 107%, clearly N = 3N, is sufficient to guarantee

100 EW < 1078 Measured in terms of the required fractional increase in
code length N, only a small price need be paid to gain reasonable assurance
that a code picked at random is good. Of course, once a good code has

been chosen, it can be used for many transmissions and in many systems.

Discussion. An intuitive understanding of why a P[&] that decays ex-
ponentially with A resuits for Ry < R, can be gained from the following
considerations. We recall that R, specifies the exponential bound on

P,[&], the mean probability of error (over the ensemble of codes) when one
of two signals is equally likely to be transmitted over a channel disturbed
by additive white Gaussian noise: ‘

0

On the average, two signals chosen independentiy at random from 25
hypercube vertices differ from one another in approximately N/2 co-

ordinates. Thus the root mean square distance between two such signals

increases linearly with +/N. Since Gaussian noise produces a probability
of error that decays exponentially with the square of the Euclidean
distance between two signals, it is reasonable that P,[€] should decay
exponentially with N,

Two phenomena enter into the occurrence of an error when M = 2 and
the signals are chosen at random. The first is that the noise may be
unusually large and cause an error even though the Euclidean distance
between the two signals is typical, as shown in Fig. 5.102. The second is
that the noise may be typical but the two signals may be poor in the sense
that the distance between them is unusually small (see Fig. 5.10b). The
value of R, in Eq. 5.36 represents the combined influences of these two
phenomena. When E,fN, is large, R, approaches unity, and the P,[€]
approaches 2~¥. But 2~V is just the probability of assigning the two
signals to the same hypercube vertex; we recognize that it is the second
phenomenon that dominates R, when Ey /N is large. On the other hand,
when E/N is small, errors are likely to occur even when the two signals
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Figure 5.10 Two possible signal pairs: (a) typical spacing; (b) smalf spacing. ’

are typical in the sense that they differ in approximately N/2 components.
Under these circumstances R, is dominated by the first phenomenon.

This heuristic discussion is extended to the case of M randomly selecied
signals by recognizing that there are three distinct and statistically in-
dependent selections entering into the occurence of error:

1. The data source selects the transmitter input .
2. Nature selects the relevant noise n,
3. The communication system engineer selects the signals {s,}.

P[&] denotes the probability of the event error in the product ensemble
describing the three selections. It is convenient to visualize these selections
as taking place in the order listed and to assume m is »1,. We may also
visualize that the system engineer first selects the transmitted signal s, and
then the remaining M — 1 signals. An error occurs if and only if one or
more of the M — 1 remaining signals {which over the ensemble are
selected without reference to s, o, or each other) lie closer tor = s, +n

<— Radius of sphere =|n|

Figure 5i1 An error occurs if any signal s; falls into the shaded region, since then
v — s8] <|r~ s =n.
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than the distance |n} from s, to r,jas indicated in Fig. 5.11, For each of
the remaining signals the probability of falling into this forbidden region
is, by definition, P,[§]. Since there are (M — 1) chances for some signal
to fall into the forbidden region, we immediately have the union bound

P[E] < (M — 1) P,f6].

The average probability of error approaches zero with increasing N as
long as the number of messages M = 2¥EN grows with N less rapidly than

P,{&] decays.

~Comparison with block-orthogonal signaling. 1t is interesting to com-
pare the bound of Eq. 5.38 with the behavior exhibited in Egs. 5.15 for
block-orthogonal signaling, namely,

P[E] < 2——K[(Eg,f.N’0){l,'2 1n 21—1]’ (5.392)

where K as usual denotes the number of transmitter input bits during an
interval T. Thus the energy per bit utilized with orthogonal signaling must
satisfy the bound

f—: >21in2;  for orthogonal signals (5.39b)
o
in order that the bound on probability of error tend o zero with increasing
block size, K.

The correspond ng limitation on E,/Ny with binary coding is obtained
by rewriting Eq. 5.38< in the same form as Eq. 5.39a. Since

K = RT = NRy,
we have
P[E] « 273 THe— BNl — p— KR/ Bni—11, (5.40a)
Morcover,

E\ = energy per dimension = (ene-rgy)( .-bltS. ) = E;Ry, (5.40b)
bit dimension
so that (from Eq. 5.36)

. —EniNg
&: b&:ﬂ.—Ru =£.1 10g2(1+e N ). (540C)
Ry En Ny EnfNy Ny EnlNy
Thus
i)m < 2—K[(Eaf.N’9H1/¢)—1], (5.413)
where
L a Enf N (5.41b)

1 —log, (1 4 ¢ Bnoy”
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Figure 5.12 TLower bound to the allowable ratio KX, for binary-coded systems.

For the bound on P[&] to go to zero with increasing K, we require

‘% > o for binary-coded signals. ' (5.41c)

9

The parameter « is plotted in Fig. 5.12 as a function of EfN,. Iis

minimum value—attained as EyfNg— 0 —is 21n 2, and o exceeds this
minimum only slightly for Ey/N, < —10db. Thus the exponential
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decay of the average probability of error bound over all codes of the class
considered here is substantially equivalent to that obtained with block-
orthogonal signaling, provided that D can be made large enough so that
EyJNy is small. This corroborates our earlier observation that under
this condition it is the noise that dominates R,.

In Chapter 4, we claimed that simplex signals are optimum for com-
munication over an additive white Gaussian noise channel and that orthog-
onal signals are substantially equivalent to simplex signals when the
number of signals, M, is large. Since the exponential decay of P[f]
becomes substantially equivalent to that obtained with block-orthogonal
signals, we conclude that the class of hypercube-vertex (binary-coded)
signals may be considered to be “exponentially optimum™ provided that
the noise, the available number of dimensions per second D, and the
received signal power P, are so related that

energy/sec Ny

P
= = F 5.42a
N dimensionsfsec D 10 ( )
or
D> 10& (5.42b)
N '

0

Signaling with Multilevel Sequences

We have just inferred that the signal class consisting of binary-wave-
form sequences is exponentially optimum whenever the ratio P,/N, is
much smaller-than the number of dimensions available per second, D.
We have also observed in Fig. 5.9 that for this signal class R, saturates at
one bit per dimension when Ey/N’, 3> 1. Since we certainly expect that
large enough Ey/N'; should permit reliable communication at rates above
onec bit per dimension, we anticipate that the class of binary-waveform
sequences will #or be exponentially optimum when E /N is large.

As noted in connection with Eq. 5.20, the saturation of R, in Fig. 5.9 is .

attributable to the fact that the total number of distinct binary-waveform
sequences occupying DT dimensions is 2P7, so that R cannot exceed D
bits/sec. The only way to avoid this saturation effect is to augment the
class of allowable signals. Since in many situations P /N, is large but
the bandwidth is limited—for example, in digital communication over toll-
grade telephone linest—it is important fo consider signal sets {s,} that are
not constrained to lic on the vertices of a hypercube.

T Although the noise on telephone circuits is not simply Gaussian, experiments® have
demonstrated that a sizable improvement in rate can be achieved by the use of nonbinary
waveforms of the kind to be discussed here.
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Figure 5.13 Comparison of R,* and R, for binary signaling.

Shannon,” in a derivation beyond the scope of this book, considers
additive white Gaussian noise and N-dimensional signal sets {s,} that are
constrained only in energy:f

2 Booyo — 5.43
ISP NEw=N—5  i=01,...,M~1 (5.43)

T See aiso Gallager.®®
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He then shows that sezs of M = 2¥BN signals exist for which the error
probability is bounded by

P[8] < 27MEENL 0 < Ry < Ry, (5.44a)
with

*éloﬁf[ Ey _ | (;E_ﬂ
Ro > Lt N, bt N,
e i +1+ ()]

+ 210gz |:2(1 +./ 1+ », . (5.44b}
In addition, he proves that no set of M = 255N signals satisfying Eq. 5.43
exists such that the bound of Eq. 5.44a is valid for arbitrary N and R, when
Ry* is replaced by a larger number. (We shall see in Section 5.6, however,
that more elaboraie bounding techniques do yield tighter results for
particular values of Ry.)

In Fig. 5.13 Ry* is plotted as a function of E/N, together with the
R, achieved by the ensemble of binary-waveform sequences. Our intuitive
feeling that rates greater than D bits/sec must be attainable for large values
of Pyf.N'q is justified. For Ey/Ny < 0db, R, nearly coincides with Ry*,
but for Ey/Ny > 0 db the binary-waveform sequences are less desirable.
For Ey/Ny > 10 db they are exceedingly inefficient.

We now consider certain signal classes that yield a bound parameter R,
that is substantially as large as R,*, even for large values of E /N, The
adverse effect of saturation is circumvented by not restricting the signal
vectors {s,} to the vertices of a hypercube. An especially convenient
augmented class of allowable signals, in terms of analysis and imple-
mentation,} is one in which the components {s,;} of the signal vectors are
still restricted to a finite number of different values, but in which this
number, say 4, is now an integer greater than 2. The total number of
allowable signals of the form

8; = (S0 Size - - -5 S, (5.45a)
1\!’
s{t) = 21 $1242) (5.45b)
=
is therefore
AY = N loged (5.45¢)
For this class of signal, saturation does not occur until
M =2%En = 4¥ (5.45d)
or
Ry = log, 4. (5.45¢)

T Questions of implementation are considered in Chapter 6.
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For example, if 4 = 4, the saturation value of Ry is 2 bits/dimension .

rather than 1. Thus we may hope to obtain a bound of the form
P[] < 27 V1R

in which R, is greater than 1.

To complete the specification of the enlarged signal class, we must
state the A values permitted to the {s;;}. We consider only the case in
which each s;; can be assigned any one of 4 amplitudes equally spaced

over the interval [—'-\/E_N, \/E;] as shown in Fig. 5.14 for 4 = 8. Such

2+/Efta-1)

a1 G2 @3 04| @3 dg d7 ag

Vi ERV.»

Figure 5.14 Possible set of values permitted the {s;;}; 4 = 8.

an assignment guarantees that |s,|* < NE for all i. For example, the 16
allowable signals when 4 = 4 and N = 2 are jllustrated in Fig. 5.15. The

“set of values permitted the {s;;} is called the signal alphabet and denoted
{a}, I=1,2,..., A. The members of the alphabet are called letters,
and the set of all A% allowable signal vectors is called the code base.

To determine R, as a function of 4 and E /Ny, we again bound the
mean probability of error, P[§], over an appropriate ensemble of com-
munication systems. Since each message may be assigned any one of the
A¥ vectors in the code base, the total number of distinct codes—assign-
ments of M messages to code-base vectors—is (4¥)M = 4¥¥. As when
A =2, codes in which several messages are assigned to the same vector
are included in the count. For bounding P[€], we consider an ensemble
containing 4¥¥ communication systems, each of which uses a different
code {s;} together with a receiver that is optimum for that code.

We recall that P[&] is the ensemble average of the probability of error
of each system in the ensemble. In evaluating?ﬁ for 4 = 2, we assigned
each of the 2¥¥ gystems equal probability, which implied

= 1

Plt] = NI

2 PLE|{s;]l.

all codes

When 4 > 2, the ensemble average probability of error, P[E], is reduced,
hence the value of R, increased, by assigning nonequal probabilities to
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the A% systems in the ensemble. The reason is that the signal alphabet
{a.} is asymmetric, as seen in Fig. 5.14: although each letter is equally
distant from its nearest neighbor, the letters +~/E, and —+'Ey have
neighbors only on one side, These end letters are, in a sense, more
distinguishable, and we anticipate that the probability of error will be
smaller for systems with codes {s,} in which letters near the ends are used
more frequently than the interior letters.

w2
//fﬂ_‘\\\
// \(-Radiu5=-\/m
/ \
i \
2Ey — } @1
\
\ /
\ /
N /
\\\-________,//

Figure 5.15 The code base when 4 =4, N =2,

In order not to preclude a preference for the better codes in the analysis
of P[&], the assignment of a probability to each of the 4™ systems in
the ensemble is accomplished as follows. We first associate with every
alphabet letter @, /= 1,2,..., 4, a non-negative number p, such that

Pitpt o+ pa=1 (5.462)

Next, for each system we observe its entire code {s;} and count the total
number of times, say ¥,, / =1,2,..., 4, that letter 4, appears therein.
To this system we assign the probability

Pl{sl = pM g™ - - pMa (5.46Db)

Since each code comprises M codewords with N symbols apiece, it is
clear that for every system Ny + Ny + -+ - + N; = NM. For example,




314 EFFICIENT SIGNALING FOR MESSAGE SEQUENCES

a code {s,} containing M = 5 members is shown in Fig. 5.16, with N = 2
and 4 = 4. For this code

N, = 4, Ny =2, N, = 2, Ny=12.
If we choose p; = p, = & and p, = p; = %, then
P{s;}] = piip.tpsips® = 4.096 x 1077

Another way of expressing this probability assignment is to state that,
over the ensemble, the probability that component s;; will be the /th
letter of the alphabet is just p,, independent of all other components in
s; and in the remaining code words {8}, k # /. With this alternative
definition, the probability assigned to any code {s,} is exactly that given in
Eq. 5.46b. This interpretation assures us that the probability assignment
of Egs. 5.46 is valid.

w2
51 — &4
L]
- a3
@1
53 — a2
L a
Sy Sy
| ] | J
a1 az 2] o4

Figure 5.16 Code with M =5, A=4, N=2.

By choosing the p;’s associated with letiers near the ends, + VEy and
—VE,, to be larger than the p,’s associated with the interior letters we
can permit a system whose code contains a larger proportion of end letters
to contribute more strongly to the average probability of error than a
systern whose code contains a smaller proportion. 1f we choose to let
each p, equal 1/4, every possible code is equally likely, and all systems
will contribute equally to P[E). We first calculate R, for arbitrary {p,};
then we specialize the {p;} to values that maximize R,.}

The procedure for obtaining an exponential bound on P[&] for the
ensemble specified by Eqgs. 5.46 is parallel to that followed m the case of

T If, in selecting a specific code, letters are chosen for codewords independently but
with the optimum {p,}, the probability is high that a code with perfermance comparable
to that afforded by the maximum R, will be obtained.
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.binary antipodal letters. We again have

P[& | m;] = ¥ esP[a | M {8:31 P[{s,},

lcod
M-1
P[SI Mg, {Si}] < 2 Pyfs;. sl
R
—_ -1
P[SI ml < Z P[{s;}] _g] Py[s;, 5]

all codes
(i%k)

M-1

=2 Pulsi sl (5.47)
i

Provided that we can obtain a bound of the form
Pyls,, 5,] = P,[6] < 275 (5.48)
for any k and all i 5% k, it will follow as before that

M-1

P& | m < 3 Pol8] < M2V,
=0

iFk

and therefore
P[] < 2~V Bo BNl (5.49)
which is the result that we desire.

It remains to prove the validity of Eq. 5.48 and to evaluate R, Since
the noise is additive white Gaussian, we again have

Pyls, 5] - Q(Esg- — skl)

2N
< exp [— . %(s ;— 5 -)2]
4JV)0 & (5] ki

i 1 2:|
=TJexp | — — (i — 5|
Texe | = 7356 = )

where {s,} and {5,;} are the components of s, and s, respectively. Averaging
over the ensemble of codes yields

Flen s < E[]j exp {— %M (5, — s,”-)z}:l. (5.50)

Evaluation of the right-hand side of Eq. 5.50 is facilitated if we denote
the distance between the /th letter and the Ath letter of the transmitter
alphabet {a,} by the symbol d;;:

dp=la,—al; Lh=12...,A (5.51a)
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For example, with the letters of Fig. 5.14

dyy = NEx (5.51b)
A—-1
If 5;; = @, and s;; = a,, we then have
(55 — sps)* = ™ (5.51¢)

We next recall that over the ensemble of codes the probability _Of the_
joint event (5;; = ay, Sp; = 45) 1S PuPps independently of 'thc coordlgate J
we are considering and independently of ali other letter assignments. Thus

Pllsy — Se)® = dy?l = pipws (5.52)

independently for all j, {, and k. . .

The desirability of assigning probabilities to the dlﬁ'eren‘E members of
our ensemble of communication systems in accordance with Egs. 5.46
now becomes evident. The statistical independence of the {55 — 5%}
permits us to simplify Eq. 5.50 by using the fact tha‘t the e.xpected value
of a product of statistically independent randorp variables is the product
of their expected values. Since the random variables {(s;; — 5,,)°}, hence
the random variables

exp [— %M(sﬁ - sk,.)Z], i=12...,N,
are statistically independent, Eq. 5.50 yields
Pyfsin 8] < ﬁ E':GXP {—' L (s:5 — Sks‘)z}:|‘
' = 4N,
The rest is definition. From Eq. 5.52

a4 27 —dint AN
E|:exp {_ 4;(’ (s — Ski)z]:\ =2 > Pl(s; — Sg)t = dyy ] e e
0

1=1h=1

L ¢ dip AN
= z ZPane i e
2

Defining .
by & 70 Y0 (5.53a)
and _
4 4
R, 2 —log, (21 n%plbmph)’ (55313{)
1=1 k=
we have y ‘
N
Pals, s < [[ 2 %o = 27V H, (5.54)
i=1
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Since the bound of Eq. 5.54 is valid for all { and k, we can again denote
Py[s;, s,] by Py[8]. Thus Eq. 5.48, and therefore the bound

P[E] < 2~ MEBo—EnI {5.55)
is verified, with R, given by Eqs. 5.53. The average probability of error
for an ensemble of commumnication systems using codes with letters
selected from an 4-letter alphabet decreases exponentially to zero with
increasing codeword length, N, as long as Ry < R,. Only the value of
R, has changed from when 4 = 2; the form of the bound is the same.

The bound of Eq. 5.55 has been derived for any set of 4 amplitudes
{a;} and any set of letter probabilities {p,}. In the special case when we
choose all p; = 1/A4, the expression for R, reduces to

144 o
Ro=lom g2 2™ (556)

For A =2 and g, = +\/EN, @, = —\/EN, we have dy; = dyy =0,
dyp = dyy = 2/ Ey, and

Ry = —log, e PN No o o8 | o0 | BNty

= log, .2

1+ e ENiNG?
which agrees with the previous result of Eq. 5.36. More generally, given
any choice of amplitudes {a;}, Eq. 5.56 can be evaluated on a digital
computer. This has been done for the alphabets chosen as in Fig. 5.14
with 4 =2, 3, 4, 8, 16, 32, and 64. Curves of R, as a function of B[N,
are shown in Fig. 5,17, We see that the upper envelope of the curves has
small dips at the crossover points.

In Appendix 5C we consider the problem of choosing an optimum
probability assignment for the {p;}, given any particular signaling alphabet
{a;}. The curves of R, that result when the optimum {p;} are used with the
equally spaced letters of Fig. 5.14 are shown in Fig. 5.18, together with
Ry*. We sce that the dips disappear and the upper envelope is smooth.

The upper envelope of the nonoptimized curves of Fig. 5.17 is also
included in Fig. 5.18, as dotted lines. The advantage of using optimum
{p:}, compared with equally likely {p,}, is small as long as the value A is
properly chosen.

It is clear from Fig. 5.18 that a relatively simple ensemble of codes with
A -equally spaced letters having equal probabilities can always be chosen
so that R, is close to Ry*; for no valve of Ey/ Ny does the Rj* curve
exceed the nonoptimum envelope by more than 35 per cent,

The reason for the discrepancy between R,* and the R, for multi-
amplitude-waveform sequences is easily discerned. First, the condition
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Energy ratio per dimension, 10 log,, E, /N

Figure 5.17 R, for equispaced A-level amplitude modulation and p, = 1/4;
[=1,2,..., A

imposed by Shannon in the derivation of Ry* was that (cf. Eq. 5.43) the
total length of each signal vector s; must be no greater than VNEy. On
the other hand, in the derivation of R, werequired that no vector componen!
5;; could be greater than N E,, which is sufficient but not necessary to
satisfy Eq. 5.43. The first restriction is a constraint on the total energy
of each signal, whereas the second is more akin to a peak-power con-
straint. If we consider the case in which the {a,} are equally spaced over
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Figure 5.18 R, for equispaced A-level amplitude modulation; {p,} optimized.

[—\/EN, —]-\/EN], each p; == 1/d, and A is large, the expected value of
the squared length of any s, is

N N
Ellsf] = B 35,7 | = ZE05,71 = N Els

F=1
N& ., NE,
= — d;, ~y —,
Azgl : : (5.57)

Py——
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.For large A there is a factor of 3, or 4.8 db, between the allowed energy
in the derivation of R,* and the mean energy in the derivation of R,.
When A = 3, E[ls;[?] = §NEy and the discrepancy is 2 db. Energy
differences account for all but something less than 1 db of the discrepancy
between Ry* and R,.T

The remaining 1 db is due to the s1gnaI structure assumed for our code
ensemble. We restricted all signal vectors to fall within a hypercube

centered on the origin, each side of which has length 2 Ey, as illustrated
for N = 2, A4 = 4 in Fig. 5.15. The set of signals considered by Shannon

is constrained only to fall within a hypersphere of radius VNE,, as
indicated by the dashed circle in Fig. 5.15. The additional volume for
locating signals, internal to the sphere but extérnal to the cube, is signifi-
cant for large N. (The term “hypersphere” means an N-dimensional
sphere and is defined mathematically in Section 5.5.) '

Good engineering must reflect the complexity of system implementation
as well as system performance; as discussed in Chapter 6, there is often
considerable merit in working with a slightly nonoptimum class of signals
to facilitate implementation. For the additive white Gaussian noise
channel, the multiamplitude waveform sequences are such a class.

It is interesting to note that, for each value of A4, the corresponding R,
approximates R,* for some range of Ey/N,. In every case this range
lies several decibels below the value of E. /N, at which R, approaches
the alphabet saturation level, log, 4. The explanation, as in the case
A =2, is that R, is “optimized” by choosing 4 large enough that the
effects of noise, rather than the probability of choosing a bad code because
of a shortage of signal points, dominates the value of R,

55 CHANNEL CAPACITY

The relatively simple argument used in Section 5.4—that the probability
of a union is bounded by the sum of the probabilities of its constituents—
is sufficient to obtain the bound

P[8} < M B,[E], (5.58a)
and thence the result
PlE] < 2~ NlRo—Enl, (5.58b)

Equation 5.58b guarantees that signal scts exist which afford communi-
cation through white Gaussian noise at any rate Ry < R, with arbitrarily

+ This same consideration accounts for the discrepancy in Fig. 5.17 between the curves
of R, for large 4 and for 4 = 2 when the {p,} are equal to 1/4 and En[HN' is small.
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low error probability. The value of ¥ obtained by setting the right-hand
side equal to the desired error probability is an upper bound on the
number of dimensions necessary to achieve such performance.

On the other hand, Egs. 5.58 do not imply that an arbitrarily low prob-
ability of error cannot be obtained for rates Ry greater than R, Indeed,
we have already seen that R,* > R,. The central question concerning the
ultimate limitations imposed by noise remains.

Capacity Theorem

A complete answer to this question is provided by specialization of a
theorem, due to Shannon,’®" called the capacity theorem. Roughly
speaking, this remarkable theorem states that there is a maximum, called
channel capacity, to the rate at which any communication sysiem can
operate satisfactorily when constrained in power; operation at a rate
greater than capacity condemns the system to a high probability of error,
regardless of the choice of signal set or receiver. The theorem is extremely
general and is not restricted to Gaussian channels. For such channels,
however, it is clear that the capacity is at least as great as R,, since we
have already proved the existence of systems that yield arbitrarily small
error probabilities for any rate less than R,

Recalling that the number, D, of dimensions that can be accommodated
per second by a bandlimited channel is not sharply specified, we state the
capacity theorem in terms of the parameters Ey and Ry, where Ry = R/D
again denotes the transmitter input rate in bits per dimension. The energy
of each signal is constrained to be no greater than NE, where N is the
dimensionality of the signal space.

In the particular case of transimission over an additive white Gaussian
noise channel the capacity theorem may be stated as follows:

Theorem. There exists a constant, Cy, given by

Ch=11 (1 2 ) 5.59
N oz |1+ >, (5.59)

and called the Gaussian channel capacity, with the following properties:

Negative Statement. If Ry > Cy and the number of equally likely
messages, M = 27", s large, the probability of error is close to 1 for
every possible set of M transmitter signals.

Positive Statement. If Ry < Cy and M is sufficiently large, there
exist sets of M transmitter signals such that the probability of error
achieved with optimum receivers is arbitrarily small.
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Figure 5.19 Comparison of capacity and Ry*.

A plot of Cy as a function of Ey/N’g is given in Fig. 5.19, together
with R*. We see that ‘
I < Ry* < G (5.60)

Thus the apparent limitation Ry < R, on rate evidenced by Eq. 5.58 is
attributable to the manner of bounding and is not an inescapable attribute
of EyJN,. The bound Ry < C is inescapable.
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The bound R, < Cy {bits/dimension) implies that
R < DC,, (bits/sec). (5.61a)

The number of dimensions per second that can be accommodated by a
bandlimited channel is boundedt (cf. Appendix 5A, Eq. 5A.6) by

D 2w, {5.61b)

If we achieve the upper bound D = 2W, then Ey = PjD = Ps,fZW, and
we have the well-known result
P A
R2WCy =Wlo (1+—‘) =C, 5.61c
N 28 WK, ( )
where C isthe capacity in bits per second and P, defined by Eq. 5.5, is the
maximum average power allotted to any transmitted signal.

¥ Proof of the Capacity Theorem

This proof of Shannon’s™ capacity theorem for the Gaussian channel
is essentially geometric. The proof is long but straightforward.

Sphere hardening, Let us begin by considering a signal space of N
dimensions and a set of M = 2¥BN signals, each with energy less than or
equal to NEy:

s < NEy;  alli. (5.62)
When Eq. 5.62 is met, we say that the signals lic within an N-dimensional
sphere? of radius N NEy,.

For this proof, we introduce vectors so normalized that the size of the
constraining sphere is independent of N:

s, 28Ny i=0,1,...,.M~1, (5.63a)
n 2 /N, (5.63b)
r2f/N=s,+n, m=m; (5.63c)

¥ The discrepancy between the bound of Eq. 5.61b and the dimensionality theorem
of Sect. 5.3, D < 2.4W, arises out of a distinction in the conditions of validity of
the two bounds. The distinction is discussed in App. 5A.

1 An N-dimensional sphere, say I,, of radius p and centered on the origin, is defined
as the set of points ¥ = (#1, #o, . . ., 7y) such that z,® + =% - -+ + ap* < p. Thus
I, 2 {x : [x|* € p*. The intersection of an N-dimensional sphere of radius p with any
two-dimensional plane passing through its center is a circle of radius p. Similarly, the
projection of the N-dimensional sphere into any set of three dimensions—achieved by
setting all =; equal to zero except for the three z; pertaining to the three dimensions of
interest—is a three-dimensional sphere of radius p. For instance,

— .2 2 2 2
Islprojectedln tirst three dimensions — {K -y + 3 4 2 < P }'
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where s,, n, and r are defined as usual in terms of orthonormal functions.
‘We then have

[s[*

|s;* = N <. Ey (joules/dimension), (5.64)

so that all normalized signals lie within a “signal sphere”, say I, of radius
v E\, where E,, is the average energy available per dimension.

Itis interesting to examine the mean-squared length of the N-dimensional
noise vector n under this normalization:

n|2 = L (n}? = i %nﬁ, (5.652)
- N N i=1 :

where {r;} is a set of N zero-mean, statistically independent random
variables, each with variance N°yf2. Hence

Eljf] = — Sn? = =20 (565b)
N j=1

We see that the average squared length of the normalized noise vector is

N'o/2, independently of the number of dimensions .

Although the average squared length of the noise vector is independent
of N, it is crucial to our proof that the variance of the squared length is not.
Since the variance of a sum of independent random variables equals the
sum of the variances, the variance of |n|?, say o2(|n/®), is

() = = ag( %n -;) -5 % o*(n;")
- NGOG NS !
A S

= I\FEI nt — (15 | (5.65c)
Equation 5.65c may be evalvated by invoking Eq. 2.145, which states
that for zero-mean Gaussian random variables {m;}

nf=3m2%  j=1,..., N

Thus

3

1 N 2 (N 2
) = 5 Sapr = 2(2) (5.654)

‘We see that the variance of |n|? tends to zero with increasing N. It follows
from Chebyshev’s inequality that

il

for any positive A, no matter how small.

o — 2o
- 2

> A] < %wﬁ?)z- (5.66)
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Equation 5.66 states that for large enough N the probability that the
squared length of the normalized noise vector m differs from its average
value of N'5f2 by more than A js arbitrarily close to 0. Since the noise
vector is equally likely to point in any direction, we may picture the noise
vector when N is very large as falling close to the surface of a sphere of
radius ~ Nof2 without directional preference, as shown in Fig. 5.20.
This phenomenon is referred to as sphere hardening.

Noise is in this region
with high probabitity
for large V.
Y
%
4

Figure 5.20 Sphere hardening.

Insight into the phenomenon of sphere hardening may be obtained by
calculating the probability that n falls into the shell between concentric
spheres of radius p — A and p, with Afp & 1. Since the components of
n are zero-mean Gaussian random variables of variance N, /2N, - the
density function of the normalized noise vector is

N |u|2). (5.67a)

4 =i o,

When Afp is small,

( il )Nfz ( N 2) f A<lal < p. (5.67b)
a [— ) expl——=p'h: or p — al <p. (5
S ol f h

Thus

) << o]~ ("o (- )
—_— < & | — exp | — — [volume of shell].
P[P(l y <lmi<p o A

In Appendix 5D we show (Eq. 5D.8) that the volume of the shell is
proportional to p¥(Afp). Thus the probability that n lies within thre Ehe}l
is proportional to the product of two factors, one of which (e*“""J‘ 0%
decreases and the other of which (p¥) increases sharply with increasing p.
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For Afp = a constant & 1 we have

P|: (1 - é) <l < } ~ |:p exp (— -J%)]N' (5.67c)

The right-hand side of Eq. 5.67c has a single maximum at p* = N°/2,
as shown in Fig. 5.21. As N becomes large, the consequence is that only
values of [n|* in the vicinity of this maximum, JNif2, have significant
probability. Figure 521 provides a graphic demonstration of the
“sphere-hardening” phenomenon.

A Y LY.
1t e—{pe =P 1)
ifr__
P“ -
h
|||
I|I .
;II pe —P 1N
A\
SN o
VWNo/2

Figure 5.21 Behawor of Plp — A < |n| < pf with p.

Proof of the negative statement. The negative part of the capacity
theorem states that the probability of error tends to one with increasing
N if the rate exceeds capacity. The statement is readily proved by means
of sphere-hardening arguments, We first recall that the receiver for any
set of transmitter signals {s;} is defined by a set of decision regions, If the
decision region associated with the normalized signal s, is significantly
smailer than a sphere of radius v Nof2 centered on s, the probability that
(r = s, + m) will fall into this decision region must, by sphere-hardening
arguments, tend to zero as NV increases. Hence decision regions must be
comparable to or larger than spheres of radius VN2, The negative
statement rests on the observation that if the number of signals is too large
the typical decision region will be forced by volume (power) constraints
to have an effective size smaller than that of a sphere of radius \/ Ny f2-

To make the proof precise, we first show that sphere-hardening is also
exhibited by the received signal; that is, with high probability r will fall
within a sphere of radius v Ey + N2 + A, Proceeding as with |n|2,
we have, when s, is transmitted,

r]* = s, -+ n|* = |s,[* + 28, -n + |0

2 N
= [sl* + N > syt + |nl, (5.68a)
i=1
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I . . .
where g, = ﬁ (511s Sios « + -+ » Sey). Since each noise variable n; has zero

mean,

2 X '
Elir*] = [s.f* + % + 23 s Bl

< Ey+ 22, : (5.68b)

Next, denoting the variance of the squared length of x by o*|r*) and
noting that the variance of a sum of two random variables is never greater
than twice the sum of the variances—a consequence of the inequality
{a + b < 2(a® + b¥)—when g, is transmitted we have

o*(Ixf) < 2I0'2(2S;c 5) + o*(|nl*)]

=25 2o+ (3]

-l (]

2
- [F 2 32.1 # (N_;J)}
< N[mn,EN + 2(‘%“)} (5.68¢)

The variance of the squared length of the received signal also vanishes
with increasing N. Hence the received signal tends to be close to the

surface of a sphere of radius N Isil? + N'of2. In particular,
Ny

2 2
1
Pl > B+ S48 <o 69

and tends to zero as N gets large. This tendency of the received vector to
fall within a sphere of fixed diameter sharply Iimits the effective volume
of the decision regions.

We are now teady to prove the negative capacity theorem. We show
that for any small positive quantity e the probability of correct decision
in the transmission of one of M = 2¥%n equally likely messages is less
than e for sufficiently large N whenever Ry > Cy = }log (1 + 2E[Ny),
regardless. of the choice of signal set and receiver.
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. According to the sphere-hardening argument, for large N the received
vector r s effectively constrained to lie within a sphere, say I, of radius
N Ey+ N2 + A, Writing the probability of correct decision as the
sum of two terms, '

P[C] = P[C, x in 1] 4+ P[C, r outside [,], (5.70a)

we observe that the second term satisfies, for any € > 0, the inequalities
P[C, 1 outside 1,] < P[r ouiside I,] < ; : (5.70b)

The last inequality follows, for large encugh N, from Eqg. 5.65.

It remains to be shown that the first term in Eq. 5.70a is also less than
€/2 for sufficiently large N whenever Ry > Cn.

Let 7, i=0,1,..., M — 1, denote that part of the decision region
for the ith signal lying entirely within [, as shown in Fig. 5.22; let ¥;

volume = ¥V,

Tr ¢ adius = VEy+ Nof2 + 4

Signal sphere, I;

radius = VE,
Figure 522 Decision regions within 7,.

denote the volume of J; and let ¥, denote the volume of I,. Becausec the
decision regions are disjoint,

V=V + Vo4 4+ Vua {5.71)
and
M-1
P[C,xinl] = D Plrin ;| m]P[m]
=0
1 M- )
=—23 Plrinl; | m,]. 372
Mgo (e | ] (
We now observe that, for each i,
P[rin Z; | m;] < Pllal < pJl, (5.73)

where p, is defined to be the radius of an N-dimensional sphere of volume
¥, (this sphere and I; both have the same volume). Equation 5.73 states
that no decision region of given volume is better than a spherical decision
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region of the same volume centered on the signal. Proof of the optimality
of spheres follows immediately from the observation that p, is a spherically
symmetric density function decreasing monotonically with increasing |n].
As a consequence, any volume element lying farther from s, than the
radius p, has less probability of containing r = s; + n than it would if it
were located within a distance p; from the signal. On the other hand, all
volume elements in the sphere do lie within distance p; from s,.

M=-1
) ZV*=V=My+

i=Q
Figure 5.23 Optimality of equal volume spheres. The volume element 4F would
coniribute more to P[C, r in 7] if it were located closer to a sphere center.

Substituting Eq. 5.73 in Eq. 5.72, we have
1 M-1
PICrinL] <+ 3 Plial < p- (5.74)
i=0

Each term on the right-hand side of this inequality is the probability that
n will lie on or within a sphere of volume V. The right-hand side is thus
the arithmetic mean of the probabilities of noise falling in spheres of
radil pg, p1, . .+ » Par_1, s indicated in Fig. 5.23a.

If the original decision regions {I,} all contained the same volume, we
would have (from Eq. 5.71) ' '
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and each of the p; would equal the radius, say p*, of the sphere of volume
V.M. In this case every volume element dV in the set of M spheres
would lie at a distance no greater than p* from the center of one of the
spheres, as shown in Fig. 5.236. On the other hand, when the ¥,—hence
the p,—are not all equal, some volume elements are more distant than p*
from a center and therefore contribute less probability to the sum in
Eq. 5.74. 1t follows that

M1
2 Plln| < pi] < M Pn| < p*]
and
PIC, rin L] < Pln| < p*]. (5.75)
Thus the over-all probability of correct decision for any specified set of
decision regions is bounded above by the probability that the noise falls

into a spherical decision region of volume ¥, /M.
Whenever the number, M, of signals is too large, the volume V,/M is

less than the volume of the sphere of radius J Nof2 — A; thatis, p* <

N No/2 — A, Again invoking the spherc—hardcnmg argument, we have,
for large enough N,

Pln| < p*] <§, if p* < Ng/2 — A, - (5.76)

For such large M and N, we can combine Egs. 5.75 and 5.76 and obtain
the desired result
PIC,kin L] <,
which with Egs. 5.70 implies
P[C] < e

We now determine the point beyond which the number of signals is too
large and Eq. 5.76 is valid. In Appendix 5D (Eq. 52.5) we prove that the
volume ¥ and radius p of an N-dimensional sphere are related by

V =By p¥, (5.772)

where By is a positive constant that depends only on N. Thus the state-
ment that p* < J Ny/2 — A or the equivalent statement that ¥ [M is less
than the volume of a sphere of radius J Nof2 — A may be written

r Nf2
% < BV(‘% - A) . (5.776)
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Since V, is the volume of a sphere of radius J Ey + N2 + A, Eq. 5.77b
becomes

N2 ) N2
BEy 4+ Np/2 + A) < BN(J\__ _ A) ,
M 2
or
E Nof2 4 AVYE
W2 —

Finally, since M = 2¥%N, Eq. 5.77c may be written

2NRN > (EN + NU/Z =+ A)N,’2
Nof2 — A
or
Ey+ N2+ A

LA (5.774)

1
Ry > 51052
Clearly, if

A llogz(l +2 &) = llogawﬁ . (5.78a)
2 N,

Ry > C 2 )
o

we can take A sufficiently small that the inequality of Eq. 5.77d, hence of
Egq. 5.76, is satisfied. Consequently, the condition R > Cy implies that

P[C] < ¢, ' (5.78b)
or
PIE]> 1 — e (5.78¢)

Equation 5.78a provides an upper bound on the number of message bits
per dimension which, if exceeded, causes P{8] to be close to 1 for large V.
We summarize the steps in the forsgoing proof by a sequence of equations:

P[C]=P[C, x in L] + P[C, ¢ outside of I,]
{ M1
< ﬂ zZOP{I' inI; | m] -|—
1 M1

<—=2>P i+ -
M;Zo [InI<P]+

< P[ln| < p*] + g

< €.
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This sequence is valid if
& Nof2 — A > p¥

(3
T \ByM

_JENE N2+ A
- M1,'N

&)N,Q

o

which implies
M > (1 +2
or

1 2Ew
‘RN > 2]0gz (1 + ‘N’o).
The derivation of Eqs. 5.78 is completely independent of the particular
set of transmitter vectors {s,}; the result is valid for any set that meets
the signal energy constraint of Eq. 5.62. Thus the negative statement of
the channel capacity theorem is proved. Since transmission with a set of
2¥EN yectors having N components includes the possibility of & trans-
missions, each with a set of 2¥2N/* vectors having Nfk components, the
theorem holds true for any transmission strategy. We see that the proba-
bility of communicating a block of RT = NRy bits without any error
whatsoever must approach zero as 7" grows large if Ry exceeds Cy. '
This proof is described as “sphere packing.” Tt is a negative proof, in
that no claim is made about the existence of signals {s,} such that the
decision rtegions {I;} actually are spheres of equal radius. Clearly,
geometry does not permit. The essence of the argument is simply that the
“packed spheres” idealization implies a bound on performance that no
realizable set of signals can surpass. '

Proof of the positive statement. We now prove the positive channel
capacity statement that if Ry < Cyy then for any positive number e (no
matter how small) there exists a large enough value of N and a set of
M = 2¥BN sjgnals {s,} such that the attainable probability of error is less

than «. The proof is complicated by two facts: first, in general it is -

not possible to exhibit explicitly such a set of signals {s,}, and, second,
even if such a set could be exhibited, the calculation of its probability of
error would be enormously difficult, These complications, which we
encountered before in connection with R, may again be circumvented by
considering not just one communication system but rather a whole
ensemble of systems, each consisting of a transmitter, channel, and opfi-
mum receiver. As before, we construct our ensemble in such a way that
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the mean probability of error, P[], may be easily calculated. We prove

the theorem by showing that P[8] < ¢ for sufficiently large N; the
ensemble must then contain individual systems for which the probability
of error is also less than e,

Specification of Codes for the Ensemble of Systems. The capacity
theorem for the Gaussian channel concerns normalized N-dimensional
signals {s,} each of which satisfies the average power constraint

s < VEy i=0,1,...,M—1, (5.792)
where, as before,

8 = s,/ /N. (5.79b)
Since any vector s; may lic anywhere in the N-dimensional signal sphere

I, in'aplied by Eq. 5.79a, the codes of an ensemble of systems can be
specified by stating an appropriate density function over 7, say

A
Pis3 ™ Popsy .oy (5.80)

In terms of the density function, the ensemble average probability of
error is

61 = [ P16 | {5 = Vlpuav) dr. (5:81)

Since there are M vectors §,, and each comprises N components, v is an
NM dimensional vector. The multiple integral of Eq, 5.81 is over all NM
arguments. - : -

A simple and convenient choice for py, ; which facilitates calcufation of

P[E] and also satisfies the constraint of Eq. 5.79a is

1 for |o|? € Ey,
Py ={Vs s alli, (5.82a)
0 forla®> > Ey
and
M
P = 1T (5.82b)

where V, denotes the volume of 7. Equations 5.82 state that over the
ensemble of systemns the signal vectors are statistically independent and the
probability that any signal vector will fall outside of the signal sphere 7 is
zero, Furthermore, if 7 is a region of volume V entirely contained within
the signal sphere,

P[s, in I] =fp§l.(a) do = fl; fda =
I 57

14

7 (5.82¢)
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Thus, if we select one system at random from the ensemble for exami-

nation, the probability that the signal, s,, assigned to the ith message is
located in a region I of the signal sphere is directly proportional to the
volume of the region I.

Although s, is equally likely to lie in any volume element within the
signal sphere, it is not true that s, is equally likely to lie at any radius p,

0 p g \/EN. Indeed, for any A > 0,

P[ls;| € JEn — A] = P[s, in sphere of radius \/Ey — A]
__ volume of sphere of radius \/Ey — A
= : 7

BN(EN _ A)N"2 =11 A N2 5 83
= WBVENNfz - L > ( M )

N

which is very close to zero for large N. Equation 5.83 is a concomitant
of the fact that almost all of the volume in a high-dimensional sphere is
located near the surface. The probability assignment of Eq. 5.82 therefore
implies that nearly all of the signals {s;} have energy close to Ey. )

Calculation of P[E]. We now show that over this ensemble of communi-
cation systems P[8] < e if & is sufficiently large. Note that P[8] depends
on three statistically independent sets of random variables:

1. The choice of message, m, with Plm,] = 1/M.

2. The noise n, with p, given by Eq. 5.67a.

3. The choice of code {s,}, with py, , given by Eq. 5.82.

Thus we may calculate P[&] from the conditional probability of error

0 if m,, n and {s,} are such that

lsp — (8 + DI< |5 — (5, + o) for

all i # k, so thatno error ismade,  (5.84a)
1 otherwise

P[& I g, I, {§1}] =

by first multiplying by :

PlmulpoPyPe " Py, (5.84b)

then integrating out the continuous variables {s;} and n, and finally
summing over the index k.

Clearly, the order in which the conditioning random variables are

integrated out does not affect the value of P[§]. But eliminating n and k

first amounts (for each code {5} in the ensemble) to evaluating P[8 | {s}]-

PROOF OF THE CAPACITY THEOREM 335

This problem—finding the P[&] for a specific code—we have already fore-
sworn as too difficult. Once more, the crucial advantage of the random-
coding argument is that it permits us to eliminate the {s,} first (to integrate
over the ensemble of systems first) and thereby to simplify the computa-
tion. We therefore proceed in the following order:

i. Eliminate (thatis, integrate over) {s;} for all /# &k to obtain
P[8 I iy, §k’ [.].]
ii. Eliminate s, and n to obtain P[§ | m,].
iii. Eliminate s, to obtain P[6].

It is the fact that step i can be performed by use of a geometric argument
that permits a simple proof.

(i) Elimination of {s;}, I # k. In calculating P[§ | m, s,, 0] the trans-
mitted vector and the disturbing noise have, by definition, the fixed known
values s; and m. These two vectors together specify a two-dimensional

N\n

Signal sphere I,

Figure 5.24 Plane containing s;, n, r, and origin,

plane intersecting the N-dimensional signal sphere /, in a circle of radius
N/ E,, as shown in Fig. 5.24. All points in the signal space that are closer
than s, to the received vector r = s, + n are located in a “‘noise” sphere
around r of radius |n|. Since we have already stipulated that each receiver
in the ensemble of communication systems is optimum, the presence of
one or more of the other signals in this noise sphere will cause an error.
All signals, however, are confined to f,. Thus the intersection of I, and
the noise sphere centered on r forms the locus of all allowable trans-
mitter signals that cause an error, given s, transmitled and r = s, + n
received.

This locus is an NV-dimensional solid whose projection onte the plane of
s, and n is the crosshatched region shown in Fig. 5.23¢. Furthermore,
this N-dimensional solid has an identical lens-shaped cross section when




s
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prdjected onto any plane containing r and the origin. Consequently, this

solid, to which we shall henceforth refer as an N-dimensional lens, is
completely contained within an N-dimensional sphere of radius #
centered on the point 0’. This follows from the fact that the cross
section of this sphere, when projected on any plane containing T, is a circle
of radius & centered on 0'. Thus the volume of the lens, Vg, is bounded by

Viens < Bwh™, (5.85)

a fact to which we shall return later. Tt is helpful when visualizing the
geometrical relationships just described to consider the case in which the
spheres are three-dimensional (N = 3), iflustrated in Tig. 5.256.

Moise sphere,
radivs |m !

Figure 5.25q Projection of locus of signals causing error.

Given s, and n, an error occurs in any system in the ensemble whose
code includes at least one other signal vector within the lens. From
Eq. 5.82¢ the probability of the set of systems whose ith signal vector, §;,
lies in the lens is

P[s, in lens] = Viens ;. i#Ak
Vi
There are (M — 1) nontransmitted vectors in each code. Since the
probability of a union of events is pounded above by the sum of their
probabilities, it follows that the probability of the set of systems having
one or more nontransmitted signal vectors in the lens is
Vlens

P{gnor---orgior---orgMglinlens}é,(M—1) ” ; ik

5
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Thus we have

L& | me 5] < M S, | (5.860)

g

It is clear from Fig. 5.25a that the volume Viep, depends on , and n. For
certain choices of these vectors M(Vien./V,) will exceed unity, in which
case tighter results can be obtained by invoking the trivial bound

P[& | 71y, 5 m] < 1. (5.86b)

Noise sphere,
radius @i,
centered on ¢

Signal sphere,

radius ~JE

(b}

Figure 5.255 'The intersection of two spheres is a lens. The enfargement shows the lens
enclosed within a third sphere, of radius A, centered on O’.

(ii) Elimination of s, and n. We are now prepared to undertake the
second step of the proof, namely, to eliminate the continuous variables s,
and n from the conditional probability of error bounded in Eqgs. 5.86:

PLE Tmnl = f P& | iy 50 = 6 1 = B p4,(@) P(B) dox 4B,

where the integral is taken over all possible values of g, and n. In order to
apply the bounds of Eqgs. 5.86a and b, we perform the integration in two
parts. In the first an integral is taken over a domain D of values of s, and
n for which all pairs (s, m) are such that Vg is less than a (small) con-
stant, say ¥y, The second integral is over the remaining domain, D,




338 EFFICIENT SIGNALING FOR MESSAGE SEQUENCES

of values of s, and n. The probability of D is later shown to be suffi-
ciently small that the bound of Eq. 5.86b may be used safely. Thus

P& [ my] <f(M V;“) Ps,(@) Po(B) da AP + fpgk(a) Pu(P) dor dp
D 8 fDC .

_vr Vidns pre c
— M2 P[] 4+ PIDC]

g

£
<M % -+ P[] (5.87)

£

In the evaluation we have defined P[] and P[D] as the integrals over D
and D€ respectively. In the last step we have used the fact that any
probability is overbounded by umity.

We define the domain D to be those pairs (§;, n) that satisfy at least one
of the following conditions: '

Lis® < Ey—A
2 > ey A
2
30 < I8+ 'N“? _A

The probability of D is the probability of the union of these events
and is bounded by the sum of their probabilities:

P[DC] < PlIs,|® < Ex — Al + P[Iglz > ‘52—" + A]
+ 2[lsf < Isf + 52~ al,

By Eqgs. 5.83, 5.66, and 5.68 each of the three terms on the right is less than
¢/6 for sufficiently large N, so thatt

P[D] < ; : (5.88)

We now show that the first term on the right-hand side of Eq. 5.87 is '

also overbounded by /2 for large N. For all pairs (s, n) in © we have,

1 To be precise, Eqs. 5.68b and ¢ together with the Chebyshev inequality imply that the
conditional probability of the event |r|?* < {a[? + Nof2 - A, given s, = o, approaches
zero as N becomes large. But for any event A such that P[4 | 8 = @] < &/6 for all
allowable & we also have P[4] < /6.
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from the defining conditions,

| < VN2 + A ,
and (5.89)
It > VEy + N2 — 2.

From Fig. 5.25q it is clear that the size of the lens increases with decreasing
[r| and with increasing |n| . Hence the largest lens for pairs (s, n) in D
is achieved when the conditions of Eqs. 5.89 are satisfied with the equality,
as shown in Fig. 5.26; from Eq. 5.85 we have ‘

Viens < By(R¥)¥, (5.90a)

where A* is defined in the figure.
To show that ¥;%_ is small enough so that M¥% [V, is less than «/2,
we require a bound on #*, It is clear from Fig. 5.26 that #* is a continuous

Figure 5.26 The maximum value of & for (s, B) in D is A*.

function of A for A near zero. In particular, if we let #° denote the value
of i* for A = 0, we may write

M =h" 49, (5.90b)

where 4 is positive and may be made arbitrarily small by taking A small.
It is an easy matter to compute /°, since s, n, and r form a right triangle
when A = 0, as shown in Fig. 5.27. Calculating the area of this triangle
first with r as the base and then with s, as the base, we have

N [N
B JEy+ == JE, |2,
NT VEn 2

he = J—gﬁﬁp_ (5.90¢)
En + Xo)2

hence
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VEu+ Nof2

Figure 527 Geometry when A = 0.

Since ¥, is the volume of the signal sphere /,, which has radius N E_N,
and,since M = 2¥EN, the desired bound on M¥¥ [V, is .

M Vi < 2VEN BN(hi)_ NV
Ve Bu(\/Ew)'
[ ! (EN‘Nqﬂn',z) + 6} o
— o¥RN (En +£D/_2)
[VEn]Y

— 2NRN

|: 1 + é :|N
J1+2E0N,  JEN

ZRN 2RN 5i|1\’
= = | . 591
l:\/l + 2E\fN * \/EN ( )

‘Whenever
28N

1+ 2EGN,

A, hence 6, can be taken small enough so that the term within sqﬁare
brackets in Eg. 5.91 is less than 1. Equation 5.92 is equivalent to the

statement that Ry < Cy 2 }log, (1 + 2E./N)). Thus for sufficiently

large N
Vlﬁ;ns € :
M— < 5, if RN < CN

3

and

b &
Pl6]m] < MT% + P[D] < e
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(iii) Elimination of m,. The final step in the proof of the positive
channel capacity statement is to sum over the index k.

M-
P[] = kgﬂ P[& | m] Plmy]

-1

< ¥ ePlm] =- (5.93)
k=
This completes the proof. ’

Discussion

The concept of channel capacity is the fundament of modern com-
munication theory. Before Shamnon’s work communication engineers
believed that noise in the channef set an inescapable limit on the accuracy
of communication of a fixed-rate source. The capacity theorem states that
noise (together with the available number of dimensions per second and
the available signal power) sets ‘an inescapable limit only on the rate at
which accurate communijcation can be achieved, but soz on the accuracy.

This thecrem, proved here for an additive white Gaussian noise channel,
is actually of vast applicability. It holds true for very general mathematical
channel models. More important, every physical communication channel
also exhibits phenomena that are consistent with the concept of an input
bit rate that cannot be exceeded if communication accuracy is to be pre-
served. In addition, this rate is usunally significantly greater than that
at which reliable system operation can be achieved by conventional means
such as bit-by-bit signaling.

To a considerable extent, research in communication theory is con-
cerned with finding practical means of simultaneously attaining the higher
accuracy and higher data rates predicted by channel capacity. Some of
the problems inherent in trying to do so are considered in Chapter 6.

5.6 RELIABILITY FUNCTIONS

In Section 5.4 the ensemble average probability of error for com-
munication over an additive white Gaussian noise channel was shown to
satisfy the bound _ i .
Plg] < 2" MRRNL, (5.94)

where N is the code block length, and Ry is the rate in bits per dimension.
Equation 5.94 was arrived at by means of the simple argument that the
probability of a union is no greater than the sum of the probabilities of its
constituents.
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. The bound of Eq. 5.94 indicates that arbitrarily small error probabilities
can certainly be achieved if Ry < R,. More elaborate bounding tech-
niques were used in Section 5.5 to prove the channel capacity statement
-that arbitrarily small error probabilities can be achieved if and only if
Ry < €y The channel capacity statement is stronger, in the sense that
Cn = Ry In another sense, however, Eq. 5.94 is stronger, in that know-
ledge of R, enables the bounding of the error probability as a function of
N and Ry, whereas knowledge of Cy alone does not.

More complete knowledge of the achievable error performance than
that provided by either €, or R, is embodied in a function called the
channel refiability function. We now derive the reliability function for the
infinite-bandwidth white Gaussian noise channel. The procedure is to
obtain a bound on the attainable probability of error for block orthogonal
signals which is tighter than that afforded by the union argument alone.

Block-Orthogonal Signaling

When one of a set of M = 277 equaily likely orthogonal .signals of
energy E, = P,T is transmitted in white Gaussian noise of power den51ty
N/2, the union bound of Eq. 5.14a may be rewritten as

P[§] < 27 THCw=RY (5.95a)

in which we have introduced the definition

C

o0

A P, . D ( 2P, ) '
= —2log, ¢ = lim DCy = lim —log,| 1 . (5.95b
o3 N 5 g1 + b ( )]

0 D+ D= 0

C, is the limiting value of the white Gaussian noise channel capacity (in
bits per second) of Eq. 5.59 as the available dimensions per second, D,
hence the channel bandwidth, tends to infinity while P, and Nj remain
fixed.

From Eq. 4.96, the exact expression for the probability bounded in
Egs. 5.95 is P[§] = 1 — P[C], in which

rel = e — VB[ [ pras| 96

pa?) = e, (5.96b)

\/mN’D

We now overbound 1 — P[C] by arguments similar to, but more sensitive
than, the union bound. As a preliminary step we normalize Eq. 5.96 by
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making the change of variables « = pfv/No/2, 8 = vj~/ N/2, s0 that

) o M1
Plel =] pa— b)da [ f P(8) dﬁ} , (5.97a)
in which o o
()= T;TT e (597)
and
b2 J2EJN,. (5.97¢)

Thus the probability of error, expressed in terms of the @( ) function of
Eq. 2.50, is

P{8] = 1 — P[C] = f gl — By da{l — [1 — Q@I (5.97d)

v =0

The term in braces is the probability that at least one of M — 1 (inde-
pendent) noise components exceeds «; by the union argument it is
bounded above by the sum of the probabilities that individual com-
ponents exceed a:

(A== 0" <M — DO < MOG).  (598)
Since it is a probability, it is also overbounded by one:
{1-01-Q"} <t (5.98b)

The unity bound is tighter when o is small and Q{a) large; the bound
M) is tighter when o is large. It is therefore convenient to split the
range of integration on « into two parts, thereby obtaining

Pé] <F oo — bYdo + Mfmp(a b de; 0<a

Here we have also invoked Eq. 2.122 and the condition a 0 to overbound
O(a) by e~**2, Denoting the first integral by P, and the second by P,,
we have

P[8] < P, + MP,. (5.99)

The bound is minimized by choosing a as the solution to

5‘ [P, + MP,] = p(a — b) — Mp(a — b)e™® ",

whence
e = M. (5.100)
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. The next step is to bound P; and P,. We have
R S RSL J‘(H) | S
Pl=] —e do = —e dy = g(b — a).
! f—w \/2’17 —_— \/217
Thus . .
Py e R g b (5.101)
Also,

0 2, 2
P, = 1 tienhel g,
a \/277

o 1 2
= e_ﬁz'“lf A gy
a \/217

_ e L Jm 1 ey
=g — — v
V2 Vi 2

- f/% o Q(\/i[a - ﬂ)

2
e—b ,’4; a < ,

P, < ,  (5102)

2 E4
o —tamb)®, a

Thus

b |

>

\Y

(In Eq. 5.102 it is important to note the values of a for which the in-

equalities are valid.) Substituting Eqgs. 5.102 and 5.101 in Eq. 5.99 and
replacing M with ¢"'/2 in accordance with Eq. 5.100 yields

gleie g gt 0<ax %s
PI&] < (5.103)
(el ef(ammi:z + eag.fze_(bzfa)—(a—bl‘z)z; gg_ a < b.

The final step in bounding P[£] is to simplify Eq. 5.103. Since
@0 (B 8) (8 5o
2 4 2 2

the second term in the bound on P[&] for 0 < a < b{2 is larger than the
first. For /2 < a < b, the exponents of the two terms are the same. Thus

Fal

ad & =,

(24 ta” 2
or; .’+a1‘,

P[E] < .
2e—(a—b) /2;

ool SR~

La<

{3 -

(5.104)
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Equation 5,104 can be written in terms of the original parameters of the
communication problem by substifuting

a=.2lnM = /RT(2In2),

5.105
b= 2EJN, = JATP [Ny} = JTC,(21n32). (5-109)
‘We then have
P[§] < 2 - 2~ TER) (5.106a)
in which
3C, — R; 0< R L 1IC,,
E*R)={ - _ (5.106b)

Equation 5.106 is the desired result: the exponential factor E*(R) is
the channel refiability fimction. A normalized plot of E*(R) is shown in

05

04

o= (Psf W0} logz &

8
g 0.3
&
& 02
) \\
Union bound
B exponent———/‘)\\
of Eg. 5.95
l i | | I
1] 0.l 0.2 0.3 0.4 05 0.6 0.7 08 09 10

R/C
Figure 5.28 . Channel reliability function for orthogonal signaling,

Fig. 5.28. We note that E*(R) coincides with the exponent of the union
bound for R < C, /4, but yields a tighter result for C /4 < R < C,,.
The fact that E*(R)=0 for R= (C, reflects the channel capacity
constraint.

It is possible to show®® that the foregoing bound is exponentially
tight; this means that for no rate R can a number greater than E*(R) be
substituted in Eq. 5.106a without invalidating the inequality for large
values of 7. The equivalent mathematical statement is

P[&] > Be~TETE), (5.106c)

in which the coefficient B decreases only slowly {nonexponentially) as a
function of T. Although stated for orthogonal signals, Eq. 5.106c pertains
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also to any other signal set. This follows from the fact that orthogonal
signals provide substantially the same error performance as optimum
(simaplex) signals when M is large. Thus the reliability function of Eq.
.5.106b is both an upper and a lower bound on the exponential behavior of the
error probability attainable with the infinite bandwidth additive white
Gaussian noise channel.

Other Chanﬁels

Bounds analogous to Eqs. 5.106a and c can be derived for an extremely
broad class of realistic communication chananel models.27-32 In particular,
random coding arguments somewhat more elaborate than those we have
encountered here can be used to evaluate a reliability function and write a
tight upper bound in the form

P[E] A2 TED, (5.107a)

The bound is on the mean error probability over an ensemble of com-

munication systers, each of which uses a different code. In terms of the.

dimensions per codeword, N, and the dimensions per second, D, afforded
by the channel, the bound is

[6] < A2~ VEEN, (5.107b)
where ' _
E(Ry) = - E'(DRW). (5.107)
For these channels tight lower bounds to the error probability can also
be derived and written in the form
PIE] > A2 VEEN, (5.108)
Combining Eqs. 5.107b and 5.108, we have

o NERy < P[E] < A2 VEEN, (5.109} .

Since the the coefficients 4 and A both can be shown to vary only slowly
with N, the reliability functions E{Ry) and E(R,), evaluated for a par-
ticular channel, represent upper and lower bounds on the exponential
behavior of the probability of error attainable when communicating over
that channel. In writing Eq. 5.109, we have used the fact that not all of
the systems in an ensemble can yield a P[§] > P[&], so that at least one
code exists for which the upper bound of Eq. 5.109 is valid.

The generic form of the functions E(Ry) and E(R,) is illustrated in
Fig. 5.29. Of course, for different channels the values of the parameters
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Cn Ry R, R,, and E(0) are different; the shape of the curves shown,
however, is extremely general.t In particular, the equality

E(RN) = E(Ry); R, € Ry < Cy, (5.110)

where R, is called the critical rate, is always true. Thus the exponential
behavior of the attainable P[] is precisely determined for rates near
channel capacity. ,

Equation 5.110 is a remarkable result: E(R,) relates to the average
error behavior over an ensemble of all N-symbol codes of rate R,

E(Q)

Ry

Union _|

Ae TVHER o pp g | g eV ERS
bound

BBy, E(Ry

\.\J
R, Ro Cy
Figure 5.29 Typical channel reliability functions.

Ry

whereas E(R,) relates to the best conceivable error behavior. Recalling
that the probability of the set of systems (codes) for which P[€] > « P[£]
cannot exceed 1/e, we see that Eq. 5.110 implies that & preponderance of

the codes in the ensemble are exponentially optimum for rates greater than
critical. -

T In certain instances the curves may exhibit degeneracies. As an example, for the
infinite bandwidth white Gaussian noise channel E(0) = R, and E(Ry) = E(Ry) for
all Ry. .
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The union bound,
P_[g] < 2—-N[Ro—RN], (5_111)

is indicated in Fig. 5.29 by the dashed line. The ensemble exponent
E(R,) always coincides with the union exponent for R, € Ry < R,, but

in general
E(RY) > Ry— Ry; 0 Ry<R,. (5.112)

The improvement at low rates is obtained by expurgating the ensemble to
eliminate those systems in which the error probability is dominated by
poor codeword selection rather than by the effects of channel disturbance.
The parameter R, is called the expurgation rate. Unfortunately, practical

procedures for actually carrying out the expurgaiion procedure and |

attaining the expurgation exponent have not yet been devised.

The curves E(R,) and E(Ry) for a specific channel embody detailed
knowledge of the attainable error performance. Although less detailed,
the knowledge conveyed just by the value of R, is also exceedingly in-
formative. In particular, Fig. 5.29 illustrates that the union bound of
Eq. 5.111 is exponentially equivalent to the lower bound of Eq. 5.108 for
Ry ~ R,. Thus the value of R, provides an accurate characterization of
the exponential error behavior attainable at rates near critical.

The advantage in simplicity to be gained from using a single-parameter
descriptor is obvious, and in our study of the implementation of coding
in the next chapter we focus attention primarily on R,.

APPENIIX 5A BANDWIDTH-CONSTRAINED ORTHONORMAL
FUNCTIONS

In this appendix we consider certain implications of two theorems,®
one due to landau and Pollak and the other to Shannon. These
theorems concern any function, say f(¢), that satisfies the following
conditions:

(a) f(t) is identically zero outside the interval [— 772, T/2].

(b) £(#) has unit energy: J-:o IF() df = 1.

(¢) The energy of f(¢) that falls outside the frequency band [— W, W]
is at most ny":

w
f F(PEdf > 1 — 7
W
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The theorems state that, there exists a particular set of orthonormal

125'1?0;1?%'; {¥{0}, i=0,1,2,..., with the following propertics. Each
A7) is identically zero for |¢| > T/2, and for e f isfyi

A very f(f) satisfying (a),

«© I—1 2
f [f(t) - Zf;‘Pl-(t)} dt < &, (5A.1)
where o =
A f 0w de (5A.2)
and o

L == Jargest integer < 2TW + 1

(i} Landau and Pollak [ (5A.3)

\e® = 129"

(ii) Shannon

L = largest integer < 2TW + %‘2-(1 + —12 In 2TW)
kI
2_ 129y,
(12 — A)

for allA, 0 <A <12, (5A4)
SA.1 Constrained Linear Combinations

Suppose that '{q?,-(t)} is a set of ¥ orthonormal functions such that
every unit-energy linear combination of them, for example,

N N
8) = 3,00 ﬁ =1, (5A.5)

satisfies conditif)ns (a), (b), and (c) with #;* = . (In particular, each
of the @,(¢) satisfies the conditions.) Then the theorem of Landau and
Pollak may be used to show that the number of functions, , in the set
{p#)} is constrained by '

N LL2TW + 1,
hence

. N . .
lim - < 2 dimensions/sec. (5A.0)

T—w

F :The orthonormal functions {¥'{#)} are related to the prolate spheroidal wave functions
with parameters T and W, say {g()}, by
1 T
—lt); S5
) = L_‘P() lfl'\z
0; otherwise.
The {4} are normalization constants.
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" Proof is by contradiction, Suppose that 7p* = % and N > L. Then
2 linear combination of the {p,(£)} exists!® which is orthogonal to each of
L functions {¥'(#)}. Let g(¢) be this lincar combination, normalized to
unit energy. Then

gi=fwg(t)Ti(t)dt=0; i=0,1,...,L—1, (5A.7)

and

-] L~1 2 o«
J [g(t) - Zg‘-‘ﬂ-(t)] di =f gi(ndt=1. (5A.8)
— 00 =0 —c
On the other hand, for 7,2 = 12 the Landau and Pollak result requires

fi[g(_t) —fg:gi ‘Iﬂ-(t)]2 dt < 129" =1, (5A.9)

which contradicts Eq. 5A.8, hence contradicis the hypothesis N > L.

5.A2 Constrained Orthonermal Functions

We now use the theorem of Shannon to bound the number of 7-sec
duration orthonormal functions {p,(#)} that satisfy conditions somewhat
weaker than those of Section 5A.1; instead of requiring that every linear
combination of the {p,(#)} meet the bandwidth constraint of condition
(c), we now require only that each g,(r) meet this condition individually.
Thus each g,(1), j=1,2,..., N, is required to have at most a fraction
7y of its energy outside the band {— W, W], although it is possible that

some linear combination of the {p,(t)} have more. In this case we shall

obtain the (weaker) bound
N ooy 12=2 [1 b (1 + ilnzTW)];
T 12(1L — ) — A 2TWA a
forallA, 0 <A <12, (5A.102)

hence
Hm N < —%W——
7o T 1 —ny°
Although both bounds in Eqs. 5A.10 are always greater than 21, they
exceed 2W by very litile when 27W is large and 7p2 is small. For
2TW > 100 and 75,2 = & Eq. 5A.10a states that N2TW < 1.2,
The first step in proving Eq. 5A.10a is to note from Eq. 5A.1 that

® -1 2 .
f [‘P:‘(t) -2 afj‘Fi(t)] dt < &% j=1,2,...,N, (5A.11)
i=0

—w

(5A.10b)

where
a;; =fw p (Yt} de. - (5A.12)
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But the lefi-hand side of Eq. 5A.11 is
L-1

] . ] I—1 @
[“orwar =13 a, " prvma+ Sz v
4] i= o i=0 —co

I—1 5 -1 -1 N
=1— 22;14:15j + Z%]aijz =1-2a," (5A.13)
. . o = =0
Substituting Eq. 5A.13 in Eq. 5A.11 and summing over j, we have

A £ L1/ N
:'21[1 - Z aij2:| =N— E ( a,;,'z) < NGZ
= 1

i=0 =0 \j=
or
I-1/ XN
2;) (glaif) > N(1 — €). (5A.14)

The next step is to note that the {¥',(r)} may be expanded in terms of

Zl‘:: {@{1)} in accordance with the Gram-Schmidt procedure of Appendix

N
Y = Zlaﬁ A1) + 00,

where 0,(¢) represents the part of W,(r) that is orthogonal to all of the
{p)}. Thus

0 N ]
i =f T de = a +J 6.2() dt
—00 i=1 —cD

and
N .
1 }Elaﬁ . (5A.15)
Substitution of Eq. 5A.15 in Eq. 3A.14 yields
L-1 \
2 L= L> NI — &9
or =
L
N < T {5A.16)

Substituting the values of L and ¢* from Eq. 5A.4 yields Eg. 5A.10.

5.A3 Discussion

We conclude that the number of orthonormal functions with energy
concentrated in [— W, W] increases linearly with T, at best. The pro-
Portionality constant of the bound is linear in W and equals 21 when all
linear combinations must also have energy concentrated in [—W, WI.
The proportionality constant of the bound is slightly larger than 20 if
only the orthonormal functions themselves must satisfy the energy
concentration condition.
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APPENDIX 5B BANDLIMITED WAVEFORMS

Consider an ideal bandlimited waveform such as

U' .
40 =LVG(f ye*'t df, (5B.1)
where

G(f) =J_mwg(r)e‘i2”” dt. (5B.2)

In this appendix we show that if g(z} is identically zero over any interval
a < t < b of nonzero length, then g(v) is identically zero for all 2.

Figure 5B.1 A function g(t) identically zero in [a, bl.

Preliminary insight is gained from an apparent inconsistency. Assume
gn=0; asti<b (5B.3)
0, it—hl <A :
h(r) = (5B.4)
1; elsewhere,

where A and 1, are chosen so that 7, + Aand £, — A both fall within the
interval [a, b]. Then, as shown in Fig. 5B.1,

gty = g(2) (o). (5B.5)
Taking the Fourier transform of both sides of Eq. 5B.5 yields
G(f) = G(f) = H(f). (5B.6)
But
sin 2afA

JH(H = 6(f) + 2A (5B.7)

2mfA

It is evident in Fig. 5B.2 that convolving a bandlimited spectrum G{f)
with H(f) yields a spectrum that is not bandlimited. We infer that Eqs.
5B.1, 5B.3, and 5B.6 cannot all be valid simultaneously unless G{f)=0.
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B
et

|H(p| - 569

—&

1 -1l =W w 1
A 24 25

0]
o
[

3
24

Figure 5B.2 Spectza of g(¢+) and A(f),

A formal proof that provides additional insight involves the power
series expansion of g(¢). From Eq. 5B.1, the kth derivative of g(z) is

w :
20 = @epre(nerar (5B.5)
—w
Thus
() T "
g7 (0] < 2W) WIG(f)I df < (2'17W)kf L+ 1GNOIAdf
- —w
or, if E, is the energy of g{1),
2| < @eWE, + 2W). (5B.9)
The k-term power-series expansion of g(f) around the point £, is

gm=mm+wmw—m+¥%%—mz

(1)
g (1) -
+- 2 — )T+ R
G ¢ Ry (5BO)
in which the remainder term R, is given by
t— )
J R G Vi - 1 () (5B.11)
with 7 some number between ¢ and ¢#,. Thus
=4l
R, < Lk—'l' (2aWYE, + 2W). (5B.12)

Precise knowledge of g(r) over any interval of nonzerc length permits
the calculation of every derivative of g(t) at the midpoint of this interval
and thus the construction of the power series. Moreover, the bound of
Eq. 5B.12, hence |R,], goes to zero as k — oo for every £, so that the
infinite power series is everywhere absolutely convergent and represents
the function g(1) completely. It follows that if g(¢) = 0 over any interval,
it is identically zero everywhere. -
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APPENDIX 5C OPTIMIZATION OF R,

Given any transmitter alphabet {a,} and associated probabilities ipds
I=1,2,...,4, the random coding union bound of Eq. 5.55 for the
additive white Graussian noise channel states that

PLE] < 27 FRomFnd, (5C.1)
where
A 4 A
Ry = —10g212m21p¢bmph (5C.2)
and ]
by & N0 = by, (5C.3)

In Eq. 5C.I, P[&] is the average probability of error for codes of length
N over the ensemble of communication systems in which the probability
that any signal component s;; is assigned letter a, is p,, independent of
all other component assignments.

We desire to find the {p,} for which R, is maximum, subject to the

constraints
) =0 I=1,2,...,4 (5C.4a)
and

A
>p=1 (5C.4b)
=1

The exponent R, may be maximized by minimizing the double summation
in Eq. 5C.2. Let 24 be 2 Lagrange multiplier. Then

ard 4 4 A
B_[ Z szbmph — 22 Z Pz] =2 meph - l];
p,Li=15=1 =1 =1
I=1,2,...,4. (3C.5

Setting each partial derivative equal to zero yields the set of A inhomo-
geneous linear equations

A
zblhph = 2'; [= 1: 2: ety A. (5C6)
R=1

¥
The value of A is determined from the consiraint » g, = L
h=1

Whenever the {p,} that solve Eq. 5C.6 are all non-negative, these {p;}
maximize R,. We then have

4 4 A .
S>3pbum=242p =4 (5C.7)
1=1h=1 1=1

and
Romax = —loge 4;  allp, > 0. (5C.8)

THE VOLUME OF AN N-DIMENSIONAL SPHERE 355

If the by, all sum to the same number,

A
zblh=b; l=1’2!"'pA, (5C9a)
h=1

the solution to Eq. 5C.6 assigns equal probability to each letter of the
alphabet. This is immediately apparent from the fact that Eq. 5C.6 then
becomes

4 14 b
Phapy=— 2bp=—"=14 I=1,2,...,4. (5C5b)
a1 A n=1 A
In this case
b i
Rymex = —log, h (5C.%¢)

When some of the {p,} that solve Eq. 5C.6 are negative, the Lagrange
solution is not a valid probability assignment. The implication is that
some of the {p;} should be set to zero, which means that there are too

many letters in the transmitter alphabet {a,}. The engineering solution is .

to reduce the number of letters, so that they may be spread farther apart
without violating the energy constraint of Fig. 5.14.
APPENDIX 5D THE VOLUME OF AN AN-DIMENSIONAL SPHERE

An N-dimensional sphere of radius p is defined to be the locus of all
points

o = oy, Hoy o - -, Oy) {(3D.1)
such that
N
lalf =>a? < po (5D.2)
el

Thus the volume of an N-dimensional sphere of radius p is
V(p) £ j do
Jaf 2 p®

= ﬂ - f doy dog * * * dacy. (5D.3)

ey P e - '+¢N2£pz

Making the changes of variable

B, =%, j=1,2...,N, (5D.4)
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we have
v =pt || apdp s
Brtpa e By .
= pVV(1) 2 Byp™. (5D.5)
We still have to determine the volume, By, of an N-dimensional sphere
of unit radius. We begin indirectly by considering a set n = {ny, 7, - - .,

ny) of N zero-mean, unit-variance, statistically independent Gaussian
random variables, with probability density function

1
P =We lel/2, (5D.6)

Now consider the probability that n will lie in the thin spherical shell
contained between concentric sPheres of radii p and p — A. If A is small,
n| is very nearly constant for all nin the shell. This probability is therefore
very nearly equal to the volume of the shell times the value of p () when
Jeef = p:

Pl(p — &) < In| < p] & e PV(p) — V(e — A (5D.7)

(2 ﬂ_)N,f 2
But

V(o) — Vip — B) = Byl(p)" — (p — )]
— BNI:NPN—IA _ N_(u pN—zAz 4 ]

21
o NByp™1A; = << ———1 . (5D.8)
Therefore
B ot =
Pi(p —A) < In| € pl ~ (zw;{\,ﬂe PENPNTIA. (5D.9)

We can also write P[(p — A) < |n} < p]in terms of the density function
of the random variable [n|: ‘
' Pi(p — A) < In| < pl ~ py(P) A
Substituting back in Eq. 5D.9, canceling the A’s, and noting that in the
limit as A tends to zero the approximations become exact, we have

N Nl BN o2
The constant By may now be evaluated by use of the fact that the area
under any probability density is unity:
w NB\)- 0 N 1
1 == d = —
J; Pulp) dp (2 072 |, \/2,”

e dp.  (5D.10b)
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There are two cases: when N is odd, ¥ — 1 is even; the integral is
therefore one half the (&N — 1)st moment of the unit-variance Gaussian
density function. From Egs. 5D.10b and 2.145,

2 VRN — 2]

By = N

4

;N odd. (5D.11)

When N is even, N — 1 is odd. Making the change of variable f = p%/2,

we have
2(N-2),’2

J\w pN- 27P2!2d
0 \/Er P \/2

Repeated integration by parts yields

f BN-BI2E g {5D.12)

f BNl dp = ( > 2) (5D.13)

Substitution of Egs. 5D.13 and 3D.12 in Eq. 5D.10b leads to
(ZW)NIE WN,fz

Nz(Nfz),fz(N - 7—)! (H), i
2 2

As a check, we note that B, = , B, = 4.
It may be verified from Stirling’s approximation to the factorial that

By = N even. (5D.14)

¥~ f2m{N;  Nlarge. (5D.15)
BIV—-I

Tndeed, from Eq. 5D.14, we have immediately

By Bya_ 27 ; all even N. (5D.16)
BN--1 BN—Z -

PROBLEMS

5.1a. A communication system has an input buffer for storing messages before
transmission. The buffer contains 10% magnetic cores, each of which has two
distinct flux states. The message source specifies one of 1024 messages each
second. How many seconds of source output can be stored in the buffer?

b. Assume that each (binary) core in (a) costs one dollar, installed, At what
price per installed core would a buffer using multistate cores, each with eight
distinct flux states, be competitive?
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52a. Equation 5.15a provides a useful bound on the error probability with

orthogonal signaling when E, > N, 2 24 Eqpin. Use the bound to estimate |
how large the number of messages M must be to guarantee P[8] < 1078 when

(i) 1db
E, .
10 logyy—— = { () 3db
Emin .
(iii) 6 db.
b. Assume that the communication system is connected to a source that pro-

duces one bit every 10 msec. Determine (for i, i, and iii) how many seconds of
source output must be buffered at the transmitier. Also determine the channel

bandwidth, W, required when the number of orthogonal signals, D, that can be-

transmitted per second equals $W.

5.3 Equation 5.14 bounds the attainable P{#] for M equally likely orthogonal
signals and an additive white Gaussizn noise channel in terms of the signaling
interval T, the available transmitter power P,, and the information rate R (in bits
per second). Derive similar bounds for (a) M simplex signals, (b) M biorthogonal
signals. Discuss the relative advantages of the three signaling systems from an
engineering point of view.

5.4 Consider the Gaussian pulse 2() = (V 27 o)L e~t12* and signals such as
~
sty =D syale —j0;  i=0,1...,M—1
=1

constructed from successive =-sec translates of =(z). Const;ain the interpulse
interference by requiring

Jw a(t — Iyt — jo)dt <0.05 f

—w — 00

<«

w2(2) dt; all j and [ 5 j

and constrain the signal bandwidth # by requiring that #(t) have no more than
10% of its energy outside the frequency interval [— W, W]. Determine the
largest permissible value of the coefficient % in the equation N = kTH when
N> 1L

55 (onsider a set of 4 orthonormal waveforms {p ()}, £k =1,2,...,4,
each of which is identically zero outside the time interval [—=, 0]. These wave-
forms are used to construct signals {s,(#)} of the form ‘
s(t) = VPalpe,(t — ) F ot — 20 + - + @t =0
in which the {k,} are integers between 1 and 4. Thus each signal in the set
{s{+)} is specified by a vector of the form (ky, &y, . .., k5D
a. Assume A =4,J =5, and

— .k
'\/2;'1'511'1277—2‘; —r 1 <0,
plt) = G
0; elsewhere.
Sketch the signal specified by the vector (2, 1,4, 2, 3).
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b. Consider the set of all distinct waveforms in the form of s(t). How many
waveforms are there in this set for arbitrary 4 and J? Are all of these waveforms
mutually orthogonal?

¢. Consider the ensemble comprising all waveforms of (b), to each of which is
assigned equal probability. Pick two waveforms, independently at random,
from this ensemble. What is the probability that they differ in & of the J
positions?

d. What is the smallest attainable probability of error if these two waveforms
(differing in & of J positions) are used as the signals in communicating one of two
equally likely messages over an additive Gaussian noise channel with 8,(f) =
Nof21

e. What is the average, say P[], of the error probability of (d) over the
ensemble of (c)? Show that

Pyl8] < 275,

where N2 AT is the dimensionality of the (code base) ensemble. Derive an
expression for the value of R,. Discuss the relation between this value and that
obtained by specializing the expression of Eq. 5.56. Hint. Note that the dimen-
sionality of cach particular signal in the code base is J, not NV, .

f. Use the union bound to show that the average probability of error, P[&],
for M = 2¥En equally likely messages satisfies

PIE] < 2~ ko ANl

when the M signals are drawn independently at random from the ensemble of (c}.
g. Verify that the energy per bit is given by

P
T ARNT

What is the minimum value of E, for which the bound of (f} is useful? Show
that the bound of (f) can be rewritten in the form

— E, 1 4
PLE] <.<=xp{-«-K'|:2J,\Pom11'11 TA-Dee —-ln2:|},
wherez & Paj2 N, and determine the minimum value of E, in the imit 2 — 0.
h. Compare the limiting value of E, in (g) with that obtained in the text for
binary antipodal signals. How would the two values compare if the letters
{¢,(2)} formed a simplex rather than an erthogonal set?
i. Show that the minimum value of E, does not greatly exceed its limiting
value when 4 3> 1 and the letter duration - is chosen to satisfy
P

Fﬂ =2In A,

E,

j- For Iarge A and r chosen as in (i) show that the number of dimensions per
second, D, required by the sig_naling system is
_ A P,
T 2lnAd Ny
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If in addition we choose R (in bits per second) so that E, is twice the limiting
value determined in (h), show that :

DRAZIZ
_i-l:l'—An.

5.6 A set of 4 phase-shift waveforms {y(£)}, in which L > 0 is an integer and

7 Lk
(t)A ;SIHZ‘JT ':I+Z : "T<I<0, k=1,2,...,A,
Pelt) = ‘

0; otherwise,

is used to construct coded signals {s,(+)} in the form
. d

s(t) = VP 2t — jo).
F=1

As in Problem 5.5, any s,(¢) is specified by a vector (ky, ks, .« - -, ky) whose
components are integers between 1 and A4. :

a. Consider a code-base ensemble in which each distinct waveform in the
form of s(t) is assigned equal probability. Assuming that there is additive white
Gaussian noise and that the signals {s,(¢}} are chosen independently at randorm,
show that the value of R, in the bound P[] < 2~ ¥F kNl is

A

1 P =
R, = —1 — LI} .
0 }log, i 12:1 expli *, sin? k A:‘ ; A > 3.

What is the value of R, when 4 = 27 (Note that the dimensionality of the code
base, N, is different for A = 2and 4 > 3y .

b. Discuss the relation between the values of Ry obtained in (a) for 4 =2 and
A = 4 and the value of R, for binary antipodal signaling.

c. Show that in the limit as Ep/Ng — 0
Eq 1

TN 2In2’

in which Ey is the average energy transmitted per dimension. Discuss and

interpret this rather surprising result. Hint.

Ai]‘ . 214511' A 432
sin? — = —; .
fruach A -

R, for every 4 > 2,

2 »

5.7a. Show that Hartley’s result, Eq. 1.1, can be written in the form Ry =
log, (1 + AfA). Compare and contrast the conditions and content of this result
and the capacity theorem for additive white Gaussian noise,

Cn =3 logy (1 + 2 Enyfo0p)
b. Obtain rough numerical comparisons of the two $tatements by setting

A = V3E, and choosing A so that the error probability per dimension in
Hartley’s formulation is 102; 10—%; 10~%. Discuss.
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5.8 Consider communicating over a channel disturbed by additive Gaussian
noise with §,(f) = N'/2 by means of signals constructed from D orthonormal
waveforms per second. Constrain the average power of each signal to be no
greater than P, :

4. Show that the channel capacity in bits per second increases monotonically
toward its maximum value, Co, = (P,/¥o)logs e, as D increases, whereas the
capacity in bits per dimension decreases monotonically with D.

b. Similarly, show for binary antipodal codes that R, decreases, but DR,
increases, monotonically with D. Show that the value of D required in order to

achieve the bound
Plg] < 2~ T ool —a)—E]

when 0 < « & 1 is given approximately for antipodal codes by

&

D .
~ 4o\

59a. Prove by induction that for any set of k events {4}
k i k i—1
P[ U Ai} > 2 PlA] = 3 3 PlAAl
i=1 i=1 =2 el
Hint. Apply the bound
-1 k=1
P[U Bz-] < Y PIB]
i=1 =1
to the events {4,;4,}, i < k. '
b. Now let one of M = 2ET equally likely messages be transmitted over an

additive white Gaussian channel by means of M orthogonal signals, each with
energy E,. Use the theorem of (a) to prove that

BlE] > (M — 1) Q(VE[N) — (M . 1) W,

where the overhead bar denotes the mean of O%y) when ¥ is a unit-variance

Gaussian random variable with mean V2E,/ N,
¢. By using the bounds

e—a2/2 1
Q) > \/2_17“(1—_2); a >0, -

v
—a?Z. >
o) < {e poo«>0,
1; w <0,

and the fact (see Appendix 7C for the general result) that

1 ® . — il
Wen et ml2e® o gy o = L
2no Jo V1 + 20°

prove that

P[g] > B2~ TIW»—El, R < %,
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in which the coefficient B decays as 1/V7 when T is large. [As stated in the
text, stronger {but more laborious) arguments may be used to obtain a lower
bound valid for all R < C.]

5.10 Use Stirling’s approximation,

Fan

Nt~ v %N(;) ,

to prove that By/By | ~ V2N, N large, where By (given in Eqs. 5D.11 and
5D.14) is the volume of an N-dimensional sphere of unit radjus.

511 In Eq. 5.67c and in Appendix 5D we consider the probability density’

function of the length of an N.component random vector n, each component of
which is a statistically independent, zero mean, unit-variance Gaussian random
variable. The probability density function of the squared length of n, say

A ¥
v =iz = 3 nf,
i=1
is called the “chi-square density function with N degrees of freedom.”
denote this density function by py.
a. Use the result of Appendix 7C to determine the characteristic function of

YN
b. Express py in terms of its characteristic function and by means of a single

integration-by-parts show that

Let us

Pnele) = J%' pale); N2 L

Hence
W N—12
_ mpl(a); N odd,
ple) = e ‘
W! pz(oc); N cven,
where
o 2)”A (N —2}N —4)---1; Nodd

(N—2)(N—4)---2; Neven
¢, Complete the derivation of py(«) by showing that

e—nzt'z )
Wit >0, 32, a»0,

pide) = | Vam pe) = {0; a <0,
0; a <0,

d. Show that the transformation |n| = v/ a reduces py to the density
function given in Eq. 5D.10a.

6

Implementation of Coded Systems

The problem of finding appropriate classes of signals for the communication
of data over bandlimited channels disturbed by additive white Gaussian
noise was discussed in Chapter 5. We concluded that power-constrained
communication systems, using signals of T sec duration, exist which
simultaneously (1) require signals (codewords) whose dimensionality, N,
increases only linearly with T; (2) accommodate a number of messages,
M, that increases exponentially with T; (3) afford a probability of error
that decreases exponentially with 7. More specifically, we considered
systems that communicate one of M equally likely messages over an
additive white Gaussian noise channel by means of signals,

N
500 = > s5,0,(0); i=01,..., M—1, (6.1)
F=1

in which each coefficient s,; is chosen to be one of 4 amplitudes equally

spaced over the interval [—VIE_N, N E_N}. For signals of this form the
probability of error achievable with optimum a posteriori probability
computing recejvers satisfles the simpie union bound

P[§] < 27 AT &o=BN], (6.22)
where :

M = 2VEN (6.2b)

and R, (as a function of the energy-to-noise ratio per dimension, £/ N)
is given by the curves of Figs. 5,17 and 5.18. :

If we know that such communication systems exist in principle, the
remaining task is to determine how to build them. This is the subject of
this chapter. In particular, given an appropriate set of orthonormal
waveforms {p(1)}, we are confronted with the problems of transmitter
and receiver implementation. The latter—which is by far the more
grievous—can be separated into problems concerning quantization of the
received signal, decoding, and two-way systems, We shall consider the
different problem areas in the order listed.
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In the design of a communication system one is never interested in -

building an “optimum” system irrespective of cost. The appropriate
engineering objective is to build the most economical system that meets a
required standard of performance. Given a transmission channel, two
factors that relate directly to questions of economy are (1) the data rate

R, in bits per second, at which the channel is used, and (2) the complexity -

of the terminal equipment required to meet the performance standard
at rate R. : .

That these two factors are interrelated is made evident by rewriting
Eq. 6.2 in terms of the time parameters 7" and R. If D is the number of
orthogonal functions per second accommodated by the channel and 7
is the time duration of each signal in seconds, we have

N=DT (6.3a)
M = 28T {6.3b)

and therefore
P[§] < 2~ TP R E] (6.3¢)

It is clear from Eq. 6.3c that any required standard of performance,
measured in terms of the allowable P[&], can be attained by choosing T,
DR,, and R appropriately. In its simplest expression the engineering
design problem is to determine the three parameters in such a way that
the over-all cost of the system is minimum. Each parameter affects the
cost qualitatively in the following way when the other parameters are
fixed.

1. If we increase 7, the cost increases: ecach signal (codeword) is
specified by more vector components and there are many more signals
(M = 28Ty in the code.

2. If we increase DR,, the cost increases: the maximum value of D is
constrained by the transmission channel bandwidth and the maximum
value of R, is constrained by the allowable value of EyfN. Forcing D
close to its maximum value is costly, as is increasing Ey/Nq. '

3. If we decrease R, the cost increases: three complete systems, each
with rate R, are required to communicate the same amount of data per
second as one system with rate 3R,

The appropriate choice of 7, DRy, and R in any given communication
problem depends on the details of that problem. For instance, whether
it is more economical to use three channels at rate R with simple terminal

. equipment or to use one channel at rate 3R with complicated terminal
equipment, depends on the relative costs of transmission facility and
complex terminal equipment. Such questions cannot be considered
quantitatively until “terminal equipment complexity” has been defined
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in a meaningful way and the growth of complexity (hence cost) determined
as a function of T and DR,

It is with these objectives in mind that we now address the problems of
transmitter and receiver implementation. Initially, the number of degrees
of freedom per second, D, is considered fixed. In Section 6.5 we discuss
an example in which D is also a design parameter to be specified.

6.1 TRANSMITTER IMPLEMENTATION

. The structure of the signals in Eq. 6.1 suggests a transmitter designed
in two stages as shown in Fig. 6.1 (and previously, with different nomen-
clature, in Fig. 4.12). The first stage, called the coder (or encoder)

s: R
mi—>—  Coder . Modulator ﬂ-—
Figure 6.1 Two-stage transmitter: { =0, 1,..., M — 1,

observes the message to be communicated, m,, and generates a cor-
responding sequence of N output digits, s,, The second stage, called the
modulator or waveform generator, accepts the coder output

§; = (Sz'la Sigs v v v s Sz‘N) (6-43)

and generates the waveform

”
s{) = glsﬁquj-(t). {6.4b)

First, let us investigate the complexity of the modulator as a function
of 7. We are interested in the case in which a new transmitter input
message is accepted, and a new waveform generated, every T sec. If the
{p/1)} are chosen to be nonoverlapping time translations of a single
waveform with duration T/N, as shown in Fig. 6.2, the same signal

gm(t) (!’2(3) (03(0 ' (anm

] e [
= or or s -

N N N

Figure 6.2 Puise position erthonormal functions.

|
l
i
1
,
x
x
1
i
i
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generator and amplitude modulator can be used over and over again, N
times in succession. Alternatively, we can start with a small set of finite-
duration orthonormal functions, such as the sinusoids g(t), @,(f), and
@5(t) in Fig. 6.3, and choose the {@,()} to be this set and their nonover-
lapping time translates. In either case, since T/ Nis constant, thg complexity
of the waveform generator part of the transmitter is relatively independent
of T.

w3t} @4(t)
~
’
Ve N\
I A "
37 RN 6T
N Mo » N
e
@g(t) L5 ()
V2 /,’-\\2
/I \\ / kY

Figure 6.3 Orthonormal functions with combined time and frequency translation.

This conclusion is not true of the coder part of the transmitter. We
shall see next, however, that we can build an efficient coder, the complexity
of which depends only linearly on 7%

The Encoding Problem

The first problem in encoder design is that of input message storage.
As in Chapter 5, we assume that the input message m during each T-sec
interval is a sequence of K = NRy, binary digits, say x. The scquence X
may be any one of the set {x,} of all 2¥ vectors with components 0 or 1.
We may visnalize the data source as providing one new binary digit of x
to the transmitter every T/K = 1/R sec. In this case part of the encoder
must be devoted to accepting and storing the vector x as it arrives,
component by component. A convenient device for accomplishing ﬂ"liS
is a shift-register, which accepts binary digits at its input and shifts its
contents one slage to the right each time a new digit arrives, as shown in
Fig. 6.4. Since K is proportional to ¥, hence to 7, the complexity of
such a shift-register depends linearly on T.
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In addition to accumulating the input message vector, the coder must

implement an appropriate mapping x; =~s;, i=0,1,..., M — 1. The

problems involved are not trivial. Indeed, the construction of an appro-

priate coder could easily be an engineering impossibility. To see this, we
need consider only the magnitude of the numbers involved; since

M = 2% = 28T - oNEBN, (6.5)

the required number of vectors in the set {s,} is enormous when T is large.
For example, N = 200 and Ry = § imply M = 290 = 10,

K-bit shift register
A

z \
X e P R
©. D N S SR RN N S S N
Encoder mapping
X—> s 5
—
(a)

1 . .

—)—L0f1‘1[0|0|0|1lo|1]0| Shift register
centents before
and after the

—>—|1|o|1|1loro|o|1|o|1

new input digit
&)

“17 is entered.
Figure 6.4 Input data storage digits shifted out of the right-hand side of the K-bit
shift register are discarded.

For large K it is obviously impossible to implement the coder by
choosing each of the M vectors {s;} arbitrarily from the code base. (As
in Chapter 5, the term “code base” refers to the set of all 4¥ N-component
vectors whose components belong to the A-letter transmitter alphabet
{a;}.) To do so would require provisions for storing each selected vector
in an ordered table containing MN entries, as shown in Fig. 6.5, and for
reading out the ith table entry, s, whenever X, is the message input.
The complexity of such a table-storage facility is proportional to the table
size, MN, which grows with the time interval T as T2%%. The size of the
memary that would be required is simply too large.

On the other hand, the error probability bound of Eq. 6.2 has thus far
been established only by considering the average probability of error
over the ensemble of all A¥™ possible codes. As we have seen (cf. p. 304),
most of the codes in this ensemble must be good ones. But we have also
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seen that some codes—for instance, those in which all s; are the same—

are bad. It is not inconceivable that all of the easily implementable codes

might be bad and that only those requiring table-storage implementation
are good. The dilemma is obvious: it is not yet clear that any code that
can be instrumented obeys our error probability bound.

N components
/
sD 3
S
* M vectors
Spr-1 -

Figure 6.5 Table storage of an arbitrary code.

Recapitulation of the Derivation of R,

A way exists out of this quandary: our error probability bound applies
also to a smaller ensemble of communication systems, each of which uses
a code that is easily instrumented. To prove this, we now investigate
more carefully conditions under which the bound

PIE] < 2~V Bem BN (6.6)
is valid.

The starting point of the derivation of this bound (cf. Eq. 5.47) is the "

union inequality

M-

P8 | m] < 3 Polsi sl | (6.7)

e
in which P,[s,,s;] is the probability of error when specific vectors s;
and s, are used to communicate one of two equally likely messages. For
an ensemble of communication systems chosen in such a way that the
mean of Pyfs,, s,] is bounded independent of the indices i/ and k by

Puls, s.] = Pu[6] < 2N Eo, for all i and k&, (6.8)
substitution of Eq. 6.8 in Eq. 6.7 yields

P8 | m,] < (M — 12740, (6.9)I‘
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which in turn implies Eq. 6.6, Thus Eq. 6.8 represents the crucial property
that an ensemble must evidence for the derivation of Eq. 6.6 to be valid.
For the ensemble of codes considered in Chapter 5, the validity of Eq.
6.8 was ensured for all { and & by the nature of the probability assignment
to the codes of the ensemble; the probability that any vector in the code
base was assigned to the signal s; did not depend on & nor on which
code-base vectors were assigned to the M — 1 other signals {s;}, i # %.

As a consequence the expectation
Pfs, s = | 5 Polor, ] Pls; = .5, = ] (6.10)

the code
base

was independent of i and k. Moreover, the statistical independence of s,
and s, )

Pls; = a, s, = B] = P[s; = ] P[s; = B];
for all (7, k) and all (e, @) in the code base, (6.11a)

together with the independence of the components of each s,

o

Pls; = af = [T Pls;; = e1; all { and e, (6.11b)
=l

made it possible to calculate the numerical value of R,.

Now consider two distinct ensembles of communication systems such
that the probability assigned to the event [s; = «, s, = B]in one ensemble
is the same as the probability assigned to this event in the other. If this
is true for alt (7, k) and all (e, B) in the code base, it is clear that P,[§] is
the same for both ensembles. Thus Eqs. 6.11a and b incorporate the only
properties of an ensemble we need to establish the random coding bound
and the value of Ry. -

Equation 6.11a requires only that any two signals s; and s, be statistically
independent; although heretofore we have considered an ensemble in
which all M signals {s,} are statistically independent, it is sufficient that
they be independent by pairs. The sufficiency of this much weaker con-
dition enables us to validate our random coding bound for an ensemble
of communication systems, each of which has an easily implemented
coder.

Parity-Check Codes

We now consider an ensemble of codes which simultancously meets
two requirements: (a) over the ensemble, codewords are statistically
independent by pairs and (b) each code in the ensemble can be implemented

S
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by means of a device whose complexity (appropriately measured) grows
linearly with K = RT.

The parameter X is called the constraint span of the code. We first
treat the binary case in which the codewords {s,} are vectors with com-
ponents restricted to +vEy.

The coding device is diagrammed in Fig. 6.6. Each of the first X blocks
in the top rectangle (which we call the z-register) represents a stage ina
binary shift register. The encoder input sequence X is fed into this shift

x-register

N Modulo-2
adders

=
=
O
3
2
f=1
p=
O
L“’r
g

ey

. . Y2 N
y-register i—+VEy

Figure 6.6 Parity check coder. There is one module-2 adder associated with each
stage y; of the y-register, f = 1,2,..., N, The switches close at time ¢z = 7.

register one bit at a time, so that at the end of 7" sec the K binary digits
of x are stored in the K shift-register stages in the positions indicated in
the figure. The (K + 1)th square, labeled =, represents a storage element
that always confains 1.

The N symbols @ in Fig. 6.6 represent modulo-2 adders, and the lines:
from squares to adders represent connections. The output at time 7°
from the jth adder, say ¥;, is the modulo-2 sum of the digits {x,} stored in
the stages of the z-register to which the jth adder is connected. Since
modulo-2 addition is defined by the equations

0H0=1%1=0
0P1=1¢0=1,

we see that y, is | if the number of I’s stored in these stages is odd and

zero otherwise. The {y,} are called parity checks and the device is called
a parity-check coder.
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At time T the {y,} are fed in parallel to the lower rectangle, called the
y-register, each square of which again represents a stage of shift-register.
During the interval [7, 271, these N binary digits are shifted out, one at
a time. Thus the y-register output is some sequence, say y, of 0's and 1’s:

Y2 @t tx); ¥ =01, allj (6.12)
We can convert this sequence into a signal vector, s, of the desired binary
form by the simple expedient of transforming 1 into +/ Ey and 0 into
—\/ E,, in the transducer:
Y= 1 =>5; = +V Ey
y;=0=5;= —VEy. (6.13)

Since N = K/Ry,, the complexity of a parity-check coder, measured in
terms of the total number of shift-register stages, is proportional to K.

X3 X2 X1 X X3 X2 X1 X

Y5 Y4 ¥3 Y2 o N
(b}

Figure 6.7 Two different coder connections.

From the description just given, it is obvious that the device in Fig. 6.6
is indeed a coder: given the connections from the adders to the z-register,
there is a particular N-component output vector s, associated with each
K-component input vector x,. It is also apparent that different codes, or
mappings {x; = s;}. i =0, 1,2, ...,2% — 1, result when the connections
are made in different ways.

As an example, consider the two coders diagrammed in Fig. 6.7. For
both, £ = 3 and N = 5. By convention, we shall always let x; denote
the input vector corresponding to the number / written in binary form,
with the first component taken as the most significant digit. By inspection,
the two mapping x = y are as given in Table 6.1. The two codes {s,} are
obtained by substituting ++/Ey for 1.and — [ Ey for Oin the {y,}. Since
the vectors {y,} for the second device occur in pairs, it is obvious that
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this is a poor way to connect the coder; but we shall soon see that most
connections yield good codes.

Insight into the structure of the {y;} generated by a parity-check coder

is gained by considering the set of connection coefficients {fis3- Define

Table 6.1 Codes Obtained from Two Parity-Check Coders
First Coder Second Coder

T Ty Ty Y1 Y2 Ys Ya Us Y1 Y2 Ya Ya Us
X 0 0 0 Yoo 1 1 1 0 1 ¥o: 1 1 1 0 0
x: 0 0 1 vp: 1 1 0 0 0O y: 1 0 1 1 0
X%: 0 1 0 Yoo 0 0 1 1 1 0 0 1 0 1 I
x: 0 1 1 y: 0 0 0 1 0 v; 0 0 0 0 1
x: 1 0 0 ¥ ¢ 0 1 1 0 v.: 0 1 0 1 1
x: 1 0 1 w: 1 0 0 I 1 ¥: 0 0 0 0 1
x: 1 b 0 y: 0 1 1 © 0 ve: 1 1 1 00
X, 1 1 1 v 0 1 0 0O 1 v 1 0 1 1 0

fus as Lif the hth stage of the x-register in Fig. 6.6 and the jth modulo-2
adder are connected, and 0 otherwise:
1, if =, affects ¥,
froi = 0<h< K I1<j< N (614
0, otherwise,

For example, in the first coder of Fig. 6.7 each of the coefficients

ﬁ13ﬁ21f03=f65

ﬁ2’ _f14sf15 ‘ "

f213f‘22,_f24

f33’.f35
is 1, and all other f;; are 0.
The set {f;;} completely specifies the coder connections, hence the
mapping X, = ¥;, all £, In particular, we observe from Fig. 6.6 that

¥ =fuBrju® mzﬁn D Drgfm
Ya =f('32 @ xlfm Dayfoa @ @xﬁsz

Yn = fox © t1fiy @ Tafox @ D2 Srw {(6.15a)

where the {x,} are the components of the input vector

x 2 (@, Tor - - -5 Tx): _ (6.15b)
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Equations 6.15 can be simplified by the use of vector notation. The
modulo-2 sum of two binary vectors, say a and b, is defined as

a@b=(n Qb.ayBby...,ay Dby (6.16)
For example,
(0. 1,1,0®(,0,1,0=(,10,0)

and, for any binary vector c,

c@e=1(0,0,...,0)20. (6.17)
With this definition, Eq. 6.15a can be written in the more concise form
y=1 @af Dk, @ - Daglk, (6.182)
in which
¥ 2 @ Yo YN (6.18b)
f, 2 G S o foxds OB K (6.18¢)

Thus the connection vectors {E,} for the first coder in Fig. 6.7 are
f,=(1,1,101)
£,=(0,1,0,1,1)
f.=(1,1,0,1,0)
f, =(0,0,1,0,1).

When x is the binary vector each of whose components except ;, is 0, the
corresponding output vector is y=f,@f,. More generally, y is the
modulo-2 sum of f, and those f, corresponding to nonzero components
of x.

The ensemble of binary codes. We now discuss the set of all binary
codes that can be generated by a parity-check coder and show that the
average probability of error over this set obeys the random coding bound
of Eq. 6.6 without degradation of R. For any K and N a particular code
is specified by the set of (K + 1) connection vectors fLhr=012,...,
K. Each of these vectors has N components and each component can be
0 or I. There are N(K + 1) components f,, to be assigned, hence 2514+
ways to connect the coder. '

Suppose that each of the 2¥E+% coders appears in an ensemble with
equal probability, 2~ ¥E+1, This implies that each of the connection
coefficients {f;;} is equally likely to be 0 or 1 and that each cocfficient is
statistically independent of all others. An equivalent statement is that
each of the connection vectors f, is equally likely to be any one of the 2y
binary vectors of length N and that the {f,} are statistically independent.
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" We say that a random binary vector (such as any f,) is EL if its com-
ponents are statistically independent and equally likely to be 0 or 1. In

proving the random coding bound for parity-check coders, the following ‘

property of the modulo-2 sum of two random N-component binary
vectors, say a and b, is of central importance:

Ifa is EL and statistically independent of b, then ¢ = a D bis also EL
and independent of b.

In equation form this statement is
Pe=o]=Ple=a|b=f1=2"Y; foralla,f, (619

where o and B are N-component binary vectors.
The proof of Eq. 6.19 is straightforward. From Eq. 6.17,iffc=a @b,

then
chBDb=aPbdBb=a (6.20a)
Thus ¢ = a when b = @8 if and only if
a=ua@p. (6.20b)
But ajs EL and independent of b, Therefore for any o and

Pe=o|b=B]=Pla=a @B |b=Li=Pla=a@pl=2"

: (6.20c)
and

Ple = o] = %ﬁP[c =a|b=B]Plb=B]=2"" (620d)

As claimed, ¢ is EL and statistically independent of b.

We now invoke this property to show that if x; is the input to a parity-
check coder then over the ensemble of encoder connections (1) the coder
output vector y, is EL and (2) the coder output vector y; is pairwise
statistically independent of the vector y; produced by any other input x,,
k # i. These two results will be used to establish that

Pyls,. s;] < 27V, (6.21)

where R, s the error exponent for binary-waveform sequences given by

Eq. 5.36.
Proof that any y; is EL follows from the fact (Eq. 6.18a) that

Yi=f @euf, @2ul @ - D wipfi.
Letting a denote the modulo-2 sum of the input-dependent terms, we have
v, =f, ®a. ' (6.222)
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But, over the ensemble, f; is both EL and statistically independent of all
other f;, hence of a. Accordingly, for any i, y, is EL:

Ply, =a] = 27%; for all . (6.22b)

{Note, however, that if f, were rof included in the ensemble of connection
vectors the output ¥, produced by the all-zero input sequence x, would
also be identically zero, hence not EL.)

Proof that the pair of output vectors y, and y, are statistically inde-
pendent when 7 5 & follows from the observation that x; and x,, differ in
at least one component. Let / denote such a component and assume
initially that

=1 x,=0 (6.23a)
We can therefore write
Y, =1, Db, (6.23b)

where f; enters neither into b nor y,, hence is independent of both. Since
f, is EL and statistically independent of the pair (b, y;), so also is y,.
Indeed, for all N-component binary vectors a, 8, vy we have

Plyy=a|b=Rn=v]=Pl=a®B|b=8y. =yl

= P[f, = a DR] =277, {6.23c)
Thus

Ply, =a|y=1] =agBP[yi=a|b=B=yk= YIPb=8ly=1v]
e =N — —
=2 agﬁPIb =B|yv.=1v}
=2"¥= Py, = al. : (6.23d)

For this proof, we have assumed that z;; = 1 and #,;, = 0. If on the
contrary z;, = 0 and w,; = 1, the statistical independence of y; and ¥,
follows from interchanging the indices  and k in the preceding argument.

With these two results, we now establish that the probability of error
bound of Eq. 6.6 applies to the ensemble of binary codes {s;} defined by
the set of all equally likely parity-check encoders. Since each output
vector y, implies a definite signal vector s,, the pairwise statistical inde-
pendence of the y, implies pairwise statistical independence of the s,.
Furthermore, since each ¥y, is equally likely to be any binary vector with
components 0 and 1, each s, is equally likely to be any binary vector with
components £/ Ey. Thus Eqgs. 6.11a and b are both satisfied. We
conclude that the probability of error for communication over an additive
white Gaussian noise channel, when averaged over the ensemble of all
parity-check-coded systems, satisfies

Fm < 2~ N[~ EN]I (6.24a)
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with (from Eq. 3.36)

We have already noted (Eq. 5.42) that this value of R, is exponentially
optimum for small values of the energy-to-noise ratio per degree of
freedom,] By N Under these conditions the use of a transmitter whose
complexity grows only linearly with K, hence with the signal duration T,
does not imply a loss in signaling efficiency.

Multiamplitude codes. Parity-check coders also provide an effective

escape from the difficulty of storing an exponentially large set of multi-
amplitude-component signal vectors {s;} for use on channels with high

logg A

T T
1 1
|

I 1

Transducer =

Figure 6.8 A multiamplitude parity-check coder. The transducer produces one com-
ponent of s from each successive block of log, 4 components of ¥.

energy-to-noise ratio per degrec of freedom. An appropriate coder for
such a condition is shown in Fig. 6.8. Whenever 4, the number of signal
amplitudes (alphabet letters) on which we wish to assign the {s;}, isa
power of 2, we use

N'= Nlog, 4

stages in the y-register, instead of only N. As usual, N is the number of

dimensions occupied by the signal set {s}-
The amplitudes of the coefficients of the signal vectors are obtained from

the output of the y-register by feeding v, log, 4 digits at a time, into the

+ The ““degrees of freedom” of a signal set {s.(1)} is defined as the number, N, of ortho-
normal functions {p,(1)} used in its construction, i.e., as the signal set dimensionality-

R, = 1 — log, (1 4 e EN2D), (6.24b) -

PARITY-CHECK CODES 77

transducer shown in Fig. 6.8. Clearly, these log, 4 digits may be used to
specify one of A different amplitudes. In a typical case, say 4 = 8, the
transducer might be a digital-to-analog convertor specified by the
transformations

Input Output Input Output
01 1 ++ Ey 1 00 —3JE,
010 +8VEy 101 —3JEy
00 1 | +¥E 110 | —8/Ey
000 | +WE, 11 1 —JE,

We now show that the multiamplitude random coding bound of Eq.
5.55 applies for an ensemble of parity-check coders and a fixed transducer.
The 2V K+ distinet coder connections are assumed to be equally likely.
Since s, and s, depend only on y; and ¥, respectively, and (as in the binary
transducer case) v, and vy, are pairwise statistically independent for any i
and k 5 i, it is clear that s, and s, are pairwise statistically independent.
Furthermore, for all i each component ¥, j=1,2,..., N !, is sta-
tistically independent of all other components in y; and equally likely to
be 0 or 1. Thus each component of any vector s, at the transducer output
is statistically independent of all of the other components in s; and when
A is a power of two is equally likely to be any one of the A possible values.
The conditions of Egs. 6.11a and b for the validity of the random coding
bound are therefore met, and we again have

P[§] < 2 M Ao £, (6.25a)

in which R, is given by Eq. 5.56, with 4 a power of 2 and

p=ty I=1,2...,4 (6.25b)
A

The simple coding strategy just considered is sufficient to attain near
exponential optimality whenever the energy-to-noise ratio per degree of
freedom is such that Shannon’s upper bound, Ro*, is closely approximated
by the R, of Eq. 5.56, as plotted in Fig. 5.17. If this cannot be accomplished
satisfactorily with 4’s that are powers of 2 and equally likely p,’s, matters
can be improved by elaborating the procedure at the cost of making
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N'IN > log, A. Forexample,if 4 = 3is satisfactory, we can use N'/N =3
and the transducer mapping

01 1
0 1 0)= +vEn
00 1
0 0 0

=0
100
101

11 0Y= —VE,
111

The signaling amplitudes ++ Eps O, —+/ E,, are now used with the unequal
probabilities 2 2 2. however, as we found in Chapter 5, it is desirable
to use the amplitude zero with a probability Jess than 1/3 when 4 = 3.
Clearly, any A and any desired probability set {p;} can be approximated
by making N'/N sufficiently large and using an appropriate transducer
mapping.

Invariance of P[E]mk]. We noted in Section 4.5 that certain com-
pletely symmetric signal sets {s;}, such as the set of M orthogonal signals
and the set of M simplex signals, exhibit the following important property:
with equally likely messages and white Gaussian noise, the optimum-—
that is, the maximum likelihood—receiver yields a probability of error
which is independent of the signal actually-transmitted.

P& |m] = P[&|mg];  fork=0,1,...,M—1  (626)

We show in this section that every binary parity-check code also exhibits
this property.

The first step in proving this invariance is to observe the effect of adding
an arbitrary N-component binary vector, say

a= (ﬂl, [£PTR a_\'):

modulo-2 to each of the encoder output vectors {y;}: the jth component
of every y, is complemented when ¢; = 1 and is left unaltered when a; = 0.
By “complement” we mean the transformation

0—1, 1—-0.
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Since with a binary code the transmitted vectors {s;} are obtained from
the {y;} by
Y= 0= = '_\/E;

Yy =1l =>55= + Fr
and ’ ’ \/ N

N
i) = zls-i:i @),
=
the effect on the {5(7}} of adding a to each y, is to transform

@) > —{t)

for all j such that @; = 1. Such a transformation does not affect the
orthonormality of the {g,()}. Since the minimum probability of error
with additive white Gaussian noise is invariant to the particular choice
of {p,()} (cf. Chapter 4), for any binary parity-check code we have

P[& | my, {y;}] = P[8| my, {y; @ a}l;  forall k and any a. (6.27)

An immediate implication of Eq. 6.27 is that the minimum error prob-
ability for any binary parity-check coder such as that diagrammed in Fig.
6.6 is independent of the choice of connection vector f. In particular,
setting a = f, in Eq. 6.27 is equivalent to having chosen f, = 0 initially;
in the binary case, although including f, in the ensemble of codes simplifies
the proof that the ensemble obeys the error probability bound, its inclusion
has no effect on the actual error behavior of any code in the ensemble.
Note, however, that this statement is nof true in general when the number
of amplitudes in the transmitter alphabet A is greater than two; in the
multiamplitude case f, enters into determination of the magnitude of the
signal coefficients {5;;} rather than only into the determination of their sign.

We are now in a position to prove that any particular binary parity-
check code obeys Eq. 6.26, so that the error probability of the maximum
likelihood receiver is independent of which message is transmitted.

Without disturbing the error probabilities, we may take f, = 0. The
coder output vector y is then related to the coder input vector x =
(xl’ Loy - - - xK) b)’

y=af @, - ©rgply, (6.28)

in which the {f,} are the connection vectors of the particular code under
consideration. The key to proving Eq. 6.26 is to note that Eq. 6.28
implies the following property:

If a is any member of {y,}, the two sets {y, @ a},i=0,1,..., M — 1,
and {y;} both comprise the same vectors.
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- As an example, if a = y, and the {y,} are

Yo=0 0 0 0 0

=0 10 1 1

vo=1 10 10

¥g = o0 0 0 1,

then

vopDa=1 101 0=y
n@a=1 000 1=y
7, @a=0 00 0 0=y,
yv.@a=0 1 0 1 1=y

The {y; & a} differ from the {y;} by a relabeling of subscripts.

The general proof of this closure property depends on the fact that Eq.
6.28 is /inear in the sense that if the coder input is x; @ x; the output is
¥, @ ¥, For fixed k the coder input set x & XhLi=01L....M— 1,
contains each of the 2% binary vectors of length K once and only once.
Thus {x; @ x,} is a relabeling of {x.}, which implies that when a = ¥;,
{y; @a} is a relabeling of {y;}. Codes for which this is so are called
“group codes.”*%7

Proof of Eq. 6.26 follows from the closure property. From Eq. 6.27

we know that
P[§ | my, {v; ® a}] = P[& | m, {y}1- (6.292)

If we choose a = y;, then
‘ ¥, Da=0=y, : (6.29b)

Thus the transmitted vector with the code {y; @ a} when m = m, is the
same as the transmitted vector with the code {y;} when m = m,. Since
the remaining signal vectors are also the same, we have

PIS | m, {y: ® a}] = PIE | mo, {¥,J] (6:299)

Equating the right-hand sides of Eqs. 6.29 a and ¢ yields Eq. 6.26, which
was to be proved.

An immediate coroliary of Eq. 6.26 is that the probability of error
resulting when any binary parity-check code is used over an additive
white Gaussian noise channel is invariant to the actual a priori prob-
abilities {P[m;]} whenever the receiver is maximum likelihood, hence
optimum for equally likely messages. This corollary provides additional
cogent justification for the equally likely a priori probability assumption;
in accordance with the discussion of minimax receivers in Section 4.3, any
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receiver t‘ha.t is optimum for equally likely message inputs and for which
P[8 | m,] is independent of & is also minimax.

Unfortunatcely, with multiamplitude codes the invariance of P[§ [ ]
to k is lost in -tpe: asymmetric transformation {y,} — {s;}. In principle
mgmﬁ(.:an’e sensitivity of the error probability with respect to m;, can be
remedied in multiamplitude codes by means of an appropriate expurgation
procedure. F_or exa.mple, if we denote by P the error probability that
would result- if a given N-dimension, K-bit—abbreviated (N, K)}—code
were used with equal a priori probabilities, then

P= Ek: Pim,] P& | m,}
1 A1
v, ;Zo P[& | m,]. {(6.30a)
Clearly, no more than half of the P{§ ! m1.] can be greater than twice P.
If we delete those members of {s;} for which
P& | m] > 2P, (6.30b)

w; have left a new code consisting of at least 2%~ signals for each of
which

_ PIE | m,) < 2P. ' {6.30c)
Moreover, the rate of this expurgated code in bits per dimension,
K—1 '
Ry=—"
N N (6.30d)

is very nearly equal to the original unexpurgated rate, K{N, when K is
large. The difficulty with the expurgation procedure is that one needs to
k'now the {P[& | m,]} in order to apply it: as already pointed out many
times, in general we cannot hope to calculate all 2% of these conditional
probabilities when K is large.

Orthogonal and simplex codes. Parity-check coders may also be used
to genefrate orthogonal and simplex signals, with ¥ = 2% and 2% — 1,
respec.:tlvci‘y. It is particularly interesting that with this technique each
resulting signal vector, say s,, is binary; that is,

5; = (S Sips - - 5> Siv)! i=01,...,2%5 —
with o ? -
Siz= ++En or —En; foralli,j.

To s}etc how to generate such signal sets, consider the case K = 2 and
N=2 ‘_= 4. We take f;, =0 and choose the parity-check coder-
connection vectors f; and £, to be

fi=1 01 ¢

f,=1 1 0 0. (6:31a)
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Then, in accordance with Eq. 6.28, the {y,} are

yo=0 0 0 0
y=10120
y2=1 1 0 0
=0 1 10 (6.31b)
The corresponding binary vectors {s,} are
so = VEi (=1, =1, —1, =D
s = VEq(+1, —1, +1, —1)
s = VEu(+1, +1, —1, =1
s = VEg (=1, +1, +1, —=1).
It is apparent that the dot product of any two vectors s; and s; is
s, -8, = NE & (6.32)

Thus these vectors {s,} form an orthogonal set, and each has length
N NE..

The reason for the orthogonality of the {s;} becomes clear when we
consider the structure of the {f,}. Each f, consists of alternate groups of
1’s and O’s. Inf, the groups are of length 2°; inf, the groups are of length
2% Tt is because of this that each vector ¥y differs from every other vector
y, in exacily N/2 coordinates, which fact in turn implies orthogonality
between the {s,}.

‘We now prove for every K and N = 2% that, if the coder-connection
vectors are alternate groups of 1’s and O’s, with f, having groups of length
2n1 the resulting coder generates a set of 2% orthogonal vectors. Let
£}, h=1,2,...,k denote the connection vectors for the case (N = 2%,
K=kandletig} h=1,2,...,k+ 1, denote the connection vectors
for the case (N = 211, K = k + 1). The alternate grouping implies

21 = 1648 )
g, = (fz, f,)

g = (i, 1), (6.33a)
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in which we use the notation

A
(21, 22) = (Bagy Z1an - - - » 21y Bt Zazs - - 1y Ban ) (6.33b)

The (¥ + 1)th connection vector is

gor=(,1,...,1,0,0,...,0). (6.33c)
2% 1’s 240’

Pr_oof of orthogenality is by induction. Assume that the set of vectors
{s,} is orthogonal for X = k. From Eqs. 6.28 and 6.33 the set of signals
for K =k + 1, say {s,/}, can be written in terms of the signals {s;} for
K=kas '

i = (5, 8)
Spern = (=55 5;)
Equati.oné 6.34 follow from the fact that since ., by convention is the
%cast &gmﬁcant_digit, g..1 enters into the determination of s;;; but not
into Fhe determination of s,,, for all i 2 — 1. The effect of including
g, is to change the sign of the first 2* components of the signal vector

that would result if g, were not included.
From Eq. 6.33b,

(21, %) - (23, 7,) = (21 - ) + (2 7,).

Bky virfue of the orthogonality (assumed for the induction) between the
2% component vectors {s,}, we therefore have

(s;,8) - (1, 8)) = 2°Ey 9y 4 2By 6,y = 2B 9, (6.35)
(—si8) - (=5, 5) = 28Ey 0y + 2VEy 6y = 2" Ey 6, (6.35b)
(i 8) - (—sp8) = —2°E 0, ++ 2°Ey 6, = 0. (6.35¢)

Thus the orthogonality of the signal vectors in the case K = k guarantees
the orthogonality in the case K = k + 1. Since we have seen that the
theorem is true for K == 2, the proof is complete. That the theorem is
also true for K = 1 is obvious by inspection. (It is convenient to begin
the induction argument with K = 2 because of the insight afforded into
the structure of the {f,}.)

The advantage of generating orthogenal waveforms in this way is
o'bvious; from an engineering point of view their generation is relatively
simple. Of course, this is also true of short pulses positioned in time so
that they do not overlap. With parity-check waveforms, however, the
problem of a high peak-power requirement is avoided, as illustrated in
Fig. 6.9,

To obtain a set of 2% simplex waveforms it is only necessary to modify
the coder just described by deleting the Nth stage of the y-register, leaving

fori=0,1,2,...,2° — L. (6.34)
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the first 25 — 1 stages unchanged. This corresponds to deleting the last
component of each of the {f,}. Since our choice of the {f.} was such that
fiy = Ofor all &, it follows that y,y = Oforally,; thus truncating the code
words to length 2% — 1 does not affect the error perforfnance of the {s.}.
(Recall that in Chapter 4 simplex waveforms were obtained from orthog-
onal waveforms by a transfation that did not affect P[&].)
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Figure 6.9 Peak amplitudes required with typical binary and pulse-position orthogonal
signals, N = 64.

Proof that the set of signal vectors resuliing from thi§ _truncation does
form a simplex is trivial. Letting {s;} denote the original orthogonal
signal vectors of length 2% and {s;} the truncated set, we observe that the
(2%)th component always coniributes the term (4 Fy) to s;-s,. Thus

’
Si’.s[ =Si’SI—EN

2K DEy fori=1
_[¢ ; (6.36)

—Ey;  forizl
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Since Eq. 6.36 reduces to the simplex definition of Eq. 4.99 when 2% is
identified with M and ME with E,, the proof is complete.
The encoder for simplex vectors in the case K = 3, N =28—1 =17, is
shown in Fig. 6.10. The connection vectors are
=1 0101 01
f=1 1 0 0 1 1 0
f=1 111 ¢ 0 0 (6.37)

It is interesting to note that each column on the righi-hand side of
Eqs. 6.37 represents a different one of the (2% — 1) distinct non-nuil

parity-check connections. It can be shown that this is true for all X:

simplex codes with 2¥ words can be generated by performing all distinet

¥7T Y6 X5 ¥4 Y3 ¥z N1

Figure 6.10 Parity-check encoder for simplex (K = 3, N = 2% — | =T}

Y = (=, Doy © 3y, By @ %y, ) Dy, Ty, Ty D Xy, 24, %1).

non-null parity checks on a sequence of K message bits. An especially
simple implementation of a simplex ceder is a K-bit shift register connected
in a maximal-length feedback configuration.®:%® An example is shown in
Fig. 6.11, : '

Discussion. Much study has been devoted to parity-check coders,
particularly for the binary signal case. Catalogs of optimum, that is,
minimum P[§], binary codes have been compiled® for many cases in
which either X or ¥ — X or both are small. The known techniques for
finding optimum codes are essentially those of exhaustive enumeration
and evaluation and usually cannot be applied when both X and (¥ — K)
are large. No general algorithm is known for constructing explicit codes
for which it can be proved that the probability of error is overbounded
by Eq. 6.6.

At first glance it is startling that the error probability averaged over all
(¥, K) binary codes is, in general, smaller than the behavior of the best code
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for which the error probability can be calculated. In some sense it appears
that it is the absence of simple structure that makes a code good. Unfor-
tunately, however, it is not possible to calculate the error probability of
specific large codes that are not highly structured.

el

Operate switches after x is loaded into x-register and step seven times

Shift Contents of x-register

0 x3 i x2 J‘ a1

1 X @x2 | x3 | x2

2 X2 @ X3 | x| B X2 1 x3

3 @Y @Y I X2 @ x3 I @

4 nOx¥ | NeROp | nen

5 *1 | n@s : @@
6 X7 i x1 | Sr@®x

7 X3 1& x2 : x1

F}gure 6.11 Maximal length shift register encoder for simplex (¥ =7, K = 3):

¥ = (@, Tg, T3, T, © Ty, By @ Ty, Ty © T D Ty, %y O W)

6.2 RECEIVER QUANTIZATION

We have been studying the problem of building a transmitter that is
capable of efficiently communicating one of

M = 2VEN = QR (6.382)

messages even when NRy, is large. For the additive white Gaussian noise
channel we have observed that it is not difficult to construct an ensemble
in which the transmitters are easily implemented and for which the bound

m < 2—5’[RQ—RN] (638b)

is satisfied with an R, that is nearly optimum,

The problem of implementing an efficient receiver is not so easily
resolved. The bound of Eq. 6.38b was derived under the assumption that
each member of the ensemble of communication systems has an optimum
receiver. Optimum receivers for signals

N
) =35, 00 i=01,...,M~1 (6.39)
=1

have been studied in Chapter 4. As illustrated in Fig. 6.12, one imple-
mentation is a bank of N filters matched to the {¢,(1)}, followed by circuits
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that compute the M dot products
. .
8 = X )5, ' (6.40a)
i=1
and determine for which 7 the decision variable

gimres,—kls2;  i=0,1,---,M—1 (6.40b)

is maximum. (Ir Eq. 6.40 and throughout this chapter we assume equal
a priori message probabilities.)

—> el -t o
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wl) \L ra Compute
wo(T~1t) — | the

| i #

| . an >
. determine
| . the
b largest
f
L o (7 o T
|
4 + .
Sample at tsit
t=T
Figure 6.12 An optimum receiver realization: r = (ry, 75, . . ., Fy)-

Clearly, the complexity of implementing the bank of matched filters
illustrated in Fig. 6.12 grows no faster than linearly with N. Indeed, as
stated in Section 6.1 in connection with modulator design, the complexity
is independent of & if the {p(#)} are chosen to be nonoverlapping time-
translates of a single waveform of duration ». As shown in Fig. 6.13, in
this case we can use a single matched filter and sample its output at times
jri=12,..

On the other hand, there remains the problem of calculating the set of
decision variables {g;}. At first glance it might appear that a high-speed
digital computer could resolve this difficulty. But for large T this is not so;
from Egs. 6.40 the number of calculations involved in determining the
{g:}is NM. For R = 1000 bits/sec and T = 2, sec, we have

M= 2RT 2100 > 1030

which in a serial computer would allow 107** nanosecond for computing
cach sym. One cannot trifle with exponential growth.




388 IMPLEMENTATION OF CODED SYSTEMS

- An alternative is to calculate the {g;} in time-parallel rather than in
time-sequence, perhaps by resistor weighting networks and summing
busses. But this would require approxxmately NM resistors, and ex-
ponential growth in number of components is no more attractive than
exponential growth in speed of computation. In general, the only recourse
is to accept a receiver that is Iess than optlmum

Once we are reconciled to some loss in performance, the problem is to
determine receiving procedures with acceptable degradation. In this
framework special-purpose digital computers, called decoders, assume a

\ o1(t) L epa(t) it} en(t)
|A A /ﬂ ] o | ] :

“{N-1)r “Nr

Re) = i(T=1)

Ruwlt)
s(t} /L r(z) u(t) . "
\c Fo decision
{siett &) |20 | ° Sample at circuits
times £; = jr
i=12...,.N

Figure 6.13  Optimum receiver realization for a time-translated orthonormal set {g;(£)}:

u(ts) =J-m Flodh(t; — o} de

J g, (e — t; + a) do

J r(e)palo — (f — 1)7] e

—

f ® o ey o == 7
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role of central importance, primarily because of the great flexibility with
which they process data.

When a decoder is used, the performance degradation arises from two
sources. First, the vector r at the output of the matched-filter bank has
components {#;} that are defined on a continuum, whereas a digital com-
puter operates only with discrete numbers. Thus some form of amplitude
quantization is usually introduced ahead of the computer. Second, the
number of computations demanded of the computer must be restricted to
growing no faster than linearly with the signal duration 7. The first
source of degradatlon is considered in the remainder of this section; the
second is considered in Section 6.4.

Measure of Degradation

Tt is evident that transforming the N-component vector r into a discrete
vector. suitable for computer processing is an irreversible operation and
in general degrades the attainable error performance. It is intuitively
reasonable that this degradation will be small if the quantization is
extremely fine, On the other hand, coarse quantization is desirable because
it decreases the memory requirements, hence the cost of the decoder: 'if
each component of r is quantized into one of @ levels (Q a power of 2),
N log, O bits of memory are required to store the quantized vector in the
computer.

The appropriate engincering balance between system cost and per-
formance cannot be adjudged without some quantitative measure of the
effect of quantization on the probability of error. An especially useful
measure of degradation in a coding situation is provided by the exponent
in the random coding bound.

Heretofore the exponential parameter R, in the bound PlE] <
has been determined only for an ensemble of communication systems
utilizing parity-check coders, transducers, and optimum (unquantized)
receivers. We now consider the parameter Ry in a corresponding bound
P[§] < 2-¥B=RN) for an ensemble of systems with the same transmitters
but with receivers having the structure of Fig. 6.14, in which a quantizer Q
is inserted between matched filter and decoder. The decoder itself is
assumed to be optimum in the sense that it determines, from the quantized
vector r’ and knowledge of the signal set {s,}, which message has maximum
{s;]l. The difference between R,
and R, provides a meaningful measure of the degradation due to quan-
tzation.t

9~V RomRpy)

+ Methods other than the direct quantization of each component of r may also be used
to produce a discrete decoder input vector. (See problem 6.10.}
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Figure 6.14 Quantized receiver, The decoder input vector is v’ = {1, s .0, )
The Quantized-Channel Model -

With an additive white Gaussian noise channel, each component s; of
the itransmitted vector s is corrupted by the addition of a statistically
independent Gaussian noise variable. Thus, if {g,} denotes the trans-
mitter alphabet, when s; = 4, the jth component of the (unquantlzed)
received vector r is described by the density functlon

Py |5 =a) = \/lw gV, (6.41)
T g

As illustrated in Fig. 6.15, the quantizer maps r; into an output com-
ponent r; that cannot assume an arbitrary value on the real line but is

g ————— -
by ———~—
b i
Ag 8 E
) b
< A Ay e Ay —>} _(_5,(,_ Ag A7—>E-e—l Ag—— .
A,
~—bg
mmmmmmm | &g
———————————— — b

Figure 6,15 Input-output relations of a quantizer. The interval of r corresponding to
r= by is Ay,
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Figure 6.16 The transition probability gy, is the area of the shaded region.

restricted to being some letter of the quantizer output alphabet, say
{3, h=1,2,..., Q. Given that s, is a,, we denote the probability that
r; is b, by the symbol ¢,

am = Plry = b, [ 5; = al. {6.42)

As shown in Fig. 6.16, the value of ¢, for any particular quantizer is the
integral of the Gaussian density function of Eq. 6.41 over the Ath quanti-
zation interval. The set of probabilities {g,}, {=1, 2,...,4, A=
1,2, ..., @, specifies the probabilistic connections between the transmitter
alphabet {a,} and the quantizer output alphabet {6,}. The {g,,}, called
transition probabilities, may be conveniently displayed in a diagram (see
Fig. 6.17a) when 4 and Q are small and in a matrix (see Fig. 6.175) when
A and O are large.

The components of the Gaussian noise vector which the channel adds
to the signal vector s are statistically independent. If we assume that each

e
qu 41 - Tig l
Tn T+ g l
Ta Qa2 e dag
(=) (&}

Figure 6,17 Transition probability diagram and matrix: (@) 4 =3, @ =4; (8
matrix; the elements in each row sum to one. In the interest of clarity all possible
transitions are not shown in the diagram.
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matched filter output r;, j=1,2,..., N, is subjected to an identical

quantizer, each component s, is affected independently by the same set of .

transition probabilities {g,,}. Thus if
o= (o, %y« -, By)

Y=0nu70 75
then

N
P =y|s=al=T] Plr/ =7, | s = o] (6.43)
F=1

Here, cach o, may be any member of the transmitter alphabet {a;} and
each y, may be any member of the quantizer output alphabet {b,}. For
example, if

o = (4, a5 a5)

Y = (b37 b?: bl)a
then, in accordance with Eqs. 6.42 and 6.43,
Plt' =« | § = ®] == g53G27951-

Caleulation of R,

“We are now in a position to calculate a bound on the mean probability
of error for an ensemble of quantized receiver communication systems.
We assume that the connection vectors for the parity-check encoders are

EL and statistically independent over the ensemble. Consequently, the A

signals {s;} are statistically independent by pairs:
Pls; = a, s, = 8] = P[s; = a] P[s, = BI; all i, k52 1.  (6.44a)

Furthermore, the components of each signal are statistically independent,
N

P[s, = a] =TT Pls;; = ;1 i=0,1,....,M—1, (644b)
=1

and for each g, in the transmitter alphabet
Pls; =al=p;  allij. (6.44c)

The {p,} depend on the choice of N’ and of the digital-analog transducer
of Fig. 6.8. '

Formulation of the bound. The derivation of the bound
PE] « 2~ VBB (6.45)

is formulated in a manner identical to that we have encountered before.
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We start with the union bound
M-1
P[& I mp] < z Pals;, sl (6.46)
ey
By virtue of Eqs. 6.44 the expectation of Py[s;, s,] over the ensemble of
systems is independent of the subscripts i and k. Hence

Pols;, sd = PlE];  alli, k£ (6.47a)
and

P[e] = P[6 | m,] < MP,[E]. (6.47b)

Since M = 2¥8M, we need only show that
P[] < 2~V B (6.47¢)

to obtain the desired bound of Eq. 6.45.

Verification of Eq. 6.47c and evaluation of R, remain to be done. We
recall that Py[s;, 8.} is the probability of error when s; and s, are used to
communicate one of two equally likely messages. Let o and £ be two
vectors with components in the transmitter alphabet {a;}, let y be a vector
with components in the receiver alphabet {6,}. and assume for the moment
that

s,—@a, 5 =8 r=y (6.48)

The optimum decoder in this two-message case makes an error when m, is
the transmitter input and ¥’ = y is received if and only if

Pir' = y|s, = &) = Pl = v s, = B (6.49)

Equivalent forms of the error condition are

Plt' =v|s, = a]
S EZAIRT 2l
Plr =v|s, =8l

3

and, in view of Eq. 6.43,

NPl =yslsy = a]
S £l B > 0. (6.50)
i1 Plrf =y, | Sk = Bl g '

We simplify notation by defining

L n PI”?‘} =il s = % forj=1,2,...,N (651a)
Plry =v; t e = Bl

and
Z23z, ' (6.51b)

;
§
|
1
§
|
|
3
j
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Given s, = a,s, = B, and r = y, an optimum receiver in our two-
message case computes the number Z, and sets 1 = my,, if Z < 0. Thus,
when m = p, an error is made if and only if

Z>0. (6.52)

Ensemble averaging, Over the ensemble of codes and channel noise,
we recognize that s, s, and r; are random variables, with s;; and 5,
ranging over the transmitter alphabet {a,} and r;" ranging over the quan-
tizer alphabet {,}. Hence z;, which is uniquely determined for stated
values of s, 8, and r/, is also a random variable. In particular, from
Eqs. 6.42 and 6.51 we have

(SiJ' = Oy Sy = s r:" = bh) = (z:i' = In ==

The probability assignment for z, foltows from the statistical independence
of s;; and s,;. We have

Pls;; = @y Sy = Ay, 1 = by | my)
= Pls;; = a,] Plsy; = ai] Plr, = b, I Mgy Si; = 1)
= Pu.PL‘}'.m- (654)

Finally, by virtue of Eqs. 6.43 and 6.44b we note that the random variables
{z},j=1,2,..., N, are statistically independent, hence that Z is a sum
of statistically independent, identically distributed random variables.

We shall bound P,[s,, s,], using the technique first introduced in the
derivation of the Chernoff bound in Chapter 2. If we define the unit step
function

(Z) o 7220 6.552)
= .55a
4 0; Z <, (
then, from Eq. 6.52, we have

Pals;, 5] = Pal6] = f(2), (6.55b)

where the average is over the joint ensemble of codes and channel
disturbances.

Evaluation of the bound. Direct evaluation of JTZ—) is not, in general,
possible. For the special case of no quantization, which was described in
Chapter 5, the corresponding bound on P,[&] was expressed in terms of
the function Q( ) rather than the unit step function f( ). The averaging
was easily carried out after the substitution of an exponential bound on
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1 F{Z)

Figure 6.18 Exponential overbound to the unit step.

the Q( ) function. A similar strategy, which we now adopt, is to over-
bound the unit step f(Z) by the exponential e,
As shown in Fig. 6.13,

f(Z) < e, forany i3 0. (6.56)
Substitution of Eq. 6.56 in Eq. 6.55b yields

P,[5} ——"f(—Z) < et
-l 5)] - 1
F=1 i=1
= f{ &% = [1¥; A0, (6.57)

1

in which z denotes any one of the identically distributed, statistically
independent random variables {z;}. Defining

.,
Il

Ry(H) & —log, €%, (6.58a)
we have )
Fo] <2V, 130 (6.58b)

In the derivation of Eq. 6.58 we have exploited the fact that the
random variables {z;}, hence the random variables {e*}, are statistically
independent; this enables us to equate the mean of the product of the
{e*2} and the product of their means. Indeed, the motivation for adopting
the exponential bound of Eq. 6.36 is that it permits exploitation of this
fact.

The bound of Eq. 6.58b is valid for any 1 > 0. We now choose the
parameter 4 in such a way that the bound is as tight as possible. From
Egs. 6.53 and 6.54,

=33 ’E PuDeldin €XP (?u In q‘—"‘)

w I G

= E z z pupiqii-a-lq uk’l: ) (659)

w I R
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where the indices # and / run from 1 to 4 and /4 runs from 1 to Q. We
therefore seek the value of A for which

J — ) .
O = a (eM.) = z z z pup!qgh # Quhl(ln q“h - ]I’l q{ﬂ)' (6603')
[

Since the right-hand side of Eq. 6.60a is symmetrical in the indices » and /,
the solution to Eq. 6.60a is
A=, {6.60b)

which, of course, satisfies the condition 1 > 0. If we define

Ror é Rg’(/‘gmax = Rﬂ’(é) = ﬂlog; |:Z z Z puPl‘\/Quhqlk:|: (6613')
w i A
Eq. 6.58b becomes

Paa] < 2NV (6.61b)
Substitution of Eq. 6.61b in Eq. 6.47b yields the desired result
P[E] < 2~ N B0 =In, (6.62a)

By virtue of the symmetry of Eq. 6.61a with respect to the indices / and u
the expression for Ry’ may also be written

Qr4 72
Ry = —logs 3| % pim] (662b)
A=1Ll.t=1

Discussion. Equation 6.62 provides a bound on P[&] that is valid for
any set of probabilities {p,}. For a given set of transition probabilities
{gu}, the {p,} may be optimized by use of the formulas of Appendix 5C.

Although Eq. 6.62 has been derived with reference to the quantized
additive white Gaussian noise channel, its validity does not depend on the
specific mechanism that produces the transition probabilities {g,,}.7 For
any discrete channel described by the diagram in Fig. 6.17a or the matrix
in Fig. 6.17b we may communicate one of M = 275N messages by means
of a parity-check-encoded signal set {s,} with components in {g;}. Aslong
as each component of s is affected independently by the transition proba-
bilities {g,}, the ensemble average error probability is bounded by
Eq. 6.62.

Increasingly Fine Quantization

We now consider the limiting behavior of Ry’ as the quantization grain
becomes increasingly fine. By so doing we obtain an exponential bound

Q
% Since the {g,,} are probabilities, they must satisfy the conditions g, 2 Oand qu =1
h=1
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on P[&] that applies to unquantized-receiver vector channels that are far
more general than those disturbed solely by additive Gaussian noise.
Indeed, the conditional probability density function of any unquantized
received signal component r;, given the transmitted signal component s,
may be quite arbitrary, We need only require that this conditional
density function is continuous and the same for all components j = 1,

2, ..., N, and that successive components of r are disturbed with statistical
independence:

N
pr|s = H p?‘jls_-r (663&)
P = Prjss §=1,2,...,N. (6.63b)

If we quantize each component r; as shown in Fig. 6.15, then in accord-
ance with Fig. 6.16 we have

g =fpr(y I 5 ="a,)dy, {6.64a)
Ap

in which A, is the Ath quantization interval. When each A, is sufficiently
small, Eq. 6.64a can be written

g~ piby | s =a) A, (6.64b)

in which &, is now taken as the midpoint of the interval A,.

In accordance with Eq. 6.64b the expression for Ry in Eq. 6.62b may
be written

A —_— M2
Ry~ —log, 12 |:z Pz\/Pr(bh |s=ap Ah:|

I Li=1

SO o T — ]

= —log, 3 A, [2 Pz\/Pr(bh | §= a:):l .
. all » =1

In the limit as the quantization grid becomes increasingly fine the sum on

h becomes an integral and the approximation of Eq. 6.64b is exact. Thus

for the unquantized case the conditions of Eq. 6.63 suffice to establish the

general result '

P[E] < 2N Be— R (6.65a)
with

w4 —T] 2
Ro=—ton| [Splnrls=a] ar 6o

For the particular case in which the disturbance is independent additive
noise, r = 5 + », this becomes

a0 A’ 2
Ry = —log{ [ Ipzdpn(y—aa)} . (6.650)

1=
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Equation 6.65¢ can be used to substantiate our intuitive contention that
extremely fine quantization does not introduce degradation in attainable
error performance. ‘As an example, we consider a particular system with-
binary modulation and a quantized receiver operating over an additive
white Gaussian noise channel. “We compare the value of Ry, approxi-
mated by the R, of Eq. 6.65c if the receiver is finely quantized, with the
exponent obtained under the same conditions except that the receiver is

unquantized.
Let e
=+ \/EN
. (6.66a)
dy = — Y Ey
and choose
pi= P[Sij = a;] = %-; I=1,12. (666b)

For unquantized Gaussian noise

— 1 21

In accordance with Eq. 6.65¢, we have

@110 1 VBN
Ry = —-10ng [5(\/—”17-—” e \/EN] ','N,n)
o o

L\
+l( 1 : e_(yM/EN)"/.N’D)z:rd?
2\ /fm N

- ot [
24 —m\/ﬁNO

—.a P -
5% [e—(y—«/EN) 100y o~V ENPINY 90 TN gy

= —log, 4(1 + 1 + 2¢7 TN
=1 — log, (1 + ¢ Zn¥o), (6.67)

This agrees with the unquantized-receiver result of Eq. 6.24b.

The R, of Eq. 6.67 has been obtained via a bounding technique—
(%) < e*#—that at first appears quite weak. That this R, agrees for
Eyl Ny & 1 with Shannon’s optimum bound R;* may seem surprising.

The agreement, however, is consistent with the statement in Chapter 2
that the Chernoff bound is exponentially tight.
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Comparison of Quantization Schemes

Wt? now apply the results of the analysis of Ry to the evaluation of
certain interesting quantization schemes. As usual, we assume that the
transmission is corrupted by additive white Gaussian noise.

v

bg

by

Figure 6,19 Quantizer for binary symmetric channel; 4 =2, @ = 2.

Binary input, binary ouwtput, In the first case that we consider the
transmitter alphabet consists of only two allowable input amplitudes,

CI1=+\/-E_N
ay = — N Ey.

The match‘.ed filter output at the receiver is also quantized into two levels,
as shown in Fig. 6.19. Thus 4 =2, ¢ =2, and the overall channel
diagram is that of Fig. 6.20, in which

(6.68)

1-p
12 = 4o = P (6.69a) @ 3 b
4y =g =1—p (6.69b)
and 2
ag ba
p = QW2EGNG).  (6.69¢) 1mp

. . . Figure 6.20 Transition diagram
The transition diagram is that of a binary forg binary symmetric channegl.

symmelric channel (BSC). Because of the
sym.metry of this channel, the probability assignment p; = p, = % is
optimum. From Eg. 6.62b we then have

2

z z
Ry = —log, E [Z pz\/q_u;:l
7

r=1Li=1
= —log, [(3/p + 31 = p* + (3/p + 3/1 — )l
=1—1log, [1 + 2/p(1 — p)]. (6.70)
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Figure 6.21 R, and Ry’ for binary antipodal signaling with two- and three-level sym-
metric quantization.
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Figure 622 Quantizer for nuil-zone channel, 4 =2, @ = 3.
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The value of Ry from Eq. 6.70 is plotted in Fig. 6.21 as a function of
E [Ny, together with the unquantized R, given by Eq. 6.67. We observe
that the quantization loss is approximately —2 db. More precisely, in the
limit E{ Ny — 0 (hence p — 1) it can be shown that the loss in decibels is
exactly 10 log;, (2/=).

Binary input, ternary output. A significant fraction of the degradation
in R, resulting from binary quantization
can be aveided by going to a ternary
output. For 4 =2, 0 =3 the appro- a
priate quantizer is that shown in Fig.

i-p—w

6.22 and the resulting over-all channel bs
diagram is that of Fig. 6.23. We have
a2
iz = dn Aé P (6.71a) l-p—w b2
iz =qos = W (6.71b)

Figure 6.23 Transition probabil-

and ity diagram for null-zone channel.

qu =g =1—p—w, (67Ic)
where p and w are given in terms of the quantizer threshold J by the
equations
VI gy (6.723)

=

P= 7 JmN,
J 1 '\/_‘; 2N

w —f e —luEVENYY "d?j. (672b)
7 JaNg

Such a channel is called ecither a null-zone channel or a binary symmetric

erasure channel (abbreviated BSEC). By symmetry we again choose
P1 = Ps; = 3. Then, from Eq. 6.62b, we have

- 32 e
Ry = —log, > [2 P:x/%h:|
r=1LI=1 .
= —log[(}/1 — p — w + 4/0)* + G/w -+ 1/w)*
+GJ/l—p—w+ /P

=1 —log, [l +w+2/p(l — p — w)]. . (6.73)
The value of R, given by Eq. 6.73 is a function of the quantizer
threshold value, J. The optimum value of J (the value that maximizes
Ry') can be found as a function of £/ /N, by trial and error; itis plotted
in Fig. 6.24. The value of R’ resulting from Eq. 6.73 when J is optimum

is plotted as a function of E /N, in Fig. 6.21. We observe that the
degradation from the unquantized case is roughly 1 db and conclude that
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Figure 6.24 Optimum threshold for nuil-zone channel.

little improvement can be gained by quantizing to more than three levels
when EyjV, is sufficiently small that signaling with sequences of binary
waveforms is efficient. Note in Fig. 6.24 that J = 0.65 J HNy/2 is near
optimum over this interesting range of Eyf Ny

Multiamplitude inputs. Quantization at the receiver also implies a
degraded R, for systems that employ a multiamplitude modulator to
exploit a high energy-to-noise ratio per dimension. For a given input
alphabet {a,} and a given quantization grid the first step in evaluating the
degradation is to determine the transition probabilities {g,} in accordance
with Fig. 6.16. The second step is to substitute these {7}, together with
an appropriate choice of letter probabilities {p,}, into the expression

ord _7®
Ry = —log, hE;LEle\/qm] . (6.74)

We now apply these results to a particular ensemble of systems operating
over an additive white Gaussian noise channel. Each system utilizes a
modulator with transmitter letters {a,} equally spaced over the interval
[~—\/ Eu +\/ E,] and a receiver with a uniform quantization grid sim-
ilar to that shown in Fig. 6.25 for 4 = 6; the number, @, of quantizer
output levels is equal to the number, A4, of transmitter letters.

Curves of R, as a function of Ey/N for @ = A=23 4,8, 16, 32,
and 64, calculated on a computer, are plotted in Fig. 6.26. In each case
the letter probabilities {p,} have been set equal to 1/4. For reference, the

et o M
t \ ] | . ! ,
@n= a2 a3 s . a3 ag =

-VEy T +VEy

Figure 6.25 Uniform quantization, @ = A.
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upper e_nvelope of the curves of the unquantized exponent R, is replotted
from Fig. 5.18. This upper envelope specifies the performance obtainable
in the absence of quantization with A and {p,} optimized.

80
I ] I T I I
60— ot 64 |
- e
40— e e ——— 1] —
- K ooro————————— 8, 1
20+ —
- Unquaniized
= ! /
5 receiver N
g N/ :
£
=]
o 10— 2 -
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L2 08— ]
£ _|
s L |
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/ % Unceded systers, P[ § | = 107>
- ,‘r o Unceded system, P] & | = 1012 n
{
0.1 | I | | t
-1 Q 10 20 30 40 B0 T 60 db

Energy ratio per dimension, 10 logy Ey/XCo

Figure 6,26 R’ for A-level amplitude modulation, quantized receiver {(Q = A4).

We observe from Fig. 6.26 that the best choice of 4 depends on the
value of Ey/N;. By choosing A4 {as a function of £ N’y to maximize Ry,
we can operate along the upper envelope of the R, curves. It must be
recalled, however, that fine quantization increases the cost of the decoder.
Thus it is desirable to select 4 only large enough to yield an efficient set
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of ‘waveforms; that is, only large enough to prevent Ry’ from saturating
at log, 4. When this is done and Q is set equal to 4, the resulting degra-
dation due to quantization is approximately 2 db over the full range
of B N _

The fact that R, decreases as A increases when Ey/N, is small is
attributable to choosing uniform {p,}; for example, when Eg/N', is less
than 5 db and 4 = 64, R, falls about 5 db to the right of B,. Almost all
of this discrepancy is due to the fact that with uniform {p;} the mean
squared-length of a signal vector, hence the mean energy of a .s1gn'a1
waveform, approximates NEy/3 (see also Eq. 5.57 et seq.). This dis-
crepancy would be eliminated if the {p,} were optimized: the letters
+\/E: and —\/E-_N would be used almost exclusively when Eg/Ng is
small and the resulting mean signal energy would be three times greater.
For optimum {p;} and @ = 4, the R, curves increase monotonically
with increasing A for all Ey/N,, and approach the unquantized envelope
as A — oo,

Uncoded transmission. 'We now contrast the performance afforded by
coded systems with the performance obtainable in the absence of coding.
If the transmitter employs A4 amplitude levels equally-spaced between
- E_N and ++/ FN to communicate M = A equally-probable messages,
and if the uniform quantizer of Fig. 6.25 is used for making decisions, then
the resulting probability of error is

147 _A—1 | %_JE_N)
Pt = 4 50— a0 =4 20 5
while the rate is )
R, = log,4 Dbits/dimension.

Points are included on Fig. 6.26 to indicate for each value of A4 the rate
and the value of EyJ&N°; necessary to achieve P[] = 10~*and P{8] = 1010,
It is observed that for all A coding affords an increase of between 2 and
3db in the efficiency of energy utilization for P[] = 10~% and between
6 and 8 db for P[6} = 1077, _ .
We may conclude initially that coding for a high signal-to-noise ratio
Gaussian channel is not dramatically rewarding. However, it is wise to
recall from the central limit theorem discussion that the assumption of
Gaussian statistics may be very poor on the tails of the distribution; in
particular, the probability of an atypically large noise may be orders of
magnitude larger than that predicted by the Gaussian model. Con-
sequently, it is doubtful that the performance of uncoded systems on
physical channels will actually approach the performance predlctf:d in
Fig. 6.26. Of course, to some extent this same caution also applies to
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coded systems. With coding, however, a low error probability is attained
by observing many noise samples rather than only one. For no single
sample must the probability of a large noise be vanishingly small. Thus
system performance with coding is less sensitive to the tails of the noise
distribution than system performance without coding, and the Gaussian
approximation is more tenable.

6.3 BINARY CONVOLUTIONAL CODES

The calculations of the preceding section have shown that it is possible
to choose a receiver quantization scheme in such a way that the achievable
error exponent Ry is degraded only slightly from the value it would have
without quantization. In making these calculations, we have presumed
that the quantizer is followed by an eptfimum decoder—that is, by a
computer that determines for which message m; the a posteriori proba-
bility P[nz; | '] is maximum, where " denotes the quantizer output vector.

For equally likely messages the a posteriori probability is proportional
to Pr’ | s;]. But we have observed before that it is not possible in practice
to compute P[r'|s;] for every i when K is large and M = 2% = 24N
enormous. The decoding problem is to avoid exponential growth in decoder
complexity as K increases. Additional degradation in the error exponent
results from the necessity of settling for nonoptimum data processing in the
box labeled “Decoder” in Fig. 6.14. The remainder of this chapter is
devoted to explering ways in which the degradation in error exponent
caused by decoder data processing may be made a small percentage
of R/ .

An ideal decoding scheme would have the following attributes:

1. The probability of error would decrease exponentially with increasing
code constraint length K in agreement with the random coding bound.

2. The size of the decoder would be proportional to K.

3. The required computational speed of the decoder would be inde-
pendent of K.

Unfortunately, so far no scheme exactly satisfying all three conditions has
been devised.

In spite of this, diverse approaches®.57.66.9% to decoding have met with
significant success and can provide workable engineering solutions to
practical communication problems. We shall focus in particular on one
approach, called sequential decoding, which evidences operating char-
acteristics that in some regards approximate the ideal.

Sequential deceding procedures are applicable to a subclass of parity-
check codes called convolttional codes and to a broad class of channels.
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It is easiest, however, to convey the central ideas and methodology by
concentrating attention on the binary symmetric channel (BSC).

The Binary Symmetric Channel

The BSC has already been encountered in connection with Fig. 6.20;
it is obtained from the additive white Gaussian noise channel by restricting
the transmitted signal vectors {s;} to lie on vertices of a hypercube and

symmetrically quantizing the components

i-p of the relevant received vector into two

levels. Itisconventional to denote both the
P input and the output alphabets of the re-

p sulting discrete channel by the symbols

1 {0, 1}. With this notation, the channel

! 1-» transition diagram of the BSC is that of
Fig. 6.27,in which p denotes the probability
that any particular component of the trans-
mitted vector will be received incorrectly.

We may think of communicating over the BSC by feeding the vector
y (with components that are 0, 1) directly from the output of a parity-check
coder into the channel, as shown in Fig. 6.28. The channel output vector
r’ is fed in turn directly into the decoding computer. The effects of the

Figure 6.27 Binary symimetric
channek. .

X - @
Ex Par::tgd%r:e‘:k 4 BSC Decoder  fer———

Figure 6.28 Communication over a BSC,

transmitter modulator, the Gaussian channel noise, and the receiver
quantizer are all coalesced into the BSC transition probability parameter p.

When one of M equally likely messages is communicated over the_ BSC
by means of a set of N-component binary vectors {y,}, the optimum
receiver compares the N-component received vector r’ with fbach of the
{y;} and determines for which 7 the probability Plrjy.is maximum. The
probability that a transition occurs with any single use of the BSCis p and
successive uses of the channel are statistically independent. Therefore,
whenever 1 and y; differ in d; coordinates,

Plr' | y;] = pg™ "

~a"(B)% a21-p (675)
q

The quantity d; is calied the Hamming® distance between 1’ and y,.
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The right-hand side of Eq. 6.75 is 2 monotonically decreasing function
of d; for p < }. Accordingly, the optimum BSC decoder may determine
71 by computing the set of Hamming distances {¢,}, i = 0,1, ..., M — 1,
and setting # = m, whenever d,, is the smallest member of the set.

Since the vector ' @ y; contains a “1” only in coordinates in which y;
differs from r’, the Hamming distance d; is tonveniently obtained by form-
ing r’ @y, and counting the resulting number of P’s, By convention, the
number of 1’s in any binary vector a is called its weight, denoted wia].
With this notation,

d; 2 wir @yl (6.76)

Insight into the problem of communicating over a BSC is gained by
formulating the decision problem in geometrical terms analogous to those
with which we are already familiar. We begin by reviewing the additive
white Gaussian noise channel with binary transmission and unguantized
reception. In this case the modulator in Fig, 6.1 is capable of generating
any one of the 2¥ hypercube vertices of an N-dimensional signal space.
For rates Ry = K/N < 1, the coder specifies a subset of 2% of these ver-
tices as the signal set {s;}, i = 0, 1,...,2¥ — 1. When the input messages
are equally likely, the optimum unquantized receiver sets Mt = m, if the
received vector r lies closer in Euclidean distance to s, than to any other
signal vector; that is, if |r — s;| is minimum.

When guantization is imposed on the matched filter outputs, the decoder
must make the decision # on the basis of the quantized output ', without
recourse to r itself. We interpret this decision geometrically by first
observing that the symmetric binary quantization of r corresponds to a
mapping of r into whichever hypercube vertex, say v, is closest to r. For
Ry = Kf{N =1 and equally likely messages, the vertex v would itself
correspond to the most probable transmission {we first observed that
such dimension-by-dimension decisions were optimum for Ry=1 in
Section 4.5, Eq. 4.90). For Ry < 1, however, the vertex v may not be a
signal vector; when N is large, the fraction 2-¥(1—En} of vertices that
are signal vectors is very small. The task of the decoder is to map v onto
one of the signal vectors {s;}. If v differs from a vector {s;} in A, co-
ordinates, then

v — s;| = 2h; VE, (6.77)
where Ey is the energy per component. .
In BSC notation (with vector components 0, 1 rather than -[-\/EN,

— E,), the vertex v corresponds to the BSC output r’, the signal s, to the
BSC input y,, and the number of coordinate differences /; to the Hamming
distance d;. In accordance with Eq. 6.73, the optimum decoder minimizes
d;, hence [v — s,/. Symmetric binary quantization followed by optimum
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decoding thus corresponds to the two-step procedure of first minimizing
[t — ¥| and then minimizing [v — s;|. That the two-step decision may
not be optimum over-all is illustrated by Fig. 6.29, in which a vector r is
mapped onto vg by the quantizer and thence onto §; by the optimum
quantized decoder, even though |r — s;| > [r — Sql-

2% points

V3 ¥5

SI/

-~

¥s5 P

|
g

|

|

vy

¥3 V7

Figure 6.29 Received vector r for  Figure 6.30 An abstract representation of the
which @ = 2 quantization followed  received signal space for the BSC. Each of the
by optimum binary decoding does 2¥ points represents a distinct N-component
not select signal with minimum  binary vector. -The circled points correspond
Euclidean distance. to signal vectors.

Of course, a binary symmetric channel may also be derived from
quantization of channels that are not Gaussian andis a valid and interesting
mathematical abstraction in its own right. It is therefore insiructive to
introduce a signal space formulation for the BSC that is not tied to
Euclidean hypercube geometry. In particular, we can view the set of all
possible (N-component) received vectors {r'} with component values O or 1
as the 2 points of a discrete signal space (see Fig. 6.30). The M vectors
{v.} define a subset of these points and form a signal constellation with
intersignal Hamming distances {d;} given by

dp 2wy, @yvl;s 0<ik<M—1 (6.78)

The effect of transmitting a signal vector y over a BSC may be described
in terms of a random noise vector, n = {ny, fiy, . . . , 1), defined by

n=r@y.

From the definition, any component #; of n is 1 if a transmission error
occurs on the jth use of the channel and 0 otherwise. If m = nr, we have

r=ndy, ' (6.792)
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and
d, = wlln Dy Dyl {6.79b)

A complete analogy exists between the BSC and the white Gaussian
noise decision problems. In both cases we have a constellation of signal
vectors and an additive noise vector. The primary distinction is that with
the BSC addition is modulo-2 and distance is measured in terms of weight
rather than length. The utility of the analogy rests on the fact that in both
cases “probability’” is monotonically related to ““distance.” For example,

Received signal
space

Figure 6.31 Decision regions {/;} for a BSC communication systern.

the optimum BSC receiver again partitions the received signal space into
M disjoint decision regions {I;}, as shown in Fig. 6.31. When every
message is equally likely, each region [, k =0, 1,..., M — 1, contains
all points in the received signal space that lie closer in Hamming distance -
to ¥, than to any other vector in the signal set {y,}.

Convolutional Encoders

Convolutional codes for use over a BSC may be generated by encoding
devices, like that diagrammed in Fig. 6.32, which are somewhat simpler
than block coders. Just as in the block coder of Fig. 6.6, we have a K-bit
z-register. But there is no y-register, and instead of N modulo-2 adders
we now have only v of them, where v is typically quite small.

The connection diagram of the encoder is specified by a set of co-
efficients {g,;}, /=1,2,..., K and j=1,2,..., v. As with block
coders, g,; = 1 means that the /th stage of the z-register is connected to
the jth adder, whereas g,; = 0 means that it is not. We again find it
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Stage 1\ [Stage 2 / Stage K
X —t
—@-—r N | x-register
1 1 1

Adder 1

Modulo-2 Adders

. :
Commutator
Figure 6.32 Binary convolutional encoder. The a-tegister is a K-stage shift register.

convenient to write the set of connections to the /th »-register stage as a
vector, say g;:

gzé(gn»glza---,gm); I=12,...,K. (6.80)
As an example, for the particular K = 4, v =3 encoder of Fig. 6.33,
gl = (1> 1: 1)
g =(0, 1, 0)
g3 = (07 ]-: 1)
g, =(0, 1, 1.

A convolutional encoder operates as follows: assume that we wish to
communicate an L-bit message vector
X = (331, Lyy a0 vy I"U_L.)s (681)

¥

Figure 6.33 - A particular K = 4, v = 3 convolutional encoder.
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in which L may be greater than K. First, the contents of all K stages of
the x-register are set equal to zero. Wext, the first digit, »;, of x is shifted
into stage 1 of the w-register. The v moduio-2 adders are then sampled one
after the other by the commutator shown in Fig. 6.32 and presented to
the input of the BSC for transmission. When the vth-adder output has
been sampled and transmitted, the second message digit, x,, is shifted into
stage 1 of the x-register, which causes x, to shift into stage 2. Each of the
v modulo-2 adder outputs is again sampled and transmitted. This pro-
cedure continues until the last component, %, of x has been shifted into
stage 1 of the z-register. Then, with each adder output still being sampled
and transmitted after each shift, X 0’s are fed in turn into the z-register,
thereby returning it to its initial condition. During each shift the digit
forced out of the Kth stage of the z-register is discarded.}

The output sequence produced by an Z-component input vector is

(L. 4+ K)o digits long. We denote this output sequence by a vector y.

As an example of the convolutional encoding procedure, reconsider the
(K = 4, v = 3) coder of Fig. 6.33. It may be verified directly that if the
message input is the 3-bit sequence

x=(1,0 1,1,0),
the encoder output sequence is

vy = (111, 010, 100, 110, 001, 000, 011, 000, 000).

(For clarity, commas have been used to indicate the shifting of the
w-register and deleted elsewhere.)

In application, one is usually concerned with a message input vector x
that is much longer than the x-register, thatis, L 3> K. In such a case the
tail of zeros added to x is much shorter than x itself and the ratio of the
number of message digits to the number of transmitted digits is approxi-
mately 1/o. We therefore define the rate Ry of a binary convolutional code
of the type describedy as

Ry = ;l—(bits per transmitted symbel). (6.82)
v

Each message input digit remains within the z-register during K
samplings of the modulo-2 adders, hence affects Kv transmitted digits.

+ It would suffice to intreduce only (K — 1) 0's into the w-register following the last
digit of a message, since this last digit is shifted out of the register when the first digit
of a new message is shifted in.

1 It is also possible™ to generate convolutional codes of rate Ry = wjv, where u is

any positive integer less than o,
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We hereaflter refer to K as the constraint span (measured in message input
bits) of a convolutional code. :

Terminal nodes

o 0 xq =0000
o L1 o x; =0001
. —0 o xp =0010
o L1 o xs =001t
. — 0 5 x, =0100
) L1 o x5 =010
0 . xg =0110

0 1
T L1 5 x7 =0111
l_‘-- o — 9 o xg =1000
! L1 o xg =1001
) .
1 —--L—o x19= 1010
L1 o xu=101

1

. — 0 o xp=1100
1 ———1—0 K13 = 1101
. 0 5 xy=1110
L L o oxg=1111

Figure 6.34 A set of 2% = 16 input vectors {x.} diagrammed on an input tree.

Tree structure. We now consider in more detail how a convolutional
coder constructs the output codeword y from the input

X = (xla Loy o0 n st)'

Since the 2-register is initially set to zero, the first v digits f’f ¥, obtained by
shifting the first component of x into stage 1 and sampling the v adders,
depend only on «,. Similarly, the second o digiFs depe.nd only upon alnd
%, In general, the v digits of y obtained immediately after shifting
component =z, into the z-register depend only on =, and the (K—1)
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components of x preceding x;,. This implies that if two input vectors agree
in their first (A — 1) coordinates the corresponding output vectors agree
in their first {(# — 1)» coordinates.

The resulting structure of the set of all output code words may be
placed in evidence by means of a code tree, obtained as follows: first, as
shown in Fig. 6.34, the set of all 2% L-component input vectors {x,} is
diagrammed on an input tree by adopting the convention that the upper
branch diverging from any node of the tree corresponds to shifting a 0 into
the x-register and the lower branch to shifting in a 1. Thus each input
vector X, designates a distinct path all the way through the input tree to
one of 2% terminal nodes. The association of the {x,} and the paths is
indicated in the figure.

Next consider any intermediate node of the input tree: the path leading
up to this node designates the contents of the z-register just before a new
input digit is shifted in, and the contents of the z-register immediately
thereafter determines the next v digits of y. Thus we may associate with
the upper branch stemming from each intermediate node of the input tree
the v output digits that are generatéd when this new input digit is a2 0 and
with the lower branch the v output digits that are generated when the new
input digit is a 1. The code tree is obtained by writing along each branch
of the input tree the v digits of y associated therewith. For example, the
code tree generated by the particular K = 4, v = 3 convolutional encoder
of Fig. 6.33 is illustrated for input sequences of length I. = 5 in Fig. 6.35.

‘We can interpret the message input x as a set of L successive instructions
that tefl the encoder which path of the code tree to follow. The trans-

mitted vector y is the sequence of (L 4 K)v binary digits that lies along the
designated path.

Linearity. Additional insight into the structure of the code tree may
be gained by exploiting the fact that the convolutional encoder of Fig. 6.32
is a parity-check device; the output of each modulo-2 adder at any instant
is 0 if the number of 1’s stored in the stages of the x-register to which the
adder is connected is even and 1 if the number is odd. Just as for block
parity-check coders, a convolutional coder is /inear in the sense that when
x = (&, &3, . . ., ®z) Is the coder input the output y may be written

BT RO ACERRICES (6.83)
Equation 6.83 is similar in form to the block parity-check code refation-
ship of Eq. 6.28,
y= w1_f1 @® wfy, @ - - - @ wxly,
in which each £, A = 1,2,..., K, is an N-component vector describing
the connections between the N modulo-2 adders and the Ath stage of the
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Figure 6.35 Code tree for encoder of Figure 6.33 K =4,L=35v=3

K-bit x-register shown in Fig. 6.6. But for convolutional codes the inter-
pretation of the {£,} is different; they are nof connection vectors. ‘
The identity of the convolutional {f,} is readily established by noling
in Eq. 6.83 that when the L-bit input vector x has z, = 1 and all otilier
components equal to zero the output vectory is f,. In particular, by letting

X=(1,0!O"":0)
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and recalling from Eq. 6.80 that the vector g, designates which of the
v modulo-2 adders are connected to the /ih stage of the convolutional
x-register, we identify f;, from Fig. 6.32 as the resulting output

y=f=(g.8 --..8.0.0,...,0) (6.84a)
A
Los
Here we have used the symbol 0 to denote the r-component vector, each

component of which is 0. The commas again denote the points at which
the z-register shifts right.

-: o~ b <+ o @ r~ o =Y
=g = = = = (=4 c c
E E
S 8 8 3 S 3 8 S S
f]_:
gL | %2 | B | B4 | | i | |
fa:
| &1 ; 8 | B3 | & i | |
fgi .
| | B | B2 | B3 | B4 | | |
FoY
| | | B1 | B2 | By | B4 | |
f5:
| | | | BL | Bz | B3 | %
fs'.
| | | | | B | 82 | & | B4

Aa—l v digits L—

Figure 6.36 Diagram of the {f,} for a convolutional coder with K = 4, L = 6. Empty
slots contain » zeros. (A tenth column of all zeros is omitted.)

It is clear from Fig. 6.32 and the description of the convolutional
encoding operation that the output y when only the second digit of x is
1 is a delayed replica of the output when only #; = 1. Thus

x=4(0,1,0,...,0)
implies
y=6(=(02,8 . ...8c0,...,0) (6.84b)
\—_._w__./
(L-1)0s .
If we delete explicit mention of the vectors {0}, the {f,} may be described
pictorially as shown in Fig. 6.36 for the case K = 4, L = 6, We note from

observation of the Ath column of the figure that the ¢ digits of y produced
when =, is first shifted into the z-register are

T Day 12 @ O o g18rs (6.85)
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which is an expression with indices of convolutional form. (We define
x_,=0foral/>0)
It is convenient to refer to the Kv-component vector

g2 (g 8. -»Ex) (6.86)

as the generator of the convolutional code; clearly, g completely specifies
the coder connections. The nonzero segments of the {f,} are just succes-
sive o-digit translates of g.

FError Probability

For any particular choice of g, the output of a convolutional coder is the
vector y specified in terms of the {f,} and the input x by Eq. 6.83. Thus the
set of 2% possible outputs {y,} can be generated not only in the way that we
have described but also (in accordance with Eq. 6.28) by a block parity-
check encoder that accepts input vectors of length L and generates output
vectors of length (K + L)v. The convolutional {f,} of Fig. 6.36 would be
the connection vectors of this equivalent block coder.

~ Although convolutional codes for input vectors of fixed length L may

be thought of as a special form of L-bit block codes, it does not follow that
convolutional codes exist for which the attainable error probability obeys
the ensemble block-code bound of Eq. 6.62,

PTE] < 2~ Mo,

with N = (L + K)». The proof that this bound is valid for block parity-
check codes depends strongly on freedom to choose the block-coder
connection vectors arbitrarily, a freedom of choice that is not available
when the {f,} are constrained to have convolutional form: with uncon-
strained block codes, each component of the input vector x can affect
any component of the entire output vector y, whereas with convolutional
codes each component of x can affect only Kv components of y.

Because of the constraints on the {f,}, we do not anticipate that the
error probability with convolutional codes can be forced toward zero with
an exponent that is proportional to (L + K). Indeed, intuition correctly
informs us that the probability of at least one error in a block of L input
digits must tend toward 1, not 0, if L is increased while K is held fixed.
On the other hand, it is reasonable to anticipate a bound on error proba-
bility that decreases exponentially with an exponent that is linear in the
code constraint span K.

With convolutional codes, it is difficult (perhaps impossible) to employ
random-coding arguments directly to analyze an optimum decoder; this
is because of the way in which successive digits of x affect overlapping
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segments of y. Recognizing this, we consider a suboptimum decoder
instead. For this decoder, we shall derive an ensemble error probability
bound that does decrease exponentially with X, The suboptimum decoding
procedure provides preliminary insight into sequential decoding.

Suboptimum decoding. For a convolutional coder used to communi-
cate one of 2% binary input vectors {x;} over a BSC, the suboptimum
decoding procedure with which we are concerned is described as follows,
The decoder decides on each of the L componenis «,, &, . .., zy, of the
coder input vector in turn, one after the other, to produce a sequence of
decisions &, £,, ..., #;. Each decision &, k=1, 2,..., L, 1§ based
exclusively on (a) the previous decisions #,, £, ...,®,_; and (b) the
Kv-digit span of the received vector that is directly affected by z,, We
refer to this span of received digits as the (Kv-component) vector ,r, and
to the intermediate code-tree node specified by £, #,,..., %, as
the Ath starting node. Each w, is decoded in turn by determining which
one of the 2E K-branch codeword segments that diverge from the hth
starting node is the most probable cause of ,r. In view of Eq. 6.75, the
decoder calculates the Hamming distance between each such Ke-digit code-
word segment and ,r. If the codeword segment with the smallest distance
leaves the Ath starting node along the upper branch, the decoder sets
%, = 0; otherwise it sets &, = 1. A typical decoder progression is
itlustrated in Fig. 6.37 for a convolutional code with X = 3.

We first consider any particular convolutional code and devote the next
few subsections to bounding the probability, P[€], that at least one error
will be made by the suboptimum decoder in the decision sequence
#1, &5, ..., #7. Denote by P[§,] the conditional probability of an error
on the hth decision, given that the Ath starting node is correct. We bound
the (unconditioned) probability P[8] by deriving the sequence of equations

I P51 < 3 Pl
k=1

1. ‘ P[&,] = Pl&,],

Il P[&] = P[&, | xq),

in which the condition on the right-hand side of III indicates that the
all-zero message sequence is transmitted, It follows immediately that

P[] < L P&, | %,]-

Finally, we average both sides of this equation over an ensemble of
communication systems, each of which uses a different convolutional code,
to establish the bound

g P[E] < L2~ N[R/~RNI,
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Figure 6.37 Progression of suboptimum decoder for K = 3; tl-Ee segments of the
received vector 1/ for determining &,, &, and &; are T, I, and gr. (D is the starting node,
and the box labeled I encloses the pertinent codeword segments, say {,¥:}, for deter-
mining &. H#& =1,Qis the starting node, and the box labeled IT encloses the Perti-
nent codeword segments, say {s¥:}, for determining &, If £y =1and &, = 0, @ is the
starting node, and the box labeled III encloses the pertinent codeword segments, say
{5¥:}, for determining &s.
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Equation IV is a bound on the mean probability that one or more
errors will be made in decoding an L-bit message input sequence with
convolutional coding, a BSC, and the suboptimum decoder that we have
described. The code consiraint length is K= NR = Njv, and R, is
the BSC error exponent of Eq. 6.70,

Ry =1 —log, [l + 2J/p(1 — p)l.

This performance is comparable to that achievable by block coding
with constraint fength K and optimum decoding, for which the union
bound on the probability of correctly decoding L/K successive blocks is

m < ﬁzw.\’[Ru'*RN]_ (6873)

The difference in the tightness of the two bounds is not exponentiaily
significant. This is evident when the convolutional bound, IV, is re-
written in the form '

el < L 2~ N[Ro'— Byl+log: K

B~ R

_ 2—1\’[139 —RN—{1/ ¥)loga(N/e)] . (687b)

=

As N gets large, (1/N) log, N approaches zero and the bounds of Eqs. 6.87a
and b are substantially equivalent.f

The proofs of Egs. I, I1, IIL, and LV that follow are somewhat detailed
and may be omitted on a first reading.
¥ Proof of I. To prove 1, assume initially that a magic genie directs
the decoder to the correct starting node for determining each €, A =
1,2,..., L. By definition, the probability that £, is then incorrect is
P[§,]. Employing the familiar union argument, we overbound the
probability of one or more errors in L successive decisions of the genie-

L
aided decoder by Y P[§,].
h=1

Next we observe that in the absence of decoding errors the starting node
for each £, is correctly determined by preceding decoder decisions. 1f no
errors are made with the genie, ne errors are made without him! Since
the converse is also true, the probability of at least one decoding error is
unaffected by the presence or absence of the genie and

L
PIE] < 3 Pl&]. : (6.88)

T It may be argued that convolutional codes should actually afford error performance
superior to that of block codes, but we do not know of any proof that this is so.
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Figure 6.38 Construction of codeword segments; K = 4. From Eq. 6.83,

y =xf Dzl ® - ®af,.
(a) In determining #, we consider only codeword segments having the form
=6 @ofy ® - @zl
= first Kv digits of y.
The {f,'} are the portions of the {fi} enclosed within the box labeled 1. (b) Codeword

segments pertinent to determining #; depend only on the portions of the {f,} enclosed
in boxes I1I and I1I'. The portions of the {fu} determining »a are enclosed in box TI1".

u# Proof of II. Proof that the probability of decoding =z, incorrectly
is the same for all 4, given in each case the correct starting node, hinges on
the structure of the code tree. Denote the Ku-digit codeword segments
that enter into the decision £, by the special symbols {;y;}, i =0, 1,...,
2K — 1. The particular codeword segment .y, is transmitted when
(s, %y, . . . , ) is the binary representation of the number k: we write

Y = e (@, @, 0, ) =K (6.89)
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The construction of the Kv-digit transmitted segment ;y may be identi-
fied with the help of Fig. 6.38a as

W =nf @k @ D rgly (6.90a)
in which we have introduced the definition .

£, 2 the fist Ko digits of f,; A =1,2,...,K.  (6.90b)

Equation 6.90a follows from Eq. 6.83 by truncating both sides, hence each
f,. after Kv digits. We observe that f,’ = g, where g is the generator
sequence of the convolutional coder.

In similar fashion we next denote the set of Kv-digit codeword segments
that enter into the determination of #,—given the correct starting node—
by {iy) i=0,1,..., 25 — 1. As before, the particular segment .y, is
transmitted when (&, ®,,, ..., %, x—1) 15 the binary representation of
the number k:

2Y = aYe e (B Tugts + + -5 Tac1) = K. (6.91)
It is clear from Fig. 6.38b that for any 4
WY = 1Y D,a; i=0,1,...,2F —1, (6.92)

in which ,a is a binary vector, independent of /, which is determined by the
input bits that precede =, into the encoder. Knowledge of the hth starting
node implies knowledge of a.

Now consider the decision &, given that the correct starting node is
known. When the kth segment is transmitted, the suboptimum receiver
compares the received segment

WX = ¥ B0
=y, Pa@D;n (6.93a)
with each of the possible transmitted segments
2¥: = 1Y D a; i=0,1,...,28 — 1. (6.93b)

Here, ,n denotes the Kv channel noise digits that are present in ,r. But
the decision £, is unaktered if the known vector ,a is added modulo-2 (a
reversible operation!) both to ,r and to each of the {,y;}. Let this be done.
It is clear from Egs. 6.93a and b that the decision #,, now based on com-
paring (,¥, @ ,n) with each of the {;¥,}, has the same error probability as
the decision #, when ,y, is transmiited. It is only necessary to use the
fact that the channel noise is stationary, so that

Pln = a} = Pjin = «]; for all Ky-digit binary vectors &. (6.94)
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We therefore have

P[&, | (Zps Tagrs - - - Targ1) = K]
=P8, | (@), %oy ..., 2) =K];  allh k. (6.95)

If all encoder input vectors are equally likely, then

Pl(@p, @iy - -+ » Fpag—a) = K]
= P{(x_‘l: Tyy a0 ey xK) = k}s all k’ (696)

and both sides of Eq. 6.95 may be averaged to yield
P[§,] = P&,], (6.97)
which is Eq. II. In the next subsection we show that
P[&, | (%, ¥y, . .., 2x) = K]

is independent of k. It follows that both sides of Eq. 6.95 are indeper}dent
of &, and Eq. 6.97 remains valid even when the {x,} are not equally likely.
The proof of Eq. 6.97 depends heavily on the fact that the correct start-
ing node for the decision £,, hence ,a, is known. If the Ath starting node is
incorrect, ,a cannot be correctly accounted for, and the probability that
&, will be incorrect becomes large. We discuss this property at the con-
clusion of the chapter. . -
«® Proof of III. We now show that for our suboptimum receiver,

P[8,] = P[&, | x,] = P[] x,];  all k. (6.98)

Proof depends on a closure property of the truncated codeword segments
{1¥:}. As with block parity-check codes, the linearity of Eq. 6.90a

W=t @ady @ Dagfy

ensures that the modulo-2 sum of any two vectors in {;y,} is also in {;y,}.
For convelutional codes we also have the following stronger closure
property:

Let S, denote the subset of all 257 vectors in {,y,} consistent with

ay =0, and let 8, denote the subset consistent with x, = 1. Thus 5,

encompasses all 1y, that contain £\, and S, encompasses ali 1y, that do not.
Since fy' @ f," = 0, we have

¥, in Sq and 1y, in S,

] = (1¥x @ 1¥,) i1 So, (6.99a)
Vi i Sy and [y, in Sy

whereas

. in Sy and 1y, in 8, o
R A ] = (¥ @ 1) in S). (6.99b)
Wi in 8o and \y; in S,
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Furthermore, if the vector 1y, is in Sy, then (1¥x @ u) ranges through every
vector in Sy as W ranges through every vector in Sy. On the other hand, if

1¥e 8 In Sy, then {1y, @ ¥) ranges through every vector in S, as v ranges
through every vector in S,.

The suboptimum decoder determines which vector in {1¥:} is closest in
Hamming distance to ;r and sets £, = 0 if this vector is in Spand £, =1
if it is in S;. Thus, if the signal y, actually transmitted is in S, the
decision #, is correct unless, Jor some vector v in 5,

wl(ir @ Ye) B v] < wi(in @ ,y) @ uj; all m in §,.

Here, as in Eq. 6.76, w[ ] denotes Hamming distance. But (v. ®v)is
in 8y and (1y; @ u) ranges through S,. Thus an equivalent, but simpler,
statement is that &, is correct when any vector in S, is transmitted unless,
for some vector vin S,

whn @ v] < win -+ u; all win §,. {6.100)

On the other hand, when the transmitted signal ;y, is in 5}, the decision
%, is correct unless, Jfor some vector u in So

wihn @ 17) Dul < win @ y) D v);  all vin S,

But now (1 @ u) is in 5, whereas (,y, @ v) ranges through §,. Thus
Eq. 6.100 again describes the condition for error. The probability that
10 causes Eq. 6.100 to be satisfied, hence £, to be in error, is independent of
k, which proves Iil.
«¥ Proof of IV. The derivations of the three preceding subsections
establish the bound

P[8] < LP[§, | x,] (6.101)

on the over-all error probability for any particular convolutional encoder
and our suboptimum decoder. The remaining task is to determine the
attainable exponential behavior of P[&, | x,].

The number of codeword segments {,y,} entering into the decision &,
is 2% which is still enormous when X is large,  As usual, we evade the
problem of calculating the error probability for any particular convo-
lutional code by resorting to a random-coding argument, We consider an
ensemble of communication systems, each of which uses. a different
convolutional code, and caleulate a bound on the mean value of P[E; | x,]
over the ensemble. Most systems in the ensemble must afford a PI&, | xq]
not substantially larger than the mean,

We have already noted that a convolutional coder is specified by its

generator sequence g. In calculating P[§, | x,], it is convenient to consider
the ensemble in which g is equally likely to be any one of the 2% possible
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binary sequences of length N 2 Kp. In other words, over the ensemble of
communication systems g is EL.

The first step in bounding P&, | x,] is to show that over the ensemble of
generator sequences any codeword in subset S is also FL. Proofrests on

the observation that when the generator—defined in Eq. 6.86 as

A
g = (g 8-> 8x)

—is EL, the v-component connection vectors {g,} (defined in Eq. 6.80) are
necessarily EL and statistically independent. But any codeword in .53, say
v, corresponds to a coder input vector for which %, = 1. In accordance
with Eq. 6.90a and Fig. 6.36, v may therefore be written in the form

V=11 @by @ B gl

=(g 8, .8 (6.102)
in which
;A
g1 =&
, A
2 = g, & (2:8)
g £ g; D (228 B %381)

g 2 g ®(0gr @ O axh).

Each g, is the modulo-2 sum of the EL vector g, and another vector (in
parentheses) of which it is statistically independent. Accordingly, the
fg/} also are both EL and statistically independent, which implies that
any codeword vin 5y is EL.

When X, is the message, so that ;¥ = ,¥,, & correct decision #; is made
by each system in the ensemble for which at least one codeword in 5, is a
more probable cause of ;v than is any codeword in §. In particular, an
error does not occur in systems such that

whr @ v] > wir & 1Yol all vin S;. (6.103)

We overbound P[&; [ x,] for each system in the ensemble, hence over-
bound P[&, | X}, by neglecting the fact that =, may still be decoded cor-
rectly (because of codewords in S, other than ;¥,) even if Eq. 6.103 is not

satisfied. Thus P&, | %,] is bounded by the probability that at least one
of the 25~1 EL vectors in S, is a more probable cause of ,r than is the

transmitted segment ;¥,.

SEQUENTIAL DECODING 425

The remaining step is to recognize that this last probability is closely
related to our mean probability of error bound on P[& | mg]| with a BSC
and a Kv-digit block parity-check code having 2% equally likely messages.
The only mathematical distinction is that with a convolutionai code there
are only 2E-1 EJ, vectors that can cause an error, whereas in the block-
code case there are 28 — 1. Without further ado, we have

P[&; [ ol < 257 ByfE] < 252 ¥R

= 2—-.\’[Ro’*RN], (6.104&)
in which
NZ2Kv (6.104b)
and, from Eq. 6.70,
Ry =1 — log, 1 + 2v/p(1 — p)]. (6.104c)

This completes the proof IV,

6.4 SEQUENTIAL DECODING

Although in principle both block and convolutional codes afford a
P[&] that decreases exponentially with K, we have not yet addressed the
crucial problem of actually building decoders that achieve such error
performance. Specifically, the suboptimum decoder considered thus far
is not realizable for large K because its procedure for decoding each

successive input bit =, #=1,2,..., L, involves comparison of the -

received message span ,r with 2% K.branch codeword segments. The
adoption of a “sequential” procedure for determining each &, evades this
exponential blow-up and permits us to specify a decoder that achieves an
exponentially small error probability while remaining realizable even
when K is large.

In this section we introduce sequential decoding by a heuristic discussion
of its application to the binary symmetric channel. We then detail a
specific decoding algorithm due to Fano.?® The algorithm is extended to
more general channels and analyzed mathematically in Appendix .6A.
Engineering applications are discussed in Section 6.5.

In its simplest form a sequential decoder proceeds in much the same
way as our suboptimum decoder. Both decide on each successive message
input bit in turn, one after the other, as indicated in Fig. 6.37. For both
the problem of decoding =, is equivalent to the problem of decoding ;,
provided that the Ath starting node is correct. The two decoders differ
distinctly, however, in how the decisions {#,} are determined.
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Tree Searching

We have already remarked that the convolutional coder input x may
be regarded as a set of instructions that direct the transmitter along some
path through the code tree. Let ;y represent the first N = Ko digits
encountered along that path and let ;n denote the first N noise digits. If
we assume initially that the BSC is noiseless, so that ;n =0, then ,r =
.y @ ,n=,y. In this trivial case a decoder provided with a replica of
the encoder can easily trace out the first K branches of the path designated
by x. The decoder starts at the first node of the code tree, generates both
branches diverging therefrom, and follows the one that agrees with the
first v digits of ;r. Having thus been directed to a particular second-level
node of the code tree, the decoder again generates both branches diverging
therefrom and follows whichever branch agrees with the second v digits
of ;¥ to a third-level node. Continuing in this way, the decoder rapidly
determines the first K digits of x. The procedure works without difficulty
as long as the two branches diverging from any node of the code tree
differ by at least one digit. It is clear from Fig. 6.32 that such a difference
may be guaranteed by connecting the first a-register stage to the first
modulo-2 adder, that is, by making g,; = 1.

When the BSC is noisy, ;n is not in general 0 and the procedure just
described is not sufficient even to decode the first message digit, z,. But
a simple modification is appealing and may be used to decode »; with
high reliability. If neither branch stemming from an intermediate node
coincides with the corresponding v digits of ,r, the decoder first follows
whichever branch agrees best. Clearly, when more than v/2 transitions
occur in the transmission of a branch, such a decoder initially proceeds
to an incorrect node. Having once made this mistake, however, n
subsequent branch comparisons the decoder is unlikely to find any path
stemming from this incorrect node which agrees well with the remaining
digits of ;r. For example, with the truncated K =4, v = 5 code tree of
Fig. 6.39, assume

x=(1,1,0,1) (6.1052)

m = (10010, 00111, 00000, 00100), (6.105b)
so that the transmitted vector is

¥ = (11111, 10101, 01101, 1101 1) (6.106)
and '

;1 = (01101, 10010, 01101, 11111 (6.107)

In this case, as shown in the figure, the decoder follows the correct path
to node {a), thence the incorrect path to node (b). But none of the paths
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Terminal nodes

&cf truncated code
00000
11111
00000
01010
11113
00000
00111 i
0101
11000
11i11
Starting 01101
l-node for 10101
_z decnding 10010
x1
00011

00111 1
1£100

@ 01001

b
11000
10110

00100

11011
[
01110

10001

= 01101 , 10010 , 01101 , 11111

=0 =1 =2 {=3 I=4 Nade
" depth, [

Figure 6:39 The effect of an incorrect turn in penetrating the truncated K-branch code
tree pertinent to decoding =;. For the case shown K = 4, » = 5; 2%~ paths to terminal
nodes diverge from any intermediate node of depth /.

extending beyond node (&) agrees with ;¥ in nearly so many coordinates
as does the correct path ;y. When v is properly chosen with regard to the
BSC transition probability p, the effect of a wrong turn is likely to be
readily noticeable as the decoder attempts to penetrate deeper into the
code tree.

The idea of sequential decoding is to program the decoder to act much
as a driver who occasionally makes a wrong choice at a fork in the road,
but quickly discovers his error, goes back, and tries the other. The
decoder’s objective is to construct a path X branches long extending all
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the way through the truncated code in Fig. 6.39 to one of its 2% terminal
nodes. As soon as such a path js found £, is determined in accord with
the first branch of that path. The observed N-digit span of the received
sequence is then shifted » digits to the right, as indicated in Fig. 6.37, and
the entire decoding procedure is reiterated to determine £;. An error in
decoding x, results if and only if a wrong turn at the first node is not
recognized before the decoder penetrates K branches beyond it.

///
//

-~
///LSIQpe =1

E(l)

Slope = p’v

" ~"—i-SIope =pu
" |

¢

Figure 6.40 A convenient discard criterion.

We now describe how a sequential decoder recognizes wrong turns in
decoding z,. Let us assume that the decoder has penetrated / branches
into the code tree, 0 </ < K. Let &/) denote the total number of dif-
ferences (the Hamming distance) observed by the decoder between the
(tentative) path it is following, say ¥*({), and the corresponding /-branch
segment of the received sequence, say r(/):

A £ wiy*() @ r(h). (6.108)

As the sequential decoder penetrates branch by branch deeper into the code
tree along the tentative path, it maintains a running count of d(f). After each
successive penetration the decoder compares d({) against a discard criterion
Sunction, k(). If d(I) ever exceeds k(J), the tentative path is discarded as
too improbable. The decoder then backs up to the nearest unexplored
branch for which d() < k(I) and again starts moving forward as far as
the discard criterion function k(/) permits. The decoder keeps track of
the branches it has explored and thereby avoids needless retracing of any
branch.

From the point of view of decoder implementation, a convenient

discard criterion k(f} is a straight line, as shown in Fig. 6.40, The law of
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large numbers states that the fraction of digit transitions introduced by
the BSC will approximate the channel transition probability p when / is
large. When y*({} is correct, we therefore anticipate that d(!) will oscillate
around a straight line of slope pv. On the other hand, when y*(J) departs
from the starting node (/ = 0) along the incorrect branch, we anticipate that
d({f} will oscillate aboutt a line of slope $v. We choose k(J) to be a straight
line of intermediate slope p'v, p < p’ < &. Since it is not unlikely that a
burst of noise will cause many of the initial digits of ,r to be in error, k(f)
is taken to have a nonzero intercept at / = 0.

Basic Concepts

The use of suitable discard criteria in sequential decoding makes it
possible for the decoder to recognize quickly that it is following an

oe—Slope=1v
/
v
/// gl ,
/
[ S
-~
7 /
yd / 4 H)
s
A d(l) along
- correct path

I !
K

I=0C
Figure 6.41 Typical plots of 4(/) along the correct and two incorrect paths.

incorrect path. For example, in Fig. 6.41 we show two incorrect paths,
the first of which diverges from the correct path at the starting node and
the second at an intermediate node. Both cross k() soon thereafter.
The advantage from a computational point of view—and this constitutes
the first basic concept of sequential decoding—is that discarding a path
after 1 branches also effects the discard of the 25~ other paths in the
truncated code tree that diverge therefrom (see Fig. 6.39). The crucial
attribute of convolutional codes is that if wrong turns can be discovered

T The reason is that in good codes the Hamming distance between correct and typical
incorrect paths approximates one half the codeword length.
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quickly enough the saving in number of computatif)ns (measured in
terms of the number of branches explored) is exponential.

It is clear that the average number of computations is reduced by
making k(/) more stringent, that is, by choosing both _its slope'anfi th.e
intercept k(0) to be small. On the other hand, if the dlS-CB.I'd criterion is
too stringent, channel noise may cause every sequence in the code tree
(including the correct one) to cross k(f) at values of / less than K. In such
a case the decoder that we have described is unable to construct a path to
any terminal node of Fig. 6.39, hence is unable to decode z;.

ks (1)
Ra(l)
ka{l)

ka(i}

k(D)

Slope = p’v

A
A
A
A —TNl Slope = puv

=0
Figure 6.42 A set of equally spaced discard criteria, each with slope p‘v.

Fortunately, thereisa wa}) out of this dilemma; this way out consti‘tutes
the second basic concept of sequential decoding. Ifct us start with a
stringent criterion, such as the function ky(/) shown in Fig. 6.42. Most
often the correct path {or at least some sequence whose first branch is
correct) will be retained and 2, decoded with only a small amount of
computation. On those less frequent occasions when all codelz tree sequences
are discarded, a less stringent criterion, such as the function ky(!) in the
figure, is invoked. If, as might happen still less frequently, all sequences
are discarded with ky({), criterion ky(!) is invoked, and so forth. .

By successively relaxing the discard criteria some K—bra.n.ch path in
the code tree will eventually be retained; with high probability the. ﬁr_st
branch of this retained path will be correct. - Of course, the 1005{31‘ c?ltena
require more computation than k(/), but since the looser criteria are
used less frequently the increased computational load that they imply

|
i
H
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does not necessarily have a disastrous affect on the average computational
requirement, again measured in terms of the number of branches explored.

These two basic concepts—early discard of unlikely paths and ap-
plication of a sequence of criteria—underlie all sequential decoding
procedures. A decoding algorithm operating essentially as described
above, but modified to curtail vastly the number of computations by
exploiting dependencies between successive decisions &y, &5, . .., has been
proposed® and tested.®-5 Although the modifications are not susceptibie
to mathematical analysis, the experimental results (discussed in Section
6.5) demonstrate that the resulting algorithm is effective. A more sophis-
ticated algorithm, which incorporates the essence of these modifications
and extends them in an intuitively satisfying way, has been devised by
Fano.?® 'The Fano algorithm not only affords more flexible and efficient
implementation, but also permits extensive analysis (see Appendix 6A).
We consider this algorithm in detail.

The Fano Algorithm

In this discussion of the Fano algorithm we continue to restrict attention
to the BSC. An extension to more general channels is provided in
Appendix 6A. Explication of the algorithm is simplified by adoption of
the “tilted™ distance function

H) = d(ly — p'vi (6.109)
in lieu of the Hamming distance function, 4(/), of Eq. 6.108. The cor-
responding discard criteria, hereafter called thresholds, become horizontal
lines with spacing A, as shown in Fig. 6.43a. When ¥*(/) is the correct
path, #(/) usually approximates the negative quantity (p - p"Yol and tends
to decrease as / increases. When y*(/) is incorrect, (/) behaves typically as

# — p")vl and tends {o increase as / increases.

Before detailing the decoding algorithm, it is helpful to introduce
additional terminology. Given the received vector r, Egs. 6.108 and
6.109 specify a tilted distance #{/) for each of the 2! L-branch paths in the
codetree, /= 1,2,.... A node of the tree at depth /s assigned a r-vafue
equal to the #(/) of the path leading to that node: the node at the origin of
the tree is assigned #-value zero. The set of r-values implies a mapping of
the code tree into a received distance tree, as indicated in Fig. 6.435: the
nodes are connected together as in the code tree, but the ordinate of each
node is taken to be its t-value,

A node of the received distance tree is said to sarisfy all thresholds that
lie on or above it and to violate all thresholds that lie beneath it. The
tightest threshold satisfied by 2 node is the one that lies just on or above it.
Of the nodes diverging from any given node, the one with smallest t~value
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Figure 6.43a Thresholds (discard criteria) for use with the Fano algorithm, and
typical behavior of #() for correct and incorrect paths.
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Figure 6.43b Received distance tree. The node labeled 4 sazisfies thresholds 24, 3A_, iy
and violates thresholds A, 0, —A, . ... The tightest threshold satisfied by node 4 is 2A,
The best node diverging from4 is labeled 5. The worst node diverging from 4 is labeled 6.
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* s called the best and the one with largest t-value is called the worst. The

definitions are exemplified in the figure.
Sequential decoders consider one node of the received distance tree at a

time. We may visualize that this node is designated by 'a (movable)

search node pointer: the node being considered in Fig, 6.43% is the one
labeled 4. In addition, the Fano decoder maintains a running threshold,
denoted T and equal to kA, where k is a (variable) integer. We say that
the running threshold is tightened when k is assigned so that T is the
tightest threshold satisfied by the search node, that is, by the node then
being considered.

Given the received vector ', the Fano decoder searches for the correct
path by moving its secarch node pointer through the received distance
tree. The pointer can move forward or backward, but only to an adjacent
node—that is, only to a node connected to the existing search node by a
single branch. The pointer movement is controlled by the flow diagram
of Fig. 6.44. An essential feature of the algorithm is that the pointer is
never moved either forward or backward unless this can be accomplished
without violating the running threshold; the running threshold is raised
only when necessary to accommodate such a move.

The operation of the decoder is best explained by example. Consider
Fig. 6.45. The decoder starts its tree search at the initial node, labeled 0.
The initial value of the running threshold T is zero. In accordance with
Fig. 6.44 the decoder looks forward to the node labeled 1. Since the #-
value of this node does not viclate T, the search node peinter is then
moved forward to node 1. By this movement the decoder makes a ten-
tative decision, £;; the decision is O when the node labeled ! corresponds
to x; = 0 and 1 when this node corresponds to 2; = 1.

With the search node pointer on node 1, the running threshold 7 =0
is as tight as possible. The decoder therefore next looks ahead to node 2;
it moves the pointer to node 2 after noting that the running threshold is
not violated, thereby making a tentative decision #,. At node 2 the de-
coder is able to tighten the running threshold and sets 7= —A. This
procedure of looking, moving the pointer, and tightening T continues
until in. looking forward from node 4 to node 5 the decoder observes a
viclation of the running threshold T'= —2A. The decoder reacts by
looking back to node 3. Since the running threshold T'= —2A is not
violated by node 3, the pointer is moved back. The effect is to erase the
tentative decision #,. On the step forward to node 6 the complementary
choice of #, is made. The remainder of Fig. 6.45 is self-explanatory.
The search path y*(/) is specified at any instant by the tentative decisions
&, &, ..., 4, which together determine the position of the search node
pointer.
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Enough thought will make it clear that the flow diagram of Fig. 6.44
will direct a successful search through any tree and eventually trace out
the correct path so long as #(/) for the correct path ultimately decreases,
whereas t(f) for every incorrect path nltimately increases. In particular,

Running + Yes Running
threshold threshold
Loak forward : ;i
Start. pointer 1o best, o if violated Is painter Ho Luc;lr‘uﬁck violated
at or'gin; entering via [A], at origin? search node
TuANing next-best node
threshold
t0
2 Running Running
threshold threshold
safisfied satistied
Move pointer Move Inerease running
forward nainter thrashold by A
back
Ne Is peinter at Yes Did move
node for originate an
first time? & worst node?
Yes
Tighten Mo
unning
threshold m

Figure 6.44 Basic flow diagram for the Fano algorithm. In Appendix 6A we consider
general convolutional codes with # nodes diverging from each node of the code tree,
i > 2. (See Fig. 6A.1.) The flow diagram above is so worded that it pertains to these
general codes for which the entire corresponding set of ¥ nodes in the received distance
tree is considered to be ordered from besr to werst, according to increasing f-value.
Two or more such nodes with equal r-values may be ordered relative to each other in
any specific way.

the algorithm cannot become trapped in an endless loop, continually
searching the same nodes with the same thresholds.

1t is helpful to note that in searching for a path on which #(/) ultimately
decreases as / increases the decoder examines alf accessible nodes lying
beneath a given threshold before increasing the running threshold. After
an increase no further change in T is permitted until either (i) all accessible
paths are found to violate the new running threshold, necessitating another
increase of A in the value assigned to T or (ii) the search node pointer
arrives at a node that it has never reached before. Further properties of
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Figure 6.45 Example of tree search with algorithm of Fig. 6.44. For the search
detailed below #-values are calculated only for those nodes of the tree actoally shown in

the figure.
Pointer Running
at Node | Threshold Action { x indicates threshold viclation)

0 0 lock at 1 point to 1
1 0 lookat2 pointto2 setT=—A
2 —A look at 3 pointto3  set T = —2A
3 —2A fook at 4 point to 4
4 —24 look at 5 X look at 3 point to 3
3 —2A ook at 6 X lookat2 xsetT= —A
3 —A look at 4 peint to 4 .
4 —A look at 5 % look at 3 point to 3
3 —A look at 6 point to 6
6 —A lookat7  peintio7  set 7= —2A
7 —2A look at 8 peint to 8 set T = —3A
8 —3A lopkat9 X lookat7 X set7 = —2A
8 —2A look at 9 x look at 7 point to 7
7 24 look at 10 pointto 10 set T = —3A

10 —3A lookat 11 x lockat7 X setT = —2A

10 —2A look at 11 point to 11

1 —2A _lookat12 peintto 12 set T = —34A
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the algorithm are stated in Appendix 6A. The analysis performed there
permits a sensible choice to be made for the design parameters Aand p'.’
The basic flow diagram of Fig. 6.4 requires one elaboration to permit
efficient implementation. The box labeled *“Is pointer at node for first
time?”’ can, of course, be realized by providing a sufficiently large memory.
But the number of nodes examined by the decoder is in general exceedingly

Stan: Pointer at Running l Yes Ruﬂ,]ing
orign; T=6=0 threshold e I
Lock forward violated f No | Look back | viclale
to best, ot if ;: 3::;?; from search
entering via [A], ! node
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Runining
thseshold
satisfied
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threshald
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e | [
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forwaid sack by A .
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Figure 6.46 Augmented flow diagram for the Fano algorithm.

large, and such a memory is prohibitively costly. An ingenious alternative
proposed by Fano uses only a single binary variable, which we designate 0,
lo determine when to tighten the running threshold. This additional
variable and the accompanying logic are included in the augmented flow
diagram of Fig. 6.46. The variable 0, initially 0, is set equal to 1 immedi-
ately following observation of a running threshold violation on a forward
look. As long as 6 remains equal to 1 the algorithm prevents tightening
of T. As soon as the search node pointer moves to a new node (one never
reached before) 0 is reset to 0 and tightening is again permitted.
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A new node can be encountered only on a forward move and is easily rec-
ognized. First, a node is new if it violates the threshold, say, T, AT_A,
just beneath the running threshold 7 for example, when node 11 of
Fig. 6.45 is reached, it violates the previous value 7y = —3A. Second, a
node that satisfies T is new if reached by a forward move from a node that
violates T,: for example, node 10 of Fig. 6.45 satisfies T, = —3A but

2A
A ya
) /9///8
(] /F | 1 /: /’6 !
) T T 7, |
A Wﬁ /1/(
2 3 —
~2A 12%~ -

Figure 6.47 Example of tree search with algorithm of Fig, 6.46.
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2 —A 0 lookat3  pointto3
3 —A U] lock at 4 X look at 2 point to 2
2 —A 1 leokat 5 x look at 1 setT =0
2 0- 1 lock at 3 point to 3
3 0 1 lock at 4 point to 4 set@ =0
4 0 look at 6 x look at 3 point to 3
3 0 i lookat7  pointto?  set @ =0
7 0 look at 8 X look at 3 point to 3
3 0 1 ook at 2 point to 2
2 -0 1 fook at 5 point to 5 set @ =0
5 0 0 fook at & x look at 2 point to 2
2 ¢ 1 look at 1 point to 1
1 ¢ 1 lock at 10 pointto 10 set =0
10 0 0 lock at i1 pointto il  set T = —A
n —A 0 fook at 12 point to 12
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is reached from node 7, which violates this running threshold value..

(Running threshold T was increased from —3A to —2A before the step -

back from node 8 to node 7.) The search node pointer can arrive at a new
node only in one of these two ways; otherwise, the node would have
been accessible with running threshold value 7, hence examined pre-
viously. The algorithm of Fig. 6.46 recognizes both possibilities and reacts
by setting & = 0.

As with Fig. 6.44, an understanding of the flow diagram of Fig. 6.46 is
obtained most readily by example. The search detailed in Fig. 6.47 is
self-explanatory.

A block diagram of a Fano decoder is shown in Fig. 6.48. Reccived
digits are read in parallel into the r-register of the decoder one branch
(v digits) at a time. In practice, branches are received at uniform time
intervals, As each new branch is received, the contents of the rregister
are shifted toward the right. The oldest branch is shifted out and lost
whenever a new branch is entered.

The decoder contains a replica of the convolutional encoder at the
transmitter. The path hypothesis, y*(/), is generated in this replica branch
by branch, matched with the corresponding received branch, and #(/) is
updated. The penetration index /, represented by the depth of search
pointer in Fig. 6.48, is increased (the pointer moved left) or decreased
(the pointer moved right) in accordance with the search algorithm. In
addition, the pointer and #-register shift one step to the right each time a
new branch is received.

The input bits hypothesized by the encoder replica in generating y*{/)
are written in the £-register. Thus the €-register positions to the right of
the pointer are full and those to the left are empty. The decoded output
vector % is the sequence of digits shifted out of the rightmost stage of the
f-register. Note that the 2-register is equivalent to the search node pointer
considered in connection with the flow diagram of Fig. 6.44. In contrast,
the depth of search pointer of Fig. 6.48 indicates where the received branch
being observed by the decoder is located within the r-register.

The ambulations of the pointer in Fig. 6.48 depend on the received
data rate, the computational speed of the decoder, and the details of the
received noise. When most of the received digits are correct, very little
searching is necessary to extend y*(/). In this case the pointer usually
hovers near the input end of the decoder and waits for new data. On the
other hand, if the number of erroneous received digits is too large, a vast
amount of searching is involved and the pointer is dragged to the right
as new branches are fed into the decoder. The decoder is in trouble if the
depth of search pointer is forced to the output end of the decoder. The
implications of this event are discussed in Section 6.5.
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Figure 6.48 Block diagram of Fano decoder for the case v = 3.
6.5 SUMMARY OF RESULTS

In this section we summarize certain theoretical analyses of sequential

decoding and discuss the major experimental results that have been
obtained.

Analytical Results

Precise analysis of an actual Fano decoder is complicated by the fact
that the size, I, of the r-register in Fig. 6.48 is finite. Meaningful insight
into decoder performance, however, is gained by assuming that I is so
large tha.t the search position pointer is never forced to the output end of
the r-register. We use this assumption in Appendix 6A to bound a quan-
tit_y analogous to the mean probability P[§,] considered in connection
“_”th. the suboptimum decoder of Section 6.3. The dverhead bar, as usual
signifies expectation with respect to a suitable ensemble of codes. Ir;

parti‘cuiar, for coders like that of Fig, 6.32 operaling over a binary sym-
metric channel, Eq. 6A.18 impliest that

P[§,] < 4, 273 TRY -1, R < R, (6.110)
in which the value of the coefficient A, is given by
5 :
Ay = T iyl _ (6.111)

and R, is the exponential bound parameter evaluated for the BSC (see
(see Eq. 6.70). As discussed in the appendix, LP[§,] may be interpreted

t Equations 6,110 and 6.111 follow from Eqs. 6A.1% and ializi
. . . 6A. 170 by
parameter values v = 2, r = 1/Ry, A = Z.q ’ Y specalizing to the
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as indicative of the probability of one or more errors in decoding a long -

sequence of L message symbols with the Fano algorithm when the r-
register is infinite. )

Under these same conditions, specialization of Eq. 6A.27 implies that a
quantity B—interpreted in the appendix as indicative of the mean number
of branches searched by the algorithm per message symbol decoded—is
bounded by

B<342; Ru< RS {6.112a)

Thus the computation bound is independent of K, but varies as

100

_ (6.112b)
[(Ry[R) — 11

34,2 ~

for Ry only slightly less than Ry'.
Although the particular bounds presented here have been chosen for
case of derivation and simplicity of form rather than for tightness, they

place in evidence three important characteristics of sequential decoding:

1. For Ry < R, the code constraint length K can be increased without
increasing the bound on B.

2. For Ry < Ry, LP[6,] decreases exponentially with an exponent that
is linear in K.

3. Although B and P[E,] are well behaved with regard to X, both

bounds blow up as Ry approaches Ry

" Thus by increasing K it is possible to obtain as small an error probability
as desired without incurring a concomitant increase in the mean com-
putational speed demanded of the decoder; however, tl}e channel imposes
an upper limit, R,’, on the maximum rate at which this kind of performance
can be attained.

These three characteristics are believed to be fundamental attributes
of all sequential decoding procedures; they are reflected in all bounds
obtained and in all experiments reported thus far 48,788

System Evaluation

Shannon’s original and revolutionary proof that channel distur‘ban_ces
fundamentally limit the rate, but not the accuracy, of communication
was first published in 1948. Since then a great deal of effort ha§ bf:en
devoted to the problem of actually achieving improved communication
reliability, and many interesting coding and decoding schemes have been

SYSTEM EVALUATION 441

devised. Most of them are well documented, 576598 and we shall not
discuss them here.

The relative desirability of different solutions to specific communication
problems depends critically on the engineering objective. For example,
consider a bandlimited Gaussian channel and Shannon’s bounding
reliability. exponent R,*, plotted in Fig. 5.18. If moderate accuracy at
low data rates (Ry/R,* < 1) suffices, the problem can be resolved by
appropriate choice of a modulator and demodulator; coding is not
needed. If the objective is to obtain high accuracy at low data rates,
easily implemented schemes such as threshold decoding® are indicated.
The most difficult problem arises when we simultaneously require high
accuracy and high data rate, Ry/R,* = 1. In this case powerful codes
(K> 1) and complex terminal equipment are unavoidable, and the
comparison of different coding techniques becomes especially intricate.

A particularly interesting class of codes affording large K is the Bose-
Chaudhuri-Hocquenghem!*—hereafter abbreviated BCH-—codes. For
any integer m there is a binary BCH code with word length N = 2™ — 1)
which contains 2X codewords and is guaranteed to correct any com-
bination of # or fewer BSC channel transitions, with K > N — mt. De-
coding schemes that are applicable to these codes whenever the number
of transitions is less than or equal to ¢ have been discovered by Peterson®
and also by others?; these schemes require a number of computations
which grows as a small power of 7.

As an example of one way in which different decoding schemes can be
compared, we now consider the performances achievable over an additive
white Gaussian noise channel with binary BCH codes and with binary
convolutional codes and sequential decoding. Antipodal signaling and
symmetric two-level receiver quantization are assumed. The resulting
BSC transition probability is

p= Q(@), {6.113)

in which E,/N’, is the energy-to-noise ratio per message input bit and
Ry = K/N is the data rate.in bits per transmitted symbol.

With the aid of a digital computer, the minimum value of E,/N'
required for any particutar BCH code in order to achieve a stated error

probability per bit, P, can be determined. We define P, ) (1/K) P&}, in

T See, fo:: example, G. D. Forney, Jr., “Concatenated Codes,”” Sc.D». Thesis, M.L.T.,
June 1965. See also D. Gorenstein, and N. Zierler, “A Class of Error-Correcting Codes
in p™ Symbols,” J. SIAM 9, 207-214, June 1961.
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Figure 6.49 Minimum value of E,JN,, as a function of Ry, for BCH codes of length
N =15, 31, 63, 128, 255. Only the dots represent data points. For small RB! the
solid (sequential decoding) curve can be lowered 2 db through 1_.15e of close-grained,
rather than binary, detector quantization (see Eq. 6.114b and Fig. 6.21).
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which P{&] is the BCH block error probability. The resultst are plotied
as a function of Ry for P, = 105 and 10® in Figs. 6.49a and 5.

For purposes of comparison with sequential decoding we can refer to
Eq. 6.70 and determine the value of E /N, required to obtain Ry/R, =
0.9. The results are also plotted in Figs. 6.49¢ and b. Equations 6.110
and 6.111 state that with these values of E,/N'; an arbitrarily small error
probability can be obtained by choosing K large enough. We shall soon
see that when decoding sequentially it is sensible to choose K so large that
the error probability will be truly negligible and to restrict Ry < 0.9Ry.

From a system-engineering point of view curves such as those in Fig.
6.49, although instructive, are by no means a sufficient basis on which to
decide among contrasting design approaches. We must also take into
account the fact that different decoding schemes have different operational
and implementational advantapes and disadvantages. For instance, so far
we have considered only the average computational demands with se-
quential decoding; in the next subsection we consider also the variability
of the number of computations. Although BCH codes in general require a
larger average amount of decoding computation than sequential decoding,
the computational demand in the BCH case is much less variable, which
is a distinct advantage in many applications.

The greatest asset of sequential decoding is the scope of its applicability.
We have already mentioned that sequential decoding procedures can be
applied to a broad class of communication channels. Specifically, the
class includes, but is not restricted to, every constant memoryless discrete
channel—that is, every channel for which the statistical connection
between input and output symbols on each use of the channel can be
modeled adequately by a fixed transition diagram such as that shown in
Fig. 6.17. For any such channel bounds equivalent to Eqgs. 6.110-6.112—
but with R’ given by Eq. 6.62b---are derived in Appendix 6A. Thus great
flexibility may be exercised in the design of a modulation and demodula-
tion system to be used in conjunction with sequential decoding.

An immediate implication is that if very close-grained, rather than
binary, quantization is used at the matched filter output of an additive
white Gaussian noise channel, the limiting value of Ry with binary
convolutional coding can be increased from

Ry =1—log,[1 + 2Vp(l — p)] (6.114a)

+ Since no decoding algorithm for BCH codes has been devised for 2 number of channel
transitions greater than #, a block decoding error is presumed whenever this event
occurs. In determining the performance of the BCH codes, the values of ¢ and K were
taken from Table 9.1 in Peterson® and provide stronger results than guaranteed by the
bound K > N — mt.
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to a value arbitrarily close to the unquantized error exponent

Ry=1—log, (1 4 e B8Ny E = ERy,  (6.114b)

with consequent improvement in the efficiency of energy utilization. Also, -

we need not restrict consideration to binary signaling, but can design a
multiamplitude transmitter modulator to yield an Ry’ that is nearly
optimum for any value of Ey/N, as discussed in Chapter 5. A relevant
experiment is discussed at the end of this chapter. Calculations of Ry’
for certain propagation channels characterized by random phase shift
and fading are considered in Chapter 7.

Simulation Results

Analytical difficulties with sequential decoding are such that even the
tightest bounds that have been derived are not numerically accurate
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Figure 6.50 Empirical average number of computations per bit decoded. (Figures
6.50-6.52 and 6.56 have been made available through the courtesy of G. Bluestein and

K. L. Jordan.'®)

enough for purposes of engineering design. In this section and the next we
summarize some of the results that have been obtained by computer
simulation of the Fano algorithm at the MIT Lincoln Laboratory.®®

The actions performed by a decoder in communicating a long sequence
x of L convolutional coder input bits over a BSC has been simulated on
a digital computer programed to count the number of code-tree branches
actually searched during the entire decoding procedure. We define (B)
as this total divided by L. Thus {B) is the empirical average number of
branches searched per message inpur bit decoded.

In Fig. 6.50 we plot the observed values of (B) as a function of the ratio
Ry /R,. The code constraint length K used in the simulation was equal
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to 60, and was large enough so that no decoding errors occurred. For
this value of K the suboptimum decoder considered in Section 6.3 would
make approximately 2% a 10" branch comparisons per decoded digit,
and for Ry == 0.9R," even the bound of Eq. 6.112 claims only that & <
8100. In conirast, for the experiments summarized in Fig. 6.50 we
observe that (B) < 4 for all Ry/R) < 0.9. As Ry— Ry, the value of
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Figure 6.51 Average number of computations in decoding as a function of () tilt;
(b) threshold spacing. For both curves, Rny/R," = 0.89.

{B) rapidly becomes large, a behavior that is in accord with the bound of
Eq. 6.112. Experimentally, {(B) is found to depend strongly on the ratio
of Ryand Ry’ but only weakly on the value of these parameters individually.

The data of Fig. 6.50 were taken with the tilt parameter p’ (see Eq.
6.109) and threshold spacing A optimized empirically to minimize (8. The
behavior of (B) as a function of tilt and spacing in a typical case is
shown in Figs. 6.51a, b. We observethat precise minimization with regard
to these parameters is not necessary. Finally, it should be remarked
that the first several digits of the generators {g} used in the experiments
reported here were carefully chosen to yield good performance®®; only
the tails of the generators were chosen at random.
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Dynamical Decoding Behavior

Although Fig. 6.50 shows that the average computational demand (8)
with sequential decoding is quite small for R /R, < 0.9, the actual
number of branches, say B, searched by the computer in the dynamical

process of penetrating from one node to the next in the code tree is extremely

variable. We denote the relative frequency with which B exceeds any
number y by F[B > y]. Typical plots of F{B > y], with R /R, as a
parameter, are shown in Fig. 6.52. For large values of ¢ the relative
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Figure 6.52 Empirical distribution function of number of computations in decoding.

frequency varies approximately as an inverse fractional power} of 7
For these data an empirical relationship, valid for y > 1 and Ry < Ry,
jgld

IS FIB> y]~ 3—{14RN/RD')V7(2-9—-2RN,'R0')_ (6.115)
For an analytical expression, see Problem 6.17. -

The variability of the number of computations has a p?ofound influence
on the design and evaluation of a sequential decoding system. For
example, with a BSC and an appropriate convolutional code we 'a-ntlc1pajte
that except for short excursions the pattern of .channel transitions will
usually leave the received sequence much closer in Hamming d1stance.: to
the sequence actually transmitted than to any of the other possible
encoder outputs. Then a Fano decoder typically searches out the correct

1 A probability distribution with this type of behavior is called “Paréto.” If a Paréta
randam variable is to have finite mean, the exponent of ¥ must be no greater than
minus one. This condition would be met in Eq. 6.115 for Ry = Ry if the Cf)nstant
2.9 were replaced by 3.0. The empirical value 2.9 reflects a small amount of experimental

performance degradation.
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path through the code trec with great rapidity, which accounts for the
small value of (B). In such circumstances the pointer designating the
depth of search of the decoder in Fig. 6.48 hovers near the input end of
the decoder and all is well.

Infrequently, however, the channel transition pattern wiii cause the
tilted distance along the correct path to increase with / over a span of

i)
- Span of

bad noise
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: / 13 \17
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Ne /" \
\L 11 \
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Figure 6.53 A plot of #(/) along the correct path which involves a great amount of
computation in decoding. Before reaching nede 15 the decoder must examine each
path diverging from nodes 4 through 14 until the path crosses threshold —3A,

considerable length.” In this atypical event the decoder must search far
back into the code tree, examining an enormous number of branches
before it can follow the correct path over the local maximur, as illustrated
in Fig. 6.53. The probability of a deep search decreases, but the resulting
number of computations increases, rapidly with search depth. The balance
between the two effects accountst for the fact that F{B > 3] is only a
slowly decreasing function of y. In such circumstances the on-pouring
stream of received digits may force the depth of search pointer to the output
end of the decoder memory, a condition called overflow.

t The distribution of computation is analyzed in J. E. Savage, ““The Computation
Problem with Sequential Decoding,” Ph.D. Thesis, M.L.T., February 1965. Additional
empirical data is to be found in K. L. Jordan, *“The Performance of Sequential Decoding
in Conjunction with Efficient Modulation,” IEEE Trans. Comm, Tech,, COM-14,
283-297, June 1966




448 IMPLEMENTATION OF CODED SYSTEMS

- With surpassing infrequency, the channel transition pattern may create
a Teceived sequence that closely approximates one of the possible, but
incorrect, coder ocutputs. As an extreme example, if the channel noise
sequence is

n=f, , (6.116)
where f, is the hth translate of the code generator sequence g, it follows
from Eq. 6.83 that the received sequence is exactly that code word which

Received signal space.
(Points that are close
together indicate vectors
that are near each other
in Hamming distance)

Figure 6.5 An abstract representation of the events ““overflow™ and “‘error” for the
BSC. The dots represent the encoder cutputs {y:). Received signals lying in the open
region are not decoded because of overflow.

would have been transmitted had the kth digit of x in fact been different.
In this case =, will with certainty be decoded both easily and incorrectly.
Even in less extreme cases it is possible for several incorrect digits to be
released from the #-register without a large increase in the number of
branches searched and concomitant dragging of the search position
pointer to the right. Such events are called undetectable errors.

From an operational point of view, we need to distinguish between
errors and overflows. For conceptual purposes the distinction may be
envisioned geometrically as shown in Fig. 6.54: when the actual encoder
input is x;, channel transition patterns producing received sequences that
lie within the crosshatched area correspond to correct operation of the
decoder. By symmetry, teceived sequences lying within the shaded areas
must therefore yield undetectable errors. Intermediate transition patterns,
producing received sequences lying within the open region, yield overflow.

In order to be practicable, a sequential decoder must be designed and
operated so that both the overflow and error probabilities will be very small.
Obtaining a small overflow probability is the more difficult problem, and

- we discuss it first,
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Probability of overflow. The magnitude of the overflow probability
depends primarily on the size of the decoder memory and the com-
puiational speed of the decoder. Like (B), it is insensitive to the code
constraint length but very sensitive to Ry'/Ry.

We gain insight into the probability of overflow with the Fano algorithm
by considering the decoding of a new input bit on the assumption that
the decoder’s depth of search pointer starts out at the exireme left of the
memory, as in Fig, 6.55. If I' is the number of received branches that can

}%t T-branches —~—~—>[
O]
r' e ——— ——————— e | .
— ; o r-register
N - S
= y Decoder
x-register —
output

l-Depth of search pointer

l.ogic, control, and replica
of encoder parity nets

Figure 6.55 Initial condition of decoder for simplified overflow analysis.

be stored in the memory, an overflow is then certain to occur unless the
decoder is able to penetrate at least one branch deeper into the code tree
before " new branches are received. An equivalent statement is that
overflow must occur if more than AD' branches are searched before
additional penetration, where i denotes the mumber of branches the
decoder can search in the time allotted to the transmission of each branch.
From Eq. 6.115 the relative frequency, say F, of this event is

F L F[B > AT av 37 BNEBO T2 BN RO (6.117)

In the process of searching the decoder moves back into the code tree,
so that an overflow niay occur before AL’ branches have been searched.
As a practical matter, however, whenever A > {B) and the right-hand side
of Eq. 6.117 is very small, F provides a useful estimate of the probability
of overflow.t The validity of this statément rests on the waiting-line
nehavior observed in the course of the decoder simulation experiments.
By waiting-line we mean the position of the decoder depth of search
pointer, under the assumption that T is infinite.

+ If 4 is less than (&}, the decoder will not even be able to keep pace with the average
computational demands of the received message stream.
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In Figs. 6.56a, b, ¢ we show the types of waiting-line behavior that
result when 2 is held fixed and Ry/R,’ is varied. For Ry/R,” = 0.89 and
1 = 3(B) the waiting line is usually zero, although the channel transition
pattern causes an occasional long search and consequent intermittent
waiting-line buildup. For Ry/R, = 0.96 the long searches are more
frequent and there is danger that the residuum of one waiting-linc buildup
is not cleaned out before the next one occurs. For Ry/R," = 1.06 the long
searches coalesce and the waiting line is unbounded.

A small overflow probability with reasonable values of I' and 2 is
possible only when the waiting-line behavior is typified by Fig. 6.56a.
In such cases, overflows are primarily attributable to difficulty in decoding
isolated message input digits, and the probability of overflow inter-
pretation of Eq. 6.117 is meaningful. With interesting values of data
rate, a value of I' 3 K is then required if F is to be small, and it is T,
rather than the code constraint length K, that primarily governs the size of
the decoder.

As an example, assume for 2 BSC that

F=10"
Ry =}
Ry =FN — 0390 (p=0074)
0.85
K = 100

R = 20 kilobits/sec.
From Eq. 6.117 we require

106 = 30085 (A2 9~1.7)
or
Al = 8.7 x 104,

If it takes 7.5 usec for a special-purpose decoding computer to search a
branch, we have

_ time to receive a branch _ 0.05 x 103 _
~ lime to search a branch 7.5 x 10—%

6.7,

which, from Fig. 6.50, meets the requirement A > {B). Hence we need
=13 x 103 K.

For this example each of the received branches requires 3 bits for
storage (v = 1{Ry = 3), and the storage of each decoded hypothesis %,

requires 1 bit. Thus the total bit storage requirement is approximately
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4" = 5.2 x 10t. With magnetic-core memories, this is quite feasible.
Tt should be noted, however, that it would be difficult to make the over-
flow probability very much smaller without sacrificing data rate. For
example, fixing Ry/R,’ = 0.85 and increasing AI' by a factor of 100
reduces F only from 107 to 10~*% The overflow probability is not an
exponentially decreasing function of the decoder memory size or speed.

Probability of erver. Since the overflow probability is controlled by
the decoder memory size and speed of computation, it is difficult to make
it extremely small. This is not true of the probability of undetectable
error. Consistent with Eq. 6.110, the undetectable error probability for a
Fano decoder decreases exponentiaily with the convolutional code con-
straint length K. By choosing K large enough, we can achieve an ar-
bitrarily small error probability, provided that Ry < R,'. Furthermore,
in interesting cases it is possible to attain incredibly minute values of error
probability—say 101*—with values of X that are orders; of magnitude
less than the decoder memory size I’ required to make the overflow
probability reasonably small—say 10-%. Thus the incremental cost of
undetectable error control is not material.

Insight into the relative insignificance of the undetectable error prob-
ability is provided by reconsideration of the geometrical representation
of Fig. 6.54. The shaded regions, which correspond to undetectable
errors, typically occupy only a small fraction of the total number of
points in the received signal space. Moreover, the shaded regions are
typically far apart from one another in Hamming distance and surrounded
by the open region, which corresponds to overflows. Tt is therefore

reasonable that when the overflow probability is small the probability

of undectable error is minute.

This conclusion has been verified analyticaily?®7®, Not only does
the undetectable error probability decay exponentially with K, but it
decays with a considerably larger exponent than that given by the random-
coding bound of Eq. 6.110. The reason that the bound is weak is that it
neglects the possibility of overflow. The effect is interpreted geometrically
in Fig. 6.57.

There is another contributant to the over-all error probability which
we have not yet discussed. This contributant is the probability that an
incorrect hypothesis 4, is forced out of the decoder just before an overflow
occurs. For the Fano decoder structure considered thus far the probability
of such an event is comparable to the overflow probability. Indeed, the
code structure of Fig. 6.35 implies that the usual number of computations
involved in a search { branches back into the code tree grows exponentially
with /. Thus even moderate values of [ typically force the depth of search
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Received signal
space

Figure 6.57 Geometrical interpretation of the weakness of the error probability
bound. An undetectable error accurs when g is transmitted if r* lics in one of the

shaded regions. On the other hand, the bound on P[§,] estimates the probability that
¢ lies outside the decision region I, that is applicable in the absence of overflow.

pointer rapidly to the right, so that overflows occur because the decoder
is uncertain of the identity of the hypothesized message bits at the extreme
right end of the @-register. Since errors of this type accompany overflows,
they are called detectable.

Decoder release of detectable errors can be controlled by modifying
the decoder in a simple way: we need only extend the £-register several
code constraint lengths—say 3K digits—beyond the end of the decoder
r-register, as shown in Fig. 6.58. The effectiveness of the procedure rests
on the fact that, if the decoder never needs to search back to an £, that
passes beyond the end of the r-register, &, must either be correct or

1<——‘——. T-branches ———>|
Er )& O__— - - r-register

R-register : |—> X

> An overflow oceurs b 3K digits—=-

when pointer reaches here An error occurs
Ivghen an incorrect
Xy, is released hera

o—

-
Depth of search pointer -]

Logic, control, and replica
of encoder parity nets

Figut 6.58 Modification of Fano decoder to incorporate error detection.
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correspond to an undetectable error. On the other hand, if the decoder
does need to search beyond the confines of the r-register, an overflow
will occur. When the point at which hypothesized bits are actually
released from the decoder is sufficiently far removed from the overflow
position, the probability that overflow will result before enough time has
elapsed for an incorrect hypothesis to be released becomes comparable
to the probability of an undetectable error. If we stop decoding at the

instant of overflow, extension of the #-register yiclds an over-all error .

probability so infinitesimal that it may safely be neglected.

Two-Way Strategies

In an operative sequential decoding system it is, of course, not sufficient
that the error probability be negligibly small; provision must also be
made to start decoding again automatically after each overflow. In a
one-way communication system this can be arranged by periodically
interrupting the message input bit stream to the transmitter’s encoder,
say after every block of L bits, and arbitrarily inserting K zeros. The
decoder can then always resynchronize within L data bits after an overflow
and thus continue on with its work by discarding the undecodable block.

On the one hand, for X = 100, F = 1075, I" = 10%, and L = 10° such
a one-way strategy implies only a 10% reduction in effective transmitted
data rate—that is, reduction by the factor (L — K){L. But on the other
hand, from the union bound there is a probability of approximately}
LF = 1072 that all or part of each block of L = 10® message bits will be
discarded, hence not decoded at all, even though blocks that are decoded
are almost certainly correct. In many applications an operating
characteristic of this type would not be acceptable. :

When communication is fwo-way, a more attractive remedy to the over-
flow problem is available. A few “service” bits can be inserted into each
of the two data streams at specified intervals, as indicated in Fig. 6.59.
The service bits originating at terminal A inform terminal B whether
decoding at 4 has been stopped because of overflow. If so, terminal B

retransmits the undecodable message. If not, terminal B continues with

new traffic. Each terminal follows an identical strategy.

The crucial aspect of such a two-way system is that the service bits are
themselves encoded. Thus even when both channels are noisy the prob-
ability that an instruction will be misinterpreted equals the probability

+ This estimate of the overflow probability neglects the fact that the procedure introduces
a statistical dependence between overflows: when resynchronizing after an overfiow
on one block of L digits, the decoder’s depth of search pointer is set initially to the
beginning of the succeeding block rather than all the way back to the input end of the
decoder memory.
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of decoding error and may largely be ignored. There remains, however,
the probability that a service bit will not be decoded at all—and since
this is related to the overflow probability it may not be ignored.

The difficulty is resolved by adopting a fail-safe strategy wherein each
terminal when confronted with an undecodable block always acts exactly
as if it had in fact decoded a request for retransmission. Matters can be

Transmitter .
information Disturbance
buffer
tnput 'y
s . Channel Decoded
message Transmitter i e
A—>B ) Receiver essage
Service bits Service bits
Decoded Recaiver Channel ]
message B—-A Transmitter Input
T e message
Disturbance Transmitter :I)‘
information
huffer
Terminal 4 Terminat B
(e}
17} ) 7]

7
L bits ~>L——L hits —-2 L bits -_>]
(]

Figure 6.59 (a) A two-way communication system. The transmitter buffers store the
encoder input data sireams for possible retransmission. It is assumed that the input
message at each terminal is available on demand. (b) Structure of encoder input data
stream. The shaded intervals represent service bits; the open intervals represent
customer traffic.

arranged® so that the entire data stream at each encoder input is decoded
in proper sequence and without block elisions, provided that undetectable
errors do not occur. Thus the one-way problem of undecodable blocks
is circumvented. The major incremental cost incurred is the provision

at each transmitter of a slow speed memory in which to store the message

input traffic over a time interval equal to the combined round-trip
propagation and data-processing time, say 7.

Each repeat-request involves the “loss” (for communication purposes)
of the combined round-trip time; that is, the transmitter re-encodes all
input data that it has transmitted during the preceding 7-sec interval.
Since the relative frequency, of repeat-requests is F, the average fraction
of time remaining is (! — 7F). As long as F can be made small enough

%
%
;




456 IMPLEMENTATION OF CODED SYSTEMS

that TF < 0.1, the effective rate at which data is communicated (in
bits per second) is not seriously reduced by overflows. A safeguard
against undetectable service-bit errors can be provided by periodic
resynchronization after every 10° or 107 transmitted bits.

The need for a two-way system appears to be unavoidable if com-
munication that is both accurate and efficient is to be maintained over
actual communication channels. The parameters of most channels are
time-variant, so that their reliability functions fluctuate. A system without
feedback must be designed to operate reliably at a data rate commensurate
with the worst channel condition, which is inconsistent with efficiency
when conditions are good. With a two-way strategy, however, the service
bits may also be used to request changes in transmitied data rate. An
example of such a system is discussed in the next section.

Experimental System Design

In Chapters 5 and 6 we have been concerned with the relationship
between modulation-demodulation and coding-decoding on the one hand
and system performance/complexity on the other. For block codes with
maximum likelihood decoding the interrelations (excluding considerations
of equipment complexity) are evidenced in the bound

W‘ < 2—1\“[Ro’ﬁRN]’ (61183.)

in which ¥ = KRy, K is the code constraint length in data bits, and Ry
is the data rate in bits per transmitted symbol.

With bandlimited channels, we are usually concerned with data raie in
bits per second. If D denotes the number of orthogonal building-block
signals that can be propagated over the channel per second, Eq. 6.118a
can be rewritten in the form

P[E] < 2 TID Ry —R] (6.118b)

in which R = DRy, is the data rate in bits per second and 7 = K/R is the
block duration in seconds. Equation 6.118b implies that an arbitrarily
small error probability can be obtained by making 7" large enough, pro-
vided, of course, that R < DRy, In order to communicate at a high data

. rate, we wish to design the modulation-demodulation system in such a
way that DR, is large.

When we consider sequential decoding and include decoder complexity
in the formulation of a two-way-system design problem, the interrelation-
ships are somewhat modified. By choosing T large enough, we obtain as
small a decoded probability of error as desired; it is sensible to choose T’
large enough sc that the probability of error is truly negligible. The
primary design problem is to make TF small, where as before T is the
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combined round-trip propagation and data-processing time and F is the
refative frequency of overflows.

In this connection also it is the value of DR, that determines the
allowable data rate. Since

Ry R

R,y DRy’

(6.119)

the frequency of overflow estimate of Eq. 6.117 can be rewritten in the
form

F a 37(17R/DR0'}[2I‘]—[2-9—2(RJ’DRU'}]. (6120)

Thus the value of A" required to obtain a stated value of F decreases as
DR, is increased with R held fixed.

When sequential decoding is to be used, the value of DR, is a funda-
mental measure of the effectiveness of the modulation-demodulation
scheme that produces it. An appropriate design philosophy is to maximize
DR/, subject to constraints on the complexity of instrumentation. For
the simple case of a bandlimited additive white Gaussian noise channel
we have seen in Chapter 5 that there are unavoidable theoretical limits to
the maximum achievable values of both D and R,’. The complexity of
instrumentation will increase if we attempt to push either of these param-
eters too close to its theoretical limit, One must settle for a design that
approaches the limit of diminishing returns.

The maximization of DR, with actual communication channels will
usually be complicated by the lack of an adequate mathematical model
of the channel disturbance. An experimental investigation of how one
might proceed has been made in connection with a toll-quality long-
distance voice telephone line. The experiment, conducted by the MIT
Lincoln Laboratory,® provides an instructive example of the interplay
between the various design factors introduced in Chapters 5 and 6.

Intersymbol interference. With toll telephone lines, the main disturb-
ance in propagation is not additive Gaussian noise but intersymbol inter-
ference: if we try to transmit a narrow pulse such as that shown in Fig.
6.60a, we actually receive a smeared pulse of longer duration such as that
shown in Fig. 6.60b.f The smearing is primarily attributable to the
fact that the phase of the telephone-line transfer function is not a linear
function of frequency, The result is that different frequency groups in the
transmitted spectrum propagate with different velocities and therefore
arrive at the receiver with different delays. Although the 3-db amplitude

1 In this discussion we presume that the telephone line is terminated in such a way
that the input and cutput signals have low-pass spectra. How this may be accomplished
will be studied in Chapter 7.
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bandwidth of the telephone channel used in the experiment was 3.4 ke, the
unequalized bandwidth affording delay variations of less than 43 msec

was only 1.9 ke, .
Intersymbol interference may be controlled to some extent by careful

phase equalization of the line and careful shaping of the transmitted pulse.

Transmitted pulse

(a)
1 msec.

Received puise

N /\ Van &
\/ v o -
(b}
I<—-— Average propagation delay

Figure 6.60 Example of the response of a telephone line to a short pulse.

Even when this is done, however, an unavoidable increase in the residual
intersymbol interference occurs as the pulse duration is narrowed and the
pulse repetition rate increased. If we treat this interference as noise, it
follows that making D larger decreases Ry'. We cannot maximize D and
R, separately.

Signaling alphabets. Toll-quality telephone lines are normally char-
acterized by a high signal-to-noise ratio. Given adequate suppression of
intersymbol interference, we therefore anticipate (from Fig. 5.17) that the
transmitter alphabet should provide many more than two amplitude
levels if the bound parameter R, afforded by an unquantized receiver is to
be maximized. We also anticipate from Fig. 6.26 that the quantized

:
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parameter R, should be substantially equivalent to R, if the receiver
output samples are quantized in such a way that the multiamplitude trans-
mitter and decoder alphabets are the same. The problem of alphabet
design then reduces to the determination (as a function of D) of how many
signal amplitude levels should be used.

For alternative choices of D and number of amplitude levels, A,
empirical estimates of the resulting transition probabilities between letters
of the input and output alphabets can be made from experimental
measuremenis. An optimal design procedure is then to calculate cor-
responding values of Ry’ from Eq. 6.62 and to choose that 4 and D for
which DR, is maximum.

Decoding distance. We now consider the determination of a suitable
distance function for the decoder to use in testing possible transmitted
signal hypotheses against the received data. For Gaussian noise we would
use Euclidean distance and for BSC noise we would use Hamming distance.
In each case the choice is dictated first by the optimality of using a distance
measure that is monotonically related to a posteriori probability and
second by the relative ease of decoder instrumentation.

In our telephone-line experiment a decoder that used the empirical
estimates of the transition probabilities to compute the a posteriori
probability of the received signal, given any transmitted signal hypothesis,
would be most desirable from the point of view of performance. The value
of R, would then be that given by Eq. 6.62, and in principle we could even
contemplate designing the coder to use the transmitter alphabet letters in
proportions that maximize Ry". In practice, however, the implementation
of such a coder and decoder would be extremely difficult. We seek an
acceptable engineering compromise instead.

Fortunately, it is not necessary to use an optimum system in order to
obtain good results; in engineering design one seeks not so much to be
optimum as to avoid crippling nonoptimalities. In the particular cascade
of modulator/telephone line/demodulator with which we are concerned,
the dominant characteristic of the over-all disturbance is that small errors
in received amplitude level are much more prevalent than large ones. We
therefore anticipate that an appropriate, albeit non-optimum, decoding
distance function might be the cumulative sum of the absolute voltage
difference between received and hypothesized signals. For example, if the
quantized received pulse amplitudes are

Y =, ry) (6.121a)
and the signal hypothesis is
8; = (5510 Sz o+ o5 Sis {6.121b)
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for decoding purposes we may define the distance between ¥ and s; as

N
d; =3 — sl (6.121¢) -

J=1

The distance function of Eq. 6.12lc is monotonically related to the
logarithm of the a posteriori probability when all signals are equally likely
and the channel disturbance is an additive noise vector n = (i, oy - - 18D
with statistically independent, exponentially distributed components;
that is, when .

Paf®) = ge-blﬂl; J=1,2....N, b>0,  (6122a)
and
N
o =TI Ps; , (6.122b)
=1

Of course, our cascade of modulator/telephone line/demodulator cannot
be described precisely in this way. The discrepancy, however, was not
too great for the several different choices of multiamplitude signaling
alphabets and values of D tested in the experiment. Most important of all,

the distance function of Eq. 6.121¢ has the advantage of being easy to

implement in a decoder, and was therefore adopted.

Experimental results, Once a suitable decoding distance function is
adopted, a convenient and reasonable compromise method for estimating
R, is to fit the empirical data to the density function appropriate to that
distance function rather than to insert the empirical data directly into
Eq. 6.62. (In general, less ¢mpirical data is necessary.) In the telephone-
line experiment the exponential density function of Eq. 6.122 was used,
and the parameter b 