5.11 Analysis of electrical networks

Matrix algebra is very useful for the analysis of certain types of electrical network.
For such networks it is possible to produce a mathematical mode] consisting

Figure 5.2 An electrical network with mesh currents shown.

of simultaneous cquations which can be solved using the techniques just ;

described. We will consider the case when the network consists of resistors and

voltage sources. The technique is similar for other types of network. ‘
In order to develop this approach, it is necessary to develop a systematic

method for writing the circuit equations. The method adopted depends on what

the unknown variables are. A common problem is that the voltage sources and

the resistor values are known and it is desired to know the current values in each

part of the network. This can be formulated as a matrix equation. Given

V = RI'
where

V = voltage vector for the network

I'" = current vector for the network
R = matrix of resistor values

the problem is to calculate I” when V and R are known. I' is used to avoid
confusion with the identity matrix.

Any size of electrical network can be analysed using this approach. We will
limit the discussion to the case where I’ has three components, for simplicity. The
extension to larger networks is straightforward. Consider the electrical network
of Figure 5.2. Mesh currents have been drawn for each of the loops in the circuit,
A mesh is defined as a loop that cannot contain a smaller closed current path.
For convenience, each mesh current is drawn in a clockwise direction even though
it may turn out to be in the opposite direction when the calculations have been
performed. The net current in each branch of the circuit can be obtained by
combining the mesh currents. These are termed the branch currents. The concept
of a mesh current may appear slightly abstract but it does provide a convenient
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Figure 5.2 An electrical network with mesh currents shown.

of simultaneous equations which can be solved using the techniques just
described. We will consider the case when the network consists of resistors and
voltage sources. The technique is similar for other types of network.

In order to develop this approach, it is necessary to develop a systematic
method for writing the circuit equations. The method adopted depends on what
the unknown variables are. A common problem is that the voltage sources and
the resistor values are known and it is desired to know the current values in each
part of the network. This can be formulated as a matrix equation. Given

V =RI

where
V = voltage vector for the network
I" = current vector for the network
R = matrix of resistor values

the problem is to calculate I' when V and R are known. I’ is used to avoid
confusion with the identity matrix.

Any size of electrical network can be analysed using this approach. We will
limit the discussion to the case where I’ has three components, for simplicity. The
extension to larger networks is straightforward. Consider the electrical network
of Figure 5.2. Mesh currents have been drawn for each of the loops in the circuit,
A mesh is defined as a loop that cannot contain a smaller closed current path.
For convenience, each mesh current is drawn in a clockwise direction even though
it may turn out to be in the opposite direction when the calculations have been
performed. The net current in each branch of the circuit can be obtained by
combining the mesh currents. These are termed the branch currents. The concept
of a mesh current may appear slightly abstract but it does provide a convenient
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mechanism for analysing electrical networks. We will examine an approach that
avoids the use of mesh currents later in this section.

The next stage 1s to make use of Kirchhof’s voltage law for each of the meshes
in the network. This states that the algebraic sum of the voltages around any
closed loop in an electrical network is zero. Therefore the sum of the voltage rises
must equal the sum of voltage drops. When applying Kirchhoff's voltage law it is
important to use the correct sign for a voltage source depending on whether or
not it is ‘aiding” a mesh current.

For mesh 1
E/=L R+ 1R, + I, — IR+ (I, — I,}R,
Ey=1I(R, + Ry 4+ Ry + Ry} + IL,(—R3y) + I1(—~R)
For mesh 2
—E;, —Ey=1,Rs +(I, —I)R; + (I, — I))R¢ + I, R,
—E; —Es =1 (~R3}) + I(Rg + Ry + R + Rg) + I5(—Ry)
For mesh 3
Ey=(U3—=I1,)Rg+ (I35 —1,)Ry+ IR,
Ey=1{—-R)+I,(—Rg) + I:{Rs + Ry + R)

These equations can be written in matrix form as:

E, R, + R, + R, + R, R, R, I,
~E,—Ey |= —R; Rs+ Ry + Ry + Ry —Ry 1,
E, - Ry — R, Re+ R+ R, 15

Example 5.38

Consider the electrical network of Figure 5.3. It has the same structure as
that of Figure 5.2 but with actual values for the voltage sources and
resistors. Branch currents as well as mesh currents have been shown.
Calculate the mesh currents and hence the branch currents for the network.

Solution

We have already obtained the equations for this network. Substituting actual
values for the resistors and voltage sources gives:

3 10 =3 —1\ /I
—2-4 )= -3 14 2|l
4 —-1 =2 8/ \U
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Figure 5.3 The electrical network of Figure 5.2 with values for the source voltages and
resistors added.

This is now in the form V = R/’

We shall solve these equations by
Gaussian elimination, Forming t

he augmented matrix, we have:
0 -3 —1 3

-3 14 -2 _g
-1 -2 6 4

Then
Ry 10 -3 —1 3
R — 10R, + 3R, 0 131 —23 59
Rz — 10R; + R, 0 —23 59 43
Then
R, 10 -3 —1 3
Rs 0 1831 —23 57
Ry = 131R, + 23R, 0 0 7200 4460
Hence,

4460
la=-—=0810 A
0
Simitarly,

—51 + 23(0.619)

Iy = ————— = —(0.281 A
131




iges and

Finaily,

3+ 0.619 +3(—0.281)
B 10

= 0278 A

1

The branch currents are then

I, =1, =278 mA
lo=1l, — Iy = —281 — 278 = —559 mA
lo= Iy — Iy = 619 — 278 = 341 mA

Iy = —1ly = 281 mA

le =1y — Iy = —281 — 619 = —900 mA

lh=1y=619 MA A

An alternative approach to analysing an electrical network is to use the node
voltage method. For our purposes the nodes of an electrical network can be thought
of as the ‘islands’ of equal potential that lie between electrical components and

sources. The procedure is as follows:

(1) Pick a reference node. In order to simplify the equations this is usually chosen
to be the node which is common to the largest number of voltage sources

(2)

(3)

We will again examine the network of Figure 5.2, but this time use the node
voltage method. The network is shown in Figure 5.4 with node voltages assigned
and branch currents labelled. The reference node is indicated by using the earth

and/or the largest number of branches.

Assign a node voltage variable to all of the other nodes. If two nodes are
separated solely by a voltage source then only one of the nodes need be
assigned a voltage variable. The node voltages are all measured with respect

to the reference node.

Ateach node. write Kirchhofl’s current law in terms of the node voltages. Note
that once the node voltages have been calculated it is easy to obtain the branch

currents.

Analysis of electrical networks

symbol. Writing Kirchhoff's current law for each node, we obtain:

node a
I,=1,
WH+E -V, V.-V,

R, R,
VoRy + E\R, — V,R, = V,R, — V4R,
Va(R1 + Rz) - Vsz - Vde - Ele
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Figure 5.4 The network of Figure 5.2 with node voltages labelled.

node b
I,+1,+1;,=0
Wt BV K=V Wt B
R, R, R

Rearrangement yields:
VoR3Rs + E{R3R5 — V,R3Rs + VVRRs — V.R,Rs + R\ R,
+ E,RRy—V.RRy=0
that is,
V.R3Rs — VIUR Ry + RyRs + R3R;5) + V.R\Rs + V.R R,
= E,R3R; + E;R (R,

node ¢
I.=1. +1,
S
Ry R, R
so that
VoRsRs — VR, Ry = V.RyR, — VyRyRy + V.R,R, — E;R,R,
that 1s,

VoRiRe — ViR Rs + R3Rg + R5Ry) + VyR3Re = —E;R3R,
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node d
[a + Ic = If
Va~Vd+Vc—Vd:_Vi
RZ R4 R7

V,R4R; — VaRyRy + V.R, Ry — ViR, R, = V,R,R,
V,R,R, + V.R, R, — Vi(R,R; + RyR. + R, R,) =0

node ¢
I, =1,
W+E -V, 1
R Rg

VoRg — Vi(Rs + Rg) = —E, Ry

These equations can be written in matrix form 4V = B, where A4 is the matrix

R, + R, —R, 0 —R,
R,R; —R,R,—R,R, — R4R, R,R, 0 RR,
0 R4R, —R, Ry — R;R, — R4R, R3R,
R.R, 0 R,R, —R,R.— R,R, — R,R, 0
0 Rq 0 0 ~Rs — Ry
and
v, E.R,
Vs ER3;Rs + E;RyR,
V=1 T and B = —E3R R,
Vy 0
| ~F,Rg

The equations would generally be solved by Gaussian elimination to obtain the
node voltages and hence the branch currents.

Using the component values from Example 5.38, these equations become

6 —4 0 -2 0\ /¥ 12
15 =31 10 0 61\ 57
0 2 11 6 oflwi=] -12
3 0 12 —19  ofluy 0

0 4 0 0 -9 V. -8
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Use of a computer package avoids the tedious arithmetic associated with Gaussian
elimination and yields:

V, = 2969 V, = 0.5250 V. = 2.200 Vy = 1.858 V,=1.122

[t is then straightforward to calculate the branch currents:

~ V, — V. V.~

=2 gma Iy=""" = -55%8mA [ =" —%=342mA
R, R, R,
v, V,~E v,

[y=-< =281 mA [,=-— 2= 900mA [;=->=0619 mA
Ry 6 7

Compare these answers with those of Example 5.38.

It is possible to analyse electrical networks containing more complex elements
such as capacitors, inductors, active devices, etc., using the same approach. The
equations are more complicated but the technique is the same. Often it is necessary
to use iterative techniques in view of the size and complexity of the problem. These
are examined in the following section.




